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Chapter 1

Introduction

The need for optimization of human labor leads to mass distribution of computing
electronic devices that in most cases they replace the human presence. That's where
it starts the extreme development of information technology (IT) as a tool to control
computing devices. Signi�cant reduction in the cost of electronics further develops this
process. More and more production machines are operated by computers, whether used
by a small, medium or small enterprise great. A natural continuation of this process
is the development of a network to integrate electronic devices called the Internet.

There is a current trend to redirect all services from reality to virtual reality. High-
tech industries in the manufacturing sector are massively building systems for planning
and managing the resources of production. Information systems allow optimizing re-
sources at all levels of the organizational hierarchy. This optimization in most cases
has a positive impact on both the competitiveness of the company and contributes for
more �exible and faster �nding new markets. Use of information systems by companies
makes it possible to their customers to solve better, faster and more e�ciently subject-
speci�c problems. This approach is especially e�ective in the �eld of heavy industry
and construction.

The widespread application of IT in Europe and Bulgaria has created a dynamic
and highly competitive environment in which a company without Implementing IT
solutions is often doomed to bankruptcy. The need to cut production costs is vital
important for the survival of the enterprise. On the other hand, customer requirements
are growing, which further fuels the need for rapid solutions to optimize material and
human resources, which is achieved e�ectively using software. This market situation
reveals new and almost unlimited possibilities for the application of application software
in solving a variety of tasks. Any software in which knowledge is applied can be seen
as a strategic source of innovation. Another �exibility of IT is the ability for the
technology to be developed by a third party that does not belong to the company, but
to be e�ectively applied by many other companies.

In short, the focus of research combined with technological innovation is one of
the most dynamic areas of development of modern industry. The present dissertation
is an e�ort in this direction. The motivation and object of application of this work
comes from the construction industry and in particular from the production of steel
structures.

One of the most important and widely practiced activities there is the following: for
the needs of a construction site it is necessary to cut a certain number of details (often
reaching thousands) with di�erent sizes, shapes, thicknesses, and in some cases from
di�erent material. The material is delivered in the form of metal sheets or remnants
of sheets from which details have been previously cut. An example of such a steel
structure is shown in Figure ??. It is necessary to cut out the necessary details while
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minimizing the cost of material.
This statement is a special case of the general mathematical problem for optimal

cutting. The practical task for optimal cutting lies in the following simple formulation:
set is de�ned material (for example, in the textile industry it is fabric, in building
constructions it is metal sheets) and a large amount of often di�erent, details. It is
necessary to cut out the necessary details while minimizing material consumption. In
practice, this means minimizing the material that remains after cutting and cannot
be recovered except to be recycled. This unused material is often called waste. This
task is mathematically formulated more than 80 years ago in connection with the
industrialization of garment production. Similar types of problems arise in many other
industrial productions and the use of optimization solutions can lead to signi�cant
material savings.

Figure 1.1: Steel Construction

The scienti�c methods proposed in this paper will be useful and most suitable for
the needs of start-ups, including those in the software �eld. The methods presented
here are based on mathematics and logic and do not use external libraries, can be
written in any programming language and can help the development of any company.
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1.1 Actuality of thesis

The topic of optimal cutting becomes even more relevant over the last two decades,
�nding a variety of applications in many industrial industries. The task is especially
important now that the market is open and companies have to compete with a large
number of competitors with modern equipment and low labor costs.

On the other hand, the mass consumption of goods leads to the need to optimize
the production of these goods. This includes both minimizing the consumption of
energy and raw materials and reducing the use of human labor. The problem is very
acute in heavy industries, especially when it is necessary to make a large number of
elements from expensive material. These two features are present, for example, in the
construction industry. Therefore, the problem of optimal cutting there is on the agenda
with special relevance.

An overview of the existing methods and their implementation in application soft-
ware is made below in the Section 1.2. Here we will only note that the software market
for the needs of optimal cutting has basically two types of implementation approaches.
In one approach, the plates are approximated to rectangles that are optimally placed
on the steel sheet, and in the second they have their exact geometry. In methods that
apply approximation to a rectangle the disadvantage is that in �gures other than a
rectangle the waste is large. In di�erent industries, a large number can be understood
as a variety of numbers. In the present paper we will understand 25-50 % for large
waste, 10-25 % for medium large waste, 0-10 % for small waste. When working with
triangular shapes formed by straight lines on all three sides, the waste is 50 %. Big
waste. This approach has limited application, but is used quite widely and gives good
results in glassmaking and the paper industry. In both types of software, the input
of the cutting objects is done manually. The polygons are entered by coordinates of
the vertices or by segments of the sides. It takes a lot time and it is possible to make
inaccuracies and / or errors in data entry.

In the last three decades, CAD systems have been widely used for the design of
construction sites. In the presented dissertation the problem of optimal disclosure of
building elements (or plates) is solved under the assumption that the polygons (plates)
are generated and provided to the builder by a CAD system. Then the data is pre-
processed and �nally the plates are cut with their exact geometry.

Preparation of plates for the needs of steel structures represent a certain class
subtasks for optimal cutting, which is characterized by a number of features that lead
to simpli�cation and to complicate the task of cutting. The most important features
are:

1. often the planks have complex shapes, the boundaries of which are arbitrary non-
self-intersecting polygons (in rare cases, making elements with elliptical contours
is reduced to the above case by approximation with polygons with su�cient
accuracy for practice);

2. very often the plate does not have a "face" and a "back", which allows a mirror
search of its location in the cutting process; this feature can lead to material
savings, but increases the complexity of the problem.

3. in the set of slats to be produced, there is often a considerable variety of sizes,
areas and shapes.

The paper focuses on methods for solving the problem for cutting into slats in 2D.
The two-dimensional cutting task is more di�cult than the one-dimensional, especially
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when the cut-out �gures are not convex and have an irregular shape. Both tasks are
NP -complete combinatorial optimization tasks [12], [13].

Figure 1.2: Steel Structure 1. Figure 1.3: Steel Structure 2.

As an illustration, some examples of the case of steel structures will be presented.
In the steel hall shown in �gure ref �g: 3DView1 there may be about 2000 - 3000
steel plates for cutting. They are of di�erent thickness, in practice we often have to
work with 6 di�erent thicknesses. Therefore, from a metal sheet of a given thickness
should be cut about 500 pieces of plates with quite complex shape. In the present case
rotation and mirror image of the plate are recommended in the optimization of the
cut. Moreover, there are slats in which the ratio of length to width (of course as the
plate is placed in a rectangle with minimum dimensions) is more than 100.
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1.2 Overview of the main results in the �eld

The problem of optimal cutting (CSP) occurs in many industrial areas [61]. Most
authors solve 2D cuts by approximating the input polygons (�gures) to rectangles.
These solutions are also applicable in many industries. For example, the production
of paper and glass [24], container loading, multi-scale integration (VLSI) design, and
various scheduling tasks [55].

The more complex version of the problem is when the input polygons (�g-
ures) are not approximated to rectangles. This problem arises in building structures
in the manufacture of steel products, the manufacture of clothing, the manufacture of
footwear, etc. In [24] the main theme is a two-dimensional orthogonal packaging prob-
lem in which a �xed group of small rectangles should be mounted in a large rectangle
and the unused area of large rectangles should be minimized. The algorithm combines
a substitution method with a genetic algorithm. In [45] a Greedy (greedy) procedure
of random (randomized) adaptive search has been developed. In this study, there is a
large primary stock that needs to be cut into smaller pieces to maximize the value of
the pieces. Cintra [49] o�ers a precise algorithm based on dynamic programming that
is suitable for small problems, since the problem is NP-di�cult. Dusberger and Raidl
[62], [63] o�er two meta-heuristic algorithms based on searching for variable neighbor-
hoods. The above works solve the simpli�ed problem with rectangular elements. In the
building industry, slabs are polygons that can be irregular in shape and can be convex
or concave, but not just intersecting. Such a variety of forms signi�cantly increases the
severity of the problem. As the slats or entrance polygons can be applied in a mirror,
since the steel sheets are homogeneous on both sides. The complexity of the task is
also increased by the fact that a triangular plate can be described with more than three
points.
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1.3 Aims and objectives of the dissertation

The main aims set for the doctoral student are of scienti�cally applied and applied
nature. They can be summarized as follows.
Dissertation objectives:

1. Optimal cutting of linear elements with minimal waste;

2. Optimal cutting of two-dimensional elements with an irregular shape with mini-
mal waste.

To achieve these goals, the following tasks were formulated:

� Task 1. Development of an algorithm for solving the problem of one-dimensional
(linear) cutting;

� Task 2. Development of an algorithm for solving the problem of cutting two-
dimensional elements;

� Task 3. To make a program implementation of the developed algorithms and to
be implemented the comparison of real construction sites with existing in practice
methods of cutting.

The basis of development is a CAD environment for obtaining graphic information
from a given construction site. After optimization, information is generated in terms
of the same CAD environment. For this purpose, a numerical algorithm for cutting
(placement) of arbitrary non-intersecting polygons has been developed. (called planks
and generated by the CAD system) from a user-speci�ed polygon (steel sheet). The
focus of the dissertation are planar elements (sheet material) 2D �gures (called plates
here). Geometrically, this means that a certain number of �gures in the plane are ar-
ranged in an area with a given user closed loop. This is a fairly general mathematical
problem that can be applied in a variety of industries. The algorithm allows and addi-
tional settings and various principles in the optimization when arranging the �gures.
These tasks are based entirely on examples from practice, and the input data are from
actually designed and executed construction sites.

1.4 Research approach

This dissertation deals with the solution of two optimization problems: (1) cutting
of linear pro�les, steel bars, T - and Π -shaped pro�les, etc.) or 1D cutting and (2)
cutting of two-dimensional (�at) plates of steel sheets.

The �rst task is one-dimensional (linear), 1D cutting. No optimizations are in-
troduced for 1D optimization special de�nitions, as it works with one parameter, the
length of the element. The task of minimal waste comes down to �nding the minimum
number of pro�les used. Although it is easier than the two-dimensional task, it is also
NP complex. The approach uses the ant method.

The second task is it 2D cutting. The data includes an incoming list of n per
number of laths (called input polygons) that need to be arrange as tightly as possible
in a polygon, called the main. In search of a possible placement of incoming polygons
can be applied rotation and mirror image. Once the location of the input polygon
is selected it is necessary to apply the algorithm for "subtraction" ("cutting") of two
polygons. This is done in order for the next incoming polygon to look for a location
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in the rest of the main polygon. This (cut) strip is then removed from the list with
input strips. This is repeated until all the bars in the input list are exhausted. Then
the overall solution (the set of planks) is evaluated by metaheuristics. See point ??.

Figure 1.4: Initial main
polygon (to be �lled).

Figure 1.5: Exemplary input poly-
gons (dimensions are signi�cantly
increased)

Figure 1.6: Main polygon be-
fore cutting.

Figure 1.7: Main polygon af-
ter cutting.

A wide range of literature has been used in the process of studying the problem.
Created new methods and algorithms are published in the author's articles, [12, 13, 15,
14]. Three methods have been developed. The �rst is to evaluate the input polygons
(sets). To their angles and lengths. This method gives a score from 0. to 1. for the
highest probability that a polygon will be placed in the �ll polygon at a given peak.
The second method gives an estimate of the largest contact length (area) between
two polygons. The third method is hybrid metaheuristics. Gives an assessment of all
admissible solutions for a given peak. The score for each decision is between 0. and
1. The one with the highest score is chosen. If there is more than one solution with
a maximum score, one of them is chosen at random. The combination of the three
methods allows us not to look for complete exhaustion of the possible combinations for
placing the input polygons Πi in the polygon of �lling ∆. Two new algorithms have
been developed, which are an improvement on two existing algorithms. One is the
Ray method [40]. The addition is that before applying the Ray method, it is checked
whether the given point is in the box of the polygon, if so then it is checked for the
whole polygon. For a de�nition of box on the polygon, see point 2.5. The box of the
polygon will be used if the number of vertices of the given polygon is greater than 4.
The other method is "Bentley-Ottman � [39]. The addition is that not all segments
are crawled, and the algorithm stops the �rst time the two segments intersect.

As a �nal result of the research of the problem, software was developed that suc-
cessfully solves both tasks. A comparison of the obtained results with the results from
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the use of commercial software is made. The advantages of the created program over
the tested commercial software are given in 4.6 and in 5.
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Chapter 2

Computational Geometry: Basic

De�nitions

In this section the geometric objects point, linear segment and polygon in the two-
dimensional plane are used. All points will be represented as a list of ordered numbers
(coordinates), [9], in two-dimensional cases these are pairs of numbers P = (x, y). Here
we also discuss the concepts important for the construction of algorithms when a point
is inside a polygon, intersection and subtraction of two polygons, etc.

2.1 De�nition of List

The list is strictly ordered items. Each element can be a number, a string or another
list. Examples:

1. list(X, Y ) - point given by its Cartesian coordinates;

2. list(pt0, pt1, . . . , pti) - a list of points, where pti is a list representing a point with
index i;

3. list (e0, e1, . . . , en−1) - a list of segments where ei is a linear segment with index
i, see below.

2.2 De�nition of point, segment and polygon

De�nition of point.

The points in the d -dimensional space are represented as an ordered list of d
numbers called coordinates, [9]. Since we consider the problem in a plane, in this
work the point pti is de�ned as pti = list (xi, yi), where the coordinates xi and yi are
real numbers. When working with real numbers using computer arithmetic raises the
question of the rounding error. The error of rounding real numbers is an important
and extensive �eld in mathematics. The following rules have been adopted:

1. We work with an accuracy of four characters after the decimal point .0001;

2. We accept a deviation of fuzz, which is a real number greater than 0.

These rules are dictated by the need to work with data produced by CAD systems. In
the �eld of design of objects made of steel structures, the dimensions of the structures
are give in millimeters, so all numerical data (coordinates of points, segments, etc.)
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are in millimeters. For the needs of the construction industry (steel structures), the
di�erence in the lengths of the sides of the plates of 0.5mm does not make the detail
indistinguishable. That is why we accept them as the same.

We assume that two points coincide Pi ≡ Pq, àêî:

(xi − fuzz) ≤ xq ≤ (xi + fuzz) ∧ (yi − fuzz) ≤ yq ≤ (yi + fuzz) (2.1)

èëè

max{|xi − xq|, |yi − yq|} ≤ fuzz (2.2)

De�nition of linear segment.
We will use two types of segments:

(1) CAD linear segment. CADei = list(pt0, pt1, dots, pti) is set with a list of points
that lie on one line; such segments are obtained from the operation of the CAD system,
which generates all input data used in this work.
(2) Linear segment ei = (pti, pti+1) a closed set of points lying on a line between two
points pti and pti+1, called endpoints, [9]. The items in the ei list are sorted. The �rst
is the initial and the second the �nal. In our work, the linear segments are obtained
after removing the inner points of the CAD segment.

De�nition of polygon.

Polygon is closed area of the plane surrounded by n linear segments forming a
closed curve [9] Note that we are using a linear segment here, not a CAD linear
segment. Let pt0, pt1, . . . , ptn be n points on a plane such that pt0 = ptn. The points
pt0, pt1, . . . , ptn form a cyclic list. While pt0 is followed by pt1, ptn−1 is followed by
pt0 = ptn. The polygon is also described by its vertices, the endpoints of its segments,
so that equivalently, Π = list (pt0, pt1,..., ptn). We say that two segments are adjacent
when they have only one common endpoint.

Linear segments form a polygon if and only if:

1. The intersection point between each pair of adjacent segments in the cyclic list
is: ei ∩ ei+1 = pti+1, for all i = 0, ..., n− 1;

2. Non-adjacent segments do not intersect.

We will call the points pti vertices of the polygon, and a segment of the polygon
will we call it a linear segment. Note that a polygon with n vertices has a n segment.

2.3 Rotation of point

Let's look at two di�erent points ptA = list(xa, ya) è ptbase = list(xbase, ybase)
in the coordinate system XOY . We want to turn the point ptA arround the base
point ptbase of given angle β. If the angle β is positive number, then the rotation
is counterclockwise anti − CW , otherwise the rotation is clockwise CW . After the
rotation we will get a new point ptB = list(xb, yb) in the coordinate system XOY .

To make the necessary calculations and get the calculation formulas for the coor-
dinates of the point obtained after the rotation, we will introduce a new coordinate
system X ′O′Y ′, whose coordinate origin matches ptbase. The axes of the new coordinate
system X ′O′Y ′ are translate parallel to the axes of the XOY coordinate system. For
the new coordinate system we get the coordinates of the point ptA, x

′
a = (xa − xbase)
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and y′a = (ya − ybase) or ptA = list(x′a, y
′
a) in the new coordinate system X ′O′Y ′. The

turning radius R is found by the formula:

R =
√
x′a

2 + y′a
2 (2.3)

The angle of rotation α is receiving by formula:

α = arccos
x′a
R

(2.4)

Then the coordinates of the point ptB in the coordinate system XOY are:

xb = xbase +
R

cos(α + β)
(2.5)

yb = ybase +
R

sin(α + β)
(2.6)

2.4 Perpendicular from a point to a line

The line is set with two points A = list(xa, ya) B = list(xb, yb) and the test point
is T = list(xt, yt). We want to �nd a point C = list(xc, yc) from the line list(A,B)
such that the vector de�ned by the points T and C are perpendicular to the line.

Before we start looking for the point C, we need to check if the points A =
list(xA, yA), B = list(xB, yB) and T = list(xt, yT ) do not lie on the same line. This is
done by �nding the face of the triangle F = list(A,B, T ). The result we will get from
this algorithm is the oriented face of the triangle list(A,B, T ). We are only interested
in whether the person F is zero or not. If the person F = 0, then the points lie on one
line and we do not need to look for the perpendicular vector ~TC to the line list(A,B).
If the person F 6= 0. Then the algorithm proceeds in the following steps, according to
[41]:

1. If xA = xB, then the line is vertical and the search point is ptC = list(xA, yT ) .;

2. If yA = yB, then the line is vertical and the point sought is ptC = list(xT , yA);

3. If the above conditions are not met, then we look for the slope m of the line
list(A,B);

m =
yB − yA
xB − xA

(2.7)

xC =
(xT
m

+ yT +m.xA − yA)

m+ 1
m

(2.8)

yC = yA +m(xC − xA) (2.9)

Or the coordinates of the desired point is: C = list(xC , yC).
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Figure 2.1: box of polygon

2.5 Finding of box of polygon

By box of polygon Πi = list(pt0, pt1 . . . ptn) we will understand the rectangular shell of
the given polygon Πi. Look �gure 2.1.

To �nd box on the polygon Πi we have to go through the list of points Πi =
list(pt0, pt1 dotsptn) and for each point we take its coordinates on X.pt and on Y.pt.
Then sort the two new lists in descending order, listX = (x0, x1 . . . xn) and listY =
(y0, y1 . . . yn). The �rst value of listX will give us maxX the last minX. We do
the same for the listY list. Thus we get the coordinates of the points boxpt1 =
list(minX,minY ) and boxpt3 = list(maxX,maxY ). Point boxpt1 is always at the
bottom, on the left. Point boxpt3 is always at the top, on the right.

2.6 Mirror image of polygon

By mirror image of a polygon we will mean a mirror image on all sides of the polygon,
which are not parallel to each other.

The polygon Mirror1 = list(mpt0,mpt1,mpt2,mpt3) is obtained from the shaded
polygon Πi = list(pt0, pt1, pt2, pt3). To �nd the mirror image of the polygon Pi uses
the following sequence:

1. We take the �rst pt0 and the second pt1 point from the polygon Pi.

2. We form the rights L1 − L1. The line L1 − L1 is formed by two points. The
�rst point is ptL1 = (polar(pt0; (angle = pt1, pt0); 10e10)). The second point is
ptL2 = (polar(pt1; (angle = pt0, pt1)); 10e10). We �nd the polar coordinates of
the points ptL1 and ptL2 - base point, angle and length. In this case, the length
is chosen large enough to be acceptable for the CAD system.

3. For each vertex of the polygon Pi we �nd the heel of the perpendicular to the
line L1 − L1 and denote it by ptPerpi . The mirror point is obtained: mpti =
(polar(ptPerpi ; (angle = pti, ptPerpi); distance(pti, ptPerpi)). To �nd the heel of
perpendicular to the line L1− L1 see Subsection ??.
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The line L1−L1 will be collinear with the segment list(pt0, pt1). Then the distance
distance(pt0, ptPerpi) will be zero and the points pt0 and mpti will coincide. Any pair
of consecutive vertices list = (pti, pti+1) on the polygon Pi can be used to �nd the line
L1− L1.

2.7 Finding the direction of a polygon (CW or anti−
CW )

Here we will discuss ways to determine the direction, (clockwise (CW ) or counterclock-
wise (anti−CW ) ), at the boundary of polygon Π = list (pt0, pt1, ..., ptn). From the
basics known in the literature methods for landmark orientation, here we will present
one of the fastest methods for calculating the direction of traversal of the peaks along
the border at the Π [28] polygon

Figure 2.2: Area of Trapeze

Let ei ∈ Π is an arbitrary segment and let its midpoint

Pm has coordinates:

Pm =

(
xi + xi+1

2
,
yi + yi+1

2

)
. (2.10)

Area of the �gure between segment ei ∈ Π and the coordinate axis X is:

Fi =
(xi+1 − xi)(yi+1 + yi)

2
(2.11)

Note that the person Fi can be positive, negative or zero. The face sign depends
on the order of the points in the list de�ning P since the layout can be list (pt0, pt1,
..., ptn−1) or list (ptn−1, pt0, ... , ptn−1). We will call this person an oriented person.
This procedure applies to all ei segments. To save CPU time, it makes no sense to
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divide each person by 2. Therefore, the sum of the oriented persons can be recorded
as follows:

2F =
n−1∑
i=0

(xi+1 − xi)(yi+1 + yi) (2.12)

If the coordinates of the points on vertices list(pt0, pt1, dots, pt5) satisfy conditions
x5 > x4 > x3 > x2 > x1 > x0, then the corresponding areas are positive and F > 0. If
the coordinates of the points on vertices list(pt0, pt1, dots, pt5) satisfy the conditions
x5 > x6 > x7 > x8 > x9, then F < 0

2.8 Angle between two vectors. Internal angle of a

polygon.

In order to get a better characteristic for a given land�ll, we will need the internal
ones its angles. First we will �nd the angle between two vectors ~a = list(T, pti) and
~b = list(T, pti+1), de�ned in the XOY coordinate system.

We �rst determine the lengths of the vectors ~a and ~b, and then their scalar product.
To �nd the length of the vector ~a, we will translate the point Ai to zero, Ti = (list0, 0).

Then the vectors ~a and ~b will have coordinates (xa, ya) and (xb, yb), respectively.

‖~a‖ =
√
x2
a + y2

a (2.13)

‖~b‖ =
√
x2
b + y2

b (2.14)

the scalar product is:

~a ·~b = xaxb + yayb (2.15)

and so we get

cosα =
~a ·~b
‖a‖‖b‖

(2.16)

To �nd the interior angles of a polygon, we will need to check whether the polygon
in the vicinity of a vertex is convex. or not protruding. In order to check this we need
to �nd the orientation of the polygon. To �nd the interior angles the direction of the
polygon must be counterclockwise anti−CW . Then we start checking everyone three
points from the polygon list(pti, pti+1, pti+2). We �nd the inner angle α, which is at
the vertex pti+1. We check the orientation of the three points. If they are clockwise
CW , then from 2π we need to subtract the angle α. If the orientation of the vertices
list(pti, pti+1, pti+2) is the opposite of clockwise (anti−CW ), then we record the angle
α without correction.
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Algorithm 1 InsidePolyAngle

/*Function for �nding internal corners of a polygon*/

procedure InsidePolyAngle(pt0, pt1, . . . , ptn)

if isClockWise pt0, pt1, . . . , ptn then return ptList = reverse pt0, pt1, . . . , ptn
i = 0
L = length of pt0, pt1, . . . , ptn
Repeat L

for pti, pti+1, pti+2 do α = getInsideAngle pti, pti+1, pti+2

if isClockWise pti, pti+1, pti+2 then return α = (2π - α)
else α

i = i + 1
End Repeat

In this way, it will be possible to write information about the internal angles and
lengths of its sides to each polygon.

2.9 Crossing of two segments

Finding an intersection between two lines is an "expensive" operation in terms of CPU
time and should be used in the "extreme" case, so here we will look at two functions.
The �rst is to �nd the coordinates of the intersection point ptx of two given segments
e1 and e2, and the second is to check whether two given segments e1 and e2 intersect
without looking for the intersection point itself. The �rst function will return the in-
tersection point list = (xi, yi) as a value, and the second - true or false.

Find the coordinates of the intersection point ptx.

According to [31] and [30] the intersection point ptX = (X, Y ) of two given segments
e1 = (x1, y1) and e2 = (x2, y2) has coordinates:

X =

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣x1 y1

x2 y2

∣∣∣∣ ∣∣∣∣x1 1
x2 1

∣∣∣∣∣∣∣∣x3 y3

x4 y4

∣∣∣∣ ∣∣∣∣x3 1
x4 1

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣x1 1
x2 1

∣∣∣∣ ∣∣∣∣x1 1
x2 1

∣∣∣∣∣∣∣∣x3 1
x4 1

∣∣∣∣ ∣∣∣∣x3 1
x4 1

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

, Y =

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣x1 y1

x2 y2

∣∣∣∣ ∣∣∣∣y1 1
y2 1

∣∣∣∣∣∣∣∣x3 y3

x4 y4

∣∣∣∣ ∣∣∣∣y3 1
y4 1

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣x1 1
x2 1

∣∣∣∣ ∣∣∣∣y1 1
y2 1

∣∣∣∣∣∣∣∣x3 1
x4 1

∣∣∣∣ ∣∣∣∣y3 1
y4 1

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

. (2.17)

By calculating the determinants in (2.17), we obtain the following expressions for
X and Y :

X =
(x1y2 − y1x2)(x3 − x4)− (x1 − x2)(x3y4 − y3x4)

(x1 − x2)(x3 − y4)− (y1 − y2)(x3 − x4)
(2.18)

Y =
(x1y2 − y1x2)(y3 − y4)− (y1 − y2)(x3y4 − y3x4)

(x1 − x2)(x3 − y4)− (y1 − y2)(x3 − x4)
. (2.19)
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2.10 Point in polygon

We will consider the following problem in the XOY plane. For a given random point
T = list(x, y) (called test point) and polygon Π = list(pt0, pt1, . . . , ptn) to determine
whether the point is inside the polygon or not. The vertices of the polygon are given
by pti = list(xi, yi).

Here will be considered two methods for solving this problem - Ray crossing method
(intersecting beam), [32], and Balanced sum of angles. In the software developed for
the dissertation the following approach is used before applying the intersecting beam
method to all segments. It is checked by the method of the intersecting beam whether
the given point T is in box of the polygon Πi. For more �nding box on a polygon, see
??.

and if it is in box then the Ray method is applied to all segments of the Π polygon.
This approach requires crawl the entire list of points (pt0, pt1, ..., ptn) and compare to
�nd the minimum and maximum of each coordinate. This check is done quickly, as it
comes down to comparing two numbers. This approach is justi�ed because the number
of segments in a polygon is growing very fast. Depending on the complexity of the
input polygons and the allowed angles of rotation, the polygon for which we check Π
can reaches 300-400 segments. As this check is repeated n a number of times. The
complexity of the algorithm is O(n2), but if the method set out in ?? is applied, then
the complexity can be reduced to O(n).

Ray crossing method
Check if a point T is in a given polygon Π. Recall that the area surrounded by the
land�ll is closed, i.e. including the border. For this purpose we build a horizontal
half-line

with the beginning the given point T and the end point T∞, which we will call
the intersecting ray Ray = list(T, T∞). Under a point in in�nity we will understand
the largest number that can be generated from a given CAD system. In most cases,
1020 is su�cient as an approximation to in�nity. The idea of the intersecting beam
method is based on the number of intersections with the polygon Π. If the bore of
the intersection points is even, then the point T is outside the polygon, otherwise it is
inside the polygon.

In special cases, when the intersections of the ray Ray with the segments of polygon
Π coincide with a given vertex of the polygon Π inaccurate results are obtained. To
solve the problem of coincidence of the transverse current with a given vertex of the
polygon, a criterion for "Ascending" and "Descending" segment is introduced.

Balanced sum of angles
The task is to �nd the oriented internal angle between the vectors. ~a = list(T, pti)

è ~b = list(T, pti+1).
We will now give criteria for when a point T is inside or outside a polygon Π =

list(pt0, . . . , ptn). We construct the vectors ~ai from the point T to pti, i = 0, . . . , n− 1
and �nd the oriented angles αi between ~ai and ~ai+1, i = 0, . . . , n−1. Then we calculate

Sumα =
n∑
i=1

arccosαi (2.20)

If the point T is interior for the polygon Π, then the sum of all interior angles
Sum alpha is equal to ±2π. With a calculation of all angles (crawling), this method
gives us two important characteristics for a given polygon Π:

1. If Sumα = 2π polygon Π is oriented CW ;
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2. If Sumα = −2π polygon Π is oriented anti− CW .

This is a very reliable method, but not fast enough according to cite BGSIAM
2017. Also from critical the error that accumulates when adding the corners is also
important. Usually the values of the angles are small with a large number of segments
of polygon and then a large enough error can accumulate, which in turn, it will be
di�cult to judge whether the point T is in the polygon Π.

2.11 Add points in a linear segment

Adding points in a linear segment is necessary to �nd more possible valid ones locations
of the polygons Pi, i = 1, dots, in the polygon ∆. See point 4.4. Now let's take a certain
polygon P = list(e1, e2, . . . en) from the incoming list of polygons. Each segment ei of
the polygon P = list(e1, e2, . . . en) is divided into three subsegments. Detailed points
are added for each sub-segment. The principle of placing detailed points.

Obtaining detailed points for the segment ei = list(pti, pti+1) is done by polar
coordinates (base point, angle and length). We de�ne the function polar which returns
a point at a given base point, angle and length. The base point is pti. The angle of
the segment ei with respect to the abscissa axis OX is angle(pti, pti+1). Finding the
length of each segment is as follows:

1. Divide the segment ei into the ratio L1 = 0.1(distance = pti, pti+1).

2. L1 is divided by the corresponding number of segments we want to achieve. 3 or
5 divisions can be used.

3. The �rst detailed point will be ptL1,i = (polar(pt0, ange1,
L1

5
).

The calculation of the other detailed points for the segment ei is done in the same
logic as for the point ptL1,i. The addition of these detailed points along the boundary
of the land�ll in some cases increases the quality of valid solutions. When testing, if I
place the polygon Πi at the vertex pt0, then we will not get a valid solution (placement
of the plate). However, if the polygon Πi is placed in any of the detailed points, there
will be a valid solution.

2.12 Remove redundant points from a linear segment

The inspection is performed before the arrangement of the polygons begins. When rep-
resenting polygons as a list of vertices list(pt0, pt1, . . . , ptn) is it is possible to describe
a triangle with more than three points. So the number of the vertices (points) in a list
do not determine the type of �gure.

2.13 Crossing of two polygons

The function for �nding the section (intersection) of two polygons A and B is one of the
main operations with sets and is often used in cutting algorithms. Unfortunately, the
implementation of this operation requires a lot of CPU time. The classic approach is
to check whether each segment of the B boundary intersects segment of the boundary
of A. This method is easy to implement, but as slow as possible, there is a complexity
O(n2), [10], p. 21. This approach is not used in the software developed by the author.
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Faster methods for checking whether two polygons intersect use �nding the points
of intersection of their boundaries with their coordinates or veri�cation for logical
intersection. In most cases we will use logical intersection of the two polygons, then it
is not necessary to know the number or coordinates of the intersection points, su�ce
it to know that one of the two polygons has at least one vertex that is inside the other
land�ll. This is also used when searching for a possible position of a polygon Πi relative
to the main polygon ∆. In the section 4.4 for 2D cutting we will give more information.

One of the possible cross-checks is by starting to emit rays from each vertex of the
B polygon. And if a vertex from the polygon B is in the polygon A, then the two
polygons A and B intersect. Not in this approach it is mandatory to check all points
of the polygon B whether they are internal to the polygon A. The method is reliable,
but its complexity is almost O(n2), since each ray is actually a segment with initial
vertex Bi. This approach is relatively faster than the classical method.

tab [0.5 cm] One of the fastest algorithms is that of the "Bentley � Ottmann
algorithm", [39], which is concludes with the introduction of a vertical or horizontal
"scanning" line passing through all segments. When reaching the beginning of a seg-
ment, we report "event" and when we reach the end of the segment we also have an
"event" the algorithm uses a vertical scan line. According to [43] the complexity of
this algorithm for all K intersections between the N segment is O((N +K) logN).

2.14 Reduction of polygon vertices

In the process of searching for a valid solution along the contour of the polygon, de-
tailed points are "inserted", which increase signi�cantly the likelihood of �nding a valid
solution. In the algorithm developed by the author [13], 15 detailed points are placed
on each segment. Three intervals of �ve points. This area of search for solution-these
detailed points. For each of them, the input polygon is translated and rotated. until a
valid solution is found. A valid solution is that the input polygon is in the �ll polygon.
Without crossing the two polygons.

Reducing the polygon will signi�cantly increase the speed of the algorithm and
save accordingly computational time. To reduce the polygon, we must determine its
direction of construction. Assume that the direction of construction of the polygon ∆
is CW . We open a new blank list and start traversing the polygon ∆ with every three
points list(pti−1, pti, pti+1), i = 1 . . . n. We calculate the direction of rotation of the
points list(pti−1, pti, pti+1). If their direction coincides with the direction of rotation
on the polygon ∆, we check whether (getPolyArea(pti−1, pti, pti+1) < minArea and if
so it we do not write a point pti in the empty list, otherwise we write pti in the empty
list. If the direction does not match on rotation of list(pti−1, pti, pti+1) with ∆ we write
pti in the list.
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Chapter 3

Task for 1D Cutting Stock Problem.

3.1 Formulation of the task.

The problem of optimal cutting of elements of a given polygons (plates) dates back
to the beginning of the industrial revolution, the second half of the 18th century and
the beginning of the 19th century. It is typical for this period of time the exponential
development of the productive forces. The industrial revolution is connected not only
with the beginning of the mass use of machines, but also with the sharp rise of labor
productivity. High labor productivity is directly and directly proportional depending
on the consumption of raw materials. Hence the need for optimal use of resources in
production. The task of optimal linear cutting mainly a�ects industry. Industry is
a sector that includes the extraction of minerals and the processing of raw materials
in intermediate or �nal products. Conditionally, we can divide the industry into two
extractive sectors and processing. The secondary sector also includes construction.
Our task stems from the secondary sector - construction. Several types of materials
are mainly used in construction: Reinforced concrete, steel, wood and others. In this
case, we will focus on steel and wood constructions. These constructions allow to be
produced in a workshop and to be installed on the construction site. The production
of both types of materials (steel and wood) allows cutting. Let's take for example, the
steel structure shown in �gure 1.1.

In this construction, cross-sections of various types are used for the rod elements.
Double "" T "pro�les," L "pro�les," C "pro�les.

Sections of steel pro�les often reach 100 kg/m. At a price of one kilogram of steel of
the order of BGN 3.5 lv./ kg. (as of 2021) makes BGN 350 per linear meter. And when
we can make savings that are repeated for each account, then the bene�t of optimal
cutting is obvious.

A list of input pro�le lengths L = li is given. The solution of the problem for 1D
will be reduced to �nding a solution for Bari. Or this is the linear arrangement of
part of pro�les li in a given length Bari. The next steps are until all accounts in the L
list are exhausted. Optimization involves locking the pro�les so that get the smallest
possible remainder for each given length Bari, see �gure 3.1.
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Figure 3.1: De�ning a linear cut.

Where Bari, i = 1 . . . n, see Figure 3.1, the target �ll length for �nding one pro-
�le layout is displayed. The problem will be solved with the method of ants ACO.
The ant method is a metaheuristic method for solving computational problems [16].
This algorithm is part of the algorithms of Social Intelligence (SWARM models of the
evolution of culture).

In this case, it is 12,000 units. It cannot be less than the smallest length of the
input pro�les. To �nd a valid solution, we take the one with the smallest value of
the remainder waste1 of them among all the solutions found. We must note that
waste1 consists of two wastes. One waste is real - that which remains as material
stored in the variable wasteReal. The other is technological, written in the variable
wasteCut. This is the width of the cutting tool. Therefore, the total waste is wastei =
wasteReal+wasteCut. Then the pro�les included in the selected solution (green color
of �gure ref �g: 1D-Waste) exclude them from the input list. The task is repeated
until as the incoming list becomes empty. Then we write in a variable sumWaste =
(waste1 + waste2 + · · · + wasten) scrap from all pro�les and save the solution. Once
we get the next solution we compare them by sumWaste. We choose this with the
smaller sumWaste. The decisions are repeated or until we get a waste less than 5 %
or up to a given calculation time.
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3.2 Finding a complete solution for 1D cutting.

Let the following incoming list of cutting pro�les be given. The incoming list is obtained
directly from the CAD system. One such list is shown in table ref tbl: Pro�leInput.

Input data for 1D cutting:

Table 3.1: Input data for pro�le cutting.

n Section Count Length
1 2 3 4

1 Pro�le 1 36 320
2 Pro�le 12 54 330
3 Pro�le 8 4 330
4 Pro�le 15 18 334
5 Pro�le 31 54 340
6 Pro�le 25 54 350
7 Pro�le 19 360 365

With n we will mark the "collapsed" list with 18 items. With N we will mark
the developed list with 580 items. Three stacking methods were tested. The �rst is
combinatorial optimization by the method of ants ACO, [53] and [54]. An ant was
used to �nd a solution for a Bari.

Figure 3.2: Illustration of the ant method.

Figure 3.3: Value.

The Ant Colony Optimization method is part of the population methods. Popu-
lation methods are part of Metaheuristics. See �gure 4.1. In general, this is a prob-
abilistic approach to solving a variety of computational problems. The ACO method
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solves problems according to given parameters. This method was �rst proposed by
Prof. Marco Dorigo in 1992 in his dissertation.

From then until today, the method proposed by Prof. Dorigo has been extended
and modi�ed to be able to solve a wider range of tasks. The idea is taken from nature,
so here we will use terms like "ant" and "pheromone". A pheromone is a chemical
that is released from the ants in the process of passing a road. This pheromone serves
to communicate with other ants. In the beginning, the ants move at random. When
they �nd food, they return to their nest. All the way back and forth they release a
pheromone. This pheromone is deposited in their path. The pheromone attracts ants.
The more pheromones there are in a given road, the more likely the ants are to move
on it. In this way, the amount of pheromone increases and the path to the food source
becomes more attractive to other ants. A di�erent number of ants can be used to solve
each task. The fewer ants are used to �nd the global optimum less current computing
resources (CPU time) will be required. In the present case, an ant was used. The ant
selects any valid element and places it in the valid solutions. For the next solution, it
uses a function called transition probability. This feature is a product of the amount of
pheromone and heuristic information. The amount of pheromone represents the expe-
rience of previous iterations of ants. The heuristic function is information representing
prior knowledge of the task. The ant chooses this transition, which has a great deal
of pheromone and heuristic information. This is the highest probability of a correct
decision. If there is more than one solution with equal probability, then one of them
is chosen at random. Once all the ants have found their solutions, the pheromone
should be renewed. First, the pheromone is reduced to reduce the impact of previous
decisions. A new pheromone proportional to the value of the target function is then
added. The logic is that solutions with more pheromone are better than those with
less pheromone and so they will become more desirable in the next iteration. In the
speci�c task, the pheromone is placed on the transitions.

Probability of transition.

pi,j =
(ταi,j)(η

β
i,j)∑

(ταi,j)(η
β
i,j)

, (3.1)

where:

� τi,j is the amount of pheromone corresponding to the transition from vertex i to
vertex j;

� α is a parameter to control the in�uence of τi,j;

� ηi,j is heuristic information. Combination of the parameters of the objective
function and the constraints;

� β is a parameter to control the in�uence of ηi,j.

Pheromone Update.

X =

{
Lk, if an ant K passes through the edge i, j
0, else

(3.2)

Algorithm of the ACO ant method, according to cite ESGI'113.
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Algorithm 2 ACOAlgorithm

/*Algorithm of ants*/

procedure ACOAlgorithm
Begin

Placing an initial pheromone
While while the criterion is true do

Place each ant at the top vertex
Repeat

For each , apply for each ant
Choose next vertex

End Foreach , end of apply for each ant
Until , each ant is construct a solution

Pheromone renewal
End While , end of while

End

Since the creation of the algorithm in 1992 by Prof. Dorigo until today, various
modi�cations of the ACO algorithm have been developed. Some of the most popular
variants of the ant optimization algorithm are presented in [17], [18], [19], [20], [21],
[22], [23], [53] , [54],

In the current 1D task, the largest pheromone is given to those pro�les that give
the smallest remainder of Bari. The length of the pro�le is its weight because the cross
section is the same. It is a constant. See �gure 3.3. The Length2 pro�le will receive a
higher pheromone (rating) than the Length1 pro�le. Or these are longer pro�les will
have a higher rating. The sum of the pheromone for Bari is larger for longer pro�les.
In this case, the ant method exhibits a Greedy character.

The second method is dynamic optimization. This approach does not make combi-
nations between pro�les, but records the sum of the accounts due to an index. In the
next search, the sum of the lengths is not passed through the entire list to the given
position, but their sum from previous calculations is used. Give a list of pro�les with
their lengths Lp = list(p0, p1 . . . pn). The sum of the lengths of the �rst 5 pro�les will
be:

1. sum1 = p0 + p1;

2. sum2 = sum1 + p2;

3. sum3 = sum2 + p3;

4. sum4 = sum3 + p4;

5. . . .

6. sumi = sumi−1 + pi;

The third method is a combination of Greedy and a combinatorial method with
complete depletion of the n-element, k-th class. In Greedy. method pro�les are sorted
by length. From largest to smallest. The arrangement of the pro�les starts with the
largest lengths being placed �rst. The next placement is the combinatorial method.
Method the largest length of the sum of the lengths of each of the three elements in the
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list Lp. The combination class is limited to three elements. Each combination di�ers
from each other by at least 1 element.

Ck
n =

V k
n

P k
n

=
n!

k!(n− k)!
(3.3)

Or for ten pro�les we have the following number of combinations with three ele-
ments:

10!

3!(10− 3)!
=

3628800

6.5040
= 120 (3.4)

The lengths of pro�les with the same cross section do not vary widely. In the
comparisons made between the three methods, for the purposes of steel structures the
hybrid approach Greedy + n3 the algorithm gives the best results in terms of density
and time. The combinatorial method works with the "collapsed" list, we will mark
with the n element = 18 pieces. The maximum number of iterations is 73 = 343. It
is not necessary to reduce the number of items n by one after each pro�le placement.
In the developed list we will mark with N = 580 pieces. The maximum number of
iterations should be 5803 = 19, 511, 000.

Cutting lengths 12000 mm, cutting knife width 0. mm. The number of lengths
(pro�les) for cutting is unlimited. Number of pro�les for cutting - 580. The total
length of the pro�les for cutting is 205 332 mm. Therefore, the global minimum will
be around 205332

12,000
= 17.11, or up to 18 12,000m pro�les.
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3.3 Results at 1D cutting. Examples.

We will use the following commercial product:

Figure 3.4:
Comemercial product
for 1D CSP.

The Results of calculation:

Figure 3.5: Solution of 1D cutting with a commercial prod-
uct.
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The blue ellipses in �gure 3.5 indicate the number of required pro�les. They are 17
whole lengths of 12,000 mm + 1002 mm of the 18th length.

Results in this method:

Table 3.2: Results with Ants for 1D cutting.

N Äúëæèíè Îñòàòúê Ïðîôèëè
1 2 3 4

1 12000 120 pro�le 19 (360x33),
2 12000 120 pro�le 19 (360x33),
3 12000 120 pro�le 19 (360x33),
4 12000 120 pro�le 19 (360x33),
5 12000 120 pro�le 19 (360x33),
6 12000 120 pro�le 19 (360x33),
7 12000 120 pro�le 19 (360x33),
8 12000 120 pro�le 19 (360x33),
9 12000 120 pro�le 19 (360x33),
10 12000 120 pro�le 19 (360x33),
11 12000 120 pro�le 12 (330x36),
12 12000 120 pro�le 31 (330x36),
13 12000 100 pro�le 25 (350x34),
14 12000 120 pro�le 1 (320x36), pro�le 19 (360x1),
15 12000 160 pro�le 19 (360x29), pro�le 25 (350x4),
16 12000 120 pro�le 31 (330x18), pro�le 12 (330x18),
17 12000 130 pro�le 15 (330x18), pro�le 25 (350x16), pro�le 8 (330x1),
18 12000 11010 pro�le 8 (330x3),
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Table 3.3: Ðåçóëòàòè ñ Greedy + n3 method for 1D CSP.

N Length Waste Pro�le
1 2 3 4

1 12000 150 pro�le 1 (320x36), pro�le 12 (330x1),
2 12000 120 pro�le 12 (330x36),
3 12000 120 pro�le 12 (330x17), pro�le 8 (330x4), pro�le 15 (330x15),
4 12000 120 pro�le 15 (330x3), pro�le 31 (330x33),
5 12000 170 pro�le 31 (330x21), pro�le 25 (350x14),
6 12000 100 pro�le 25 (350x34),
7 12000 180 pro�le 25 (350x6), pro�le 19 (360x27),
8 12000 120 pro�le 19 (360x33),
9 12000 120 pro�le 19 (360x33),
10 12000 120 pro�le 19 (360x33),
11 12000 120 pro�le 19 (360x33),
12 12000 120 pro�le 19 (360x33),
13 12000 120 pro�le 19 (360x33),
14 12000 120 pro�le 19 (360x33),
15 12000 120 pro�le 19 (360x33),
16 12000 120 pro�le 19 (360x33),
17 12000 120 pro�le 19 (360x33),
18 12000 10920 pro�le 19 (360x3),

Table 3.4: Comparison of results for 1D cutting.

Software Number of Accounts Used Time [s]
1 2 3

Commercial product 17x12000 + 1002 mm 7
Greedy + n3 17õ12000 + 1080 ìì <1
Ants ACO 17x12000 + 990mm 1

Obviously, the commercial product uses very complex heuristics or other optimiza-
tion methods. The commercial product is the slowest compared to the other two
methods Greedy + n3 and ACO. As can be seen from the comparison table ref tbl:
Compare1D, the ant method ACO gives the best result in terms of least waste, which
is our main goal. As a computation time Greedy + n3 is slightly faster than ACO at
the expense of the worse solution. The commercial product is slow and gives a worse
solution than the ACO ant method. Therefore, we can conclude that the algorithm
proposed by the author of the dissertation ACO is superior to the other two.
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Chapter 4

Task for 2D Cutting Stock Problem.

4.1 Formulation of the task.

The industry sets a variety of optimization tasks to solve. These tasks can be classi�ed
on many grounds depending on:

1. the nature of the problem to be solved;

2. task structure;

3. the number of control parameters;

4. the nature of the dependence of the criterion and the constraints of the parame-
ters;

5. the presence of various restrictions;

6. the nature of the required minimum;

7. number of criteria;

8. and others.

In the production of steel structures it is necessary to cut plates from a given steel
sheet. The plates come as polygons from a CAD system. This requires arranging the
input plates on the sheet so as to obtain minimal waste. This is the cutting of a certain
number of �gures from a given material, which in the general case will be a polygon.
We will call this polygon a polygon to �ll. See �gure 1.4.

This task is also known as Cutting Stock Problem or (CSP), [69]. This problem
is an NP-complex combinatorial task [88]. The literature gives exact solutions to the
problem for �gures (planks) that are rectangles. It will be given below an algorithm for
�nding a solution to the problem of arranging a given number of arbitrary geometric
�gures (plates described by polygons) inscribed in any contour (polygon to �ll). The
method allows use of rotation and a mirror image of the �gure. CPU computing time
increases signi�cantly with increasing the number of �gures and their complexity as
geometry. Finding a solution by exhausting all possible combinations is unacceptable
as too large a calculation. In the modern development of computer technology it is
possible to solve a complex task on a super computer that will �nd all possible solutions,
but in most cases this is not justi�ed. Of course, the cost of a signi�cant computing
resource depends on the importance of the task. The algorithm presented below has
the possibility to parallelize the computational processes. But the mass tasks will
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be realized on a desktop or personal computer. The aim is to create an algorithm
that gives in a short time an acceptable solution to complex combinatorial tasks using
mobile computing devices. We will introduce all the mathematical concepts that are
used to describe the mathematical model and algorithm for solving the optimization
problem.

The CAD system produces polygons, which are lists of points in the coordinate
of the XOY system. In the general case, these polygons also contain points that are
not vertices of the polygon, ie. points lying on one right. We will call these points
redundant. Therefore, all polygons generated by the CAD system will we apply the
function for clearing the excess points. After removing the excess points we get input
allowable polygon described by a list of points

P = list(pt0, pt1, ...ptn), (4.1)

where pti are the vertices of the polygon. This list has the following properties: 1. The
list is ordered; 2. The list is cyclic ptn = pt0; 3. There is no self-crossing.

In the process of working on the algorithm we will need the concept of a segment,
which is a segment between two consecutive tops. In this way we generate the segments
e1 = list(pt0, pt1), . . . , en = list(ptn−1, ptn) and we get another characterization of the
polygon Π = list(e1, e2, . . . , en). Plates with curve boundaries are approximated by
polygons with a su�cient number of vertices. Examples of input valid polygons are
shown in Figure 1.5.

A polygon to �ll ∆ to be �lled will also be described with a list of points:

∆ = list(p0, p1, . . . , pm) (4.2)

The �lling contour must not be self-intersecting.
There are two criteria for task optimization:

1. Minimum �ll height optimization - minY ;

2. Optimization of the number of vertices of the residual polygon after cutting of
the input polygon from the �ll polygon - minV ertex.

Let's consider optimization of the minimum height.

Of all the dispositions, we will consider as the best the one with the smallest ordinate
in the coordinate XOY system. If more than one solution with the same ordinates
minY is obtained, then we take this with best �ll factor. If there is more than one
solution with a maximum coe�cient of �ll we choose those solutions that cut the
�ll polygon with the smallest number of vertices. This means that the cut achieves
"correct" shapes. If there is more than one solution with the smallest number of
vertices, then select the �rst in the list.

To �nd the face of a polygon, see the formula 2.12. This formula gives the double
face of the polygon. Then we de�ne the �ll factor ratio as:

ratio =

∑n
i=1 Fi
AP

(4.3)

Therefore, the minimum value ratio = 0 of the coe�cient is when the polygon AP
is not �lled. The maximum value ratio = 1.0 is at maximum �ll of AP .

Of course, the de�nition of minY leads to the situation of how the �ll polygon P
is introduced. If we want to avoid this problem, then the solution of the problem will
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have to take several di�erent angles of the �lling polygon P . The angles of rotation
will be the angles that each segment concludes with the abscissa axis. The number of
rotations is equal to the number of segments of the respective polygon.

Consider optimization of the number of vertices of the residual polygon.

Of all the layouts, the best will be considered what when cutting the input polygon
in the �ll polygon has at least the vertices of the residual polygon. In the present
dissertation, this is the criterion for a polygon to be "smoother". Finding a suitable
polygon from the input polygons will be done by comparing the sides of the two poly-
gons - the input and the �lling polygon. If we have a complete match of the lengths
of the sides of the two polygons, then we will choose this input polygon. If there is no
coincidence of the sides of the input polygon to the �lling polygon, then we will use
the coincidence of the angles of the two polygons.

If more than one solution with the same number of vertices of the residual polygons
minV ertex is obtained, then we take the �rst decision in the list of valid decisions.
The di�erence between minY and minV ertex is that with minV ertex large (long)
polygons are allowed to "enter" the �lling polygon �rst, because they are more likely
to produce a smooth residue. The minimum smoothness of the residual polygon that
can be obtained is a polygon with three vertices list = (pt0, pt1, pt2) with an area other
than zero.
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4.2 Strategy for selection of an input polygon. Meta-

heuristic methods.

Metaheuristics is a powerful tool for �nding the optimal or suboptimal solution of com-
plex combinatorial problems. A key role in the development of metaheuristic methods
is the need to �nd an acceptable solution for an acceptable time with limited hardware
resources. According to cite Wiki: Meta, metaheuristic algorithms (metaheuristic algo-
rithms, in short: metaheuristics, metaheuristics) in computer science are algorithms for
mathematical optimization, which solve combinatorial optimization problems. These
tasks are generally complex, represented by sampling the input data. Such tasks are
usually characterized by strong nonlinearity, many parameters, various complex con-
straints for satisfaction and many - often contradictory - optimization criteria.

Even with one optimization criterion, there may not be a single valid solution. Only
then there is no optimal solution. If there is even just one acceptable solution, then
there must be an optimal solution.

In general, �nding the optimal or even close to the optimal solution is di�cult to
achieve. The term "metaheuristics" was introduced by Fred Glover in his founding
article in 1986 as an upgrade of the term "heuristic" algorithm, which in the broadest
sense means a trial-and-error solution-�nding algorithm. "Means" beyond "," super
"," at a higher level "and the metaheuristic algorithm means a" higher "strategy that
guides and modi�es other heuristic algorithms to achieve solutions better than those
that would normally be obtained when searching for a local optimum [35], [36]. In
addition, all metaheuristic algorithms balance between global and local search. Qual-
itative solutions to di�cult optimization problems can be achieved in a reasonable
(ie polynomial) time, but without a guarantee that (global) optimal solutions will be
achieved. The two main components of any metaheuristic algorithm are: intensi�cation
and diversi�cation, or exploration and exploitation. Diversi�cation means generating
a variety of solutions so that the search space can be explored over a wide range, while
intensi�cation means focusing demand on a local region, knowing that the current best
solution is in that region. When selecting the best solutions, a good balance must
be found between intensi�cation and diversi�cation in order to improve the rate of
convergence of an algorithm. The choice of the best current solution ensures that the
solutions will converge to the optimum, while the diversi�cation by choosing random
values of variables allowing to avoid falling into a local extremum and the same time to
increase the diversity of the solution. A good combination of these two main compo-
nents usually leads to �nding a global optimum. According to [27], the basic properties
of metaheuristics can be summarized as follows:

1. Metaheuristics provides strategies to guide the search process;

2. Our goal is to e�ectively explore the search space to �nd optimal or suboptimal
solutions;

3. Metaheuristic techniques cover a wide range of procedures - from local search
procedures to complex machine learning procedures;

4. Metaheuristic algorithms are approximate and usually nondeterministic;

5. Metaheuristic algorithms generally provide mechanisms to avoid focusing demand
only in limited areas of space;

6. The basic concepts of metaheuristics can be described on an abstract level;

39



7. Metaheuristic algorithms are universal;

8. The metaheurist can use knowledge speci�c to the �eld in the form of heuristics,
which is governed by a high-level strategy;

9. To guide the search, modern metaheuristics uses the experience gained in the
search;

10. Metaheuristics is a high-level strategy for exploring the search space using di�er-
ent methods;

11. Requires a dynamic balance between the use of two fundamental concepts: di-
versi�cation and intensi�cation.

Figure 4.1: Classi�cation of metaheuristics with populations.

Hybrid metaheuristics provides opportunities to increase search e�ciency by
combining di�erent metaheuristic algorithms. Hybrid metaheuristics is used in the
present dissertation. The following strategy was used:
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1. "Scattered Search" from the Evolutionary Algorithms of the Population Method
See �gure 4.1;

2. Probabilistic prediction of the selection of an element;

3. Hierarchical evaluation of decisions.

We have a list of polygons

ΠL = (list1(pt0, pt1, ...ptn), (list2(pt0, pt1, ...ptn)), . . . (listn), pt1, ...ptn)), (4.4)

where listi are polygons describing through their vertices. The vertices are described
by a list of two real numbers list(X, Y ), see 2.1. We will call the list ΠL a list of input
polygons.

The polygon ∆ to be �lled is described by a list of points:

∆ = list(p0, p1, . . . , pm) (4.5)

The �lling contour must not be self-intersecting. In the given task the polygon for
�lling ∆ is one in number. If we have more than one polygon, then the solution of the
problem is repeated for each of them.

Before selecting an input set, it is necessary to estimate the coincidence of the angles
and sides of the current input polygon.

Πi = (list(pt0, pt1, ...ptn), i = 1, . . . , n

to it the angles and sides of the �lling polygon ∆ = (list0, pt1, ...ptn). For this pur-
pose, two new derivative lists of Πi and ∆ are compiled. Accordingly, they contain
sequentially arranged lists list(previosLength,Angle,NextLength). It is good for the
elements of the two lists to be composed of constructive pairs. The constructive pair
is composed of two elements - the �rst with a name, the second with a variable. It
can be written as cons(”name”.AnyV alue). In "name" we write "angle" for angle or
"length" for length In AnyValue - any value which can be Integer, Real, String or List.

Or the new derivative lists are:
Πi = list((list(cons”previosLength”(distanceptn,pt0))

(cons”angle”ptn, pt0, pt1)
(cons”NextLength”(distancept0,pt1)))
. . .
(list(cons”previosLength”(distanceptnptn−1))
(cons”angle”pt0, ptn, ptn−1)
(cons”NextLength”(distanceptn,pt0))))

Where n the number of vertices of the polygon Πi. If (i + 1) > n then i = 0. The
Πi list is cyclic.

A similar list is compiled on the polygon to �ll ∆. The ∆ list is cyclic.

Each item in the Πi List is compared to the corresponding item in the ∆ list. The
largest number of consecutive matching elements from the two lists will give us the
highest probability that the polygon Πi coincides with the polygon ∆. In order to
make a correct comparison of the two lists, we will have to choose which list will be the
main one. Below the main list we will understand the one that has a greater length
(more elements). In the list list(A) can be either Πi or ∆. Not necessarily the number
of vertices of ∆ to be greater than the number of vertices of Πi. Crawling both lists
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will be done on base indices. The �rst iteration is when the index 0 from the list listB
coincides with the index 0 on the list listA. Now the �rst index of listA increases by
1. A second iteration follows when the index 0 from the list B coincides with the index
1 on the list A. As an index 0 from listA goes last in listA. Or the listA list has a
cyclical behavior. This is repeated as we go through all indexes of listA or the loop
is repeated as many times as the length of the list listA. For each check we record
the number of consecutive matches. The evaluation of the list listB is given by the
following formula:

k =
∑

Ratioanglei +
∑

RatioLengthi , (4.6)

, where

Ratioanglei = (if |(angleAi − angleBi)| < fuzz toreturn1., else0.).

At the corners we look for a complete match. As Ai is an angle from the list listA,
and Bi is the corresponding angle from the list listB.

Once we have a complete coincidence of the corresponding angles Ratioanglei = 1.,
then we proceed to estimate their respective lengths.

RatioLengthi = (if(lengthAi > lengthBi)→ return(
lengthBi
lengthAi

), else(
lengthAi)

lengthBi
) (4.7)

Condition 4.7 gives coe�cients close to or equal to 1., no matter which length is
greater lengthAi or lengthBi. This is because we are looking for polygons whose sides
almost coincide.

As can be seen from the formula (4.6) polygons with a larger number of vertices will
be more likely for higher matching scores. This is good, because after subtracting the
two polygons A \B we get polygon with fewer vertices. The coe�cient of the formula
(4.6) can be used as an estimate for the similarity or similarity of �gures.

4.3 Strategy for choosing a solution from valid place-

ments.

Let's look at two polygons. Fill polygon ∆ = list(pt1, pt2, pt3, pt4) and input polygon
Πi = list(pt1, pt2, pt3, pt4, pt5, pt6). The right Πi polygon is the input polygon. The
left polygon ∆ is the �ll polygon. The polygon Πi is not a triangle! It is necessary
to add detailed points along the boundary of the polygon to �ll ∆. These points will
be areas of placement of the polygon Πi and check whether the polygon Πi is in the
polygon ∆. If the check is satis�ed, we record this decision as possible. Rotation
of the land�ll is allowed. Mirror image not attached. From these valid solutions we
estimate those that have the greatest contact length with the polygon ∆ and the
distance LengthA = distance(pt0, ptM). There is a relationship between the length
of the support and the length LengthA. This dependence is accepted by the author.
Of course, other dependencies can be written. The evaluation of each solution is
eval = LengthOfTouch+ (2.0 ∗ LengthA). It is given the weight of the distance from
the center of gravity of the polygon to a selected point of the polygon to �ll. In this case,
this is the point at the bottom, at the left. Another point can be selected regardless of
whether it is from the many points of the �ll polygon. After evaluating the solutions,
we choose the solution with the green outline of the polygon. We subtract ∆ \ Πi.
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Once we have chosen the �rst solution, we proceed to choose the second. The
selection of an input polygon is done according to the procedure described in point 4.2.
Since our goal is the maximum consolidation of the solutions, the choice of the second
solution should be sought along the contour of the already found solutions. At this
stage, a hierarchical evaluation of decisions is applied. We build a rectangular contour
around the selected polygons. We will call it box. We will �rst look for solutions that
go into the box of valid solutions, if we do not �nd such we use all valid solutions for
evaluation. The evaluation of the solutions inside box is also done according to the
formula: eval = LengthOfTouch+ (2.0 ∗LengthA). It should be noted here that this
procedure for selecting solutions after the �rst must bypass all incoming polygons and
then take this with the highest score. In the software developed by the author, this
crawl is not done due to the lack of computational resources, but the proposed method
is not limited in this direction. If there is enough powerful hardware plus GPUs, the
algorithm will give very close results to the global optimum.

After cutting the two polygons, the new contour is obtained. This loop will serve
as a �ll loop for subsequent polygons. As you can see new contour does not follow
completely old. The new contour is purposefully reduced. For more information on
how to reduce the contour, see 2.14.

ratioGlobal =
Abox
AΠL

≤ 1.0 (4.8)

4.4 Finding a possible location of the plate in the �ll-

ing polygon.

Finding a possible arrangement of the plates (represented as polygons) is done by plac-
ing an input polygon in the polygon for �lling and applying the function of subtracting
two polygons. The function is described below. Depending on the requirement of
the particular case we can build derived polygons from the input polygon often with
permission to apply rotation and mirror symmetry.

The number of rotations on which we can rotate a given polygon is arbitrary. The
more angles we have in the rotation list, the more likely we are to get a possible solution.
In order to limit the arbitrary rotation of the polygon without a quality solution (the
polygon should be in the �lling polygon) it is necessary to choose appropriate rotation
angles. The angles of the segments of the input polygon with the abscissa axis X can
be taken as a starting point. The exact angles (0; 0.5π; π; 1.5π) can then be added. If
it is necessary to consider the application of the input polygon, then the number of
additional polygons will increase. Some states of rotation will be completely identical
in geometry.

Checking whether one land�ll is contained in another can be done in two ways:

1. Check for each node whether it is in the �ll polygon. This check should be done
with a while loop, if the current test point is outside the loop, the solution is
dropped without continuing;

2. Check if there is a trivial intersection of the two polygons. If there is an inter-
section, then the decision is dropped, otherwise - is accepted.

If the �rst criterion for an optimal solution is minY , then only the top of the
polygon P can be checked with the smallest ordinate (in this case p7). But it is best to
do for all vertices of the polygon to �ll P . Another criterion for choosing a solution is
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when a smooth shape is obtained when cutting the two polygons. The criterion for a
smooth �gure will be the minimum number of vertices after cutting the given polygon
from the �lling polygon. A combination of criteria is also possible. On the selected
valid solutions for minY , the criterion of a minimum number of vertices after cutting
them with the �ll polygon will be applied.

In the presence of a multi-core processor and the language in which the application
is written, parallel calculations are allowed. Parallel calculations can be made for the
other possible states of the input polygon.

The algorithm is repeated for the generated mirror image of the input polygon. All
generated rotation angles are valid for the mirror polygon.

4.5 Elimination of the real waste in 2D cutting.

A cutting tool with a certain cutting characteristic is used for cutting the �gures. For
this reason, a distance between the polygons must be provided. We enter the parameter
cutW for the width of the joint (knife) between the polygons.

This problem is solved as the input polygons are expanded with a strip with a width
of 0.5cutW and each segment is moved o� the range by 0.5cutW .

4.6 Results at 2D cutting. Examples.

In the following pages we will illustrate the cutting of the following input polygons
(plates). The examples are taken from a real construction site.

The land�ll will be a standard rectangular sheet with a width of 1500 mm. For
the input polygons we will show results with the contour line of the polygon shifted
by the width of the knife. Width of the knife 5 mm. The dimensions of the plates
are in millimeters. Before we start calculating the input polygons, they go through
preprocessor processing, which includes:

1. Sorting the slats by thickness;

2. Read their number;

3. Find the contour of the plates.
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Figure 4.2: Input polygons.
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Comparison of the current algorithm with a commercial product.
It takes about three months to make a steel structure from �gure 1.1. The number

of slats in such a construction is about 1000. The number of unique slats is about 100.
The number of iterations is relative. It depends on whether the material is expensive
or not. Several iterations can be run on di�erent computers and the best of them
can be taken. This is a matter of consumer decision. If hardware is available, several
iterations can be made until acceptable waste is obtained.

In the present comparison we will use the bars given in �gure 4.4. The total number
is 106. With these plates a comparison is made between the commercial product and
the developed method in the present dissertation. Finding the �nal solution with
the presented method is for one iteration. More iterations can be made with more
homogeneous planks.

Used commercial product.

Figure 4.3: commercial product FP Opti2D.

According to the manufacturer's website, the product o�ers the following function-
alities:

1. User friendly graphical interface.

2. Handles panels, metal sheets and glazing.

3. Speci�c functions for aluminum composite panels.

4. De�nes the parts to be optimized.

5. Directly uses the panels and glazing lists generated by FP PRO.

6. Imports work lists from Excel and from external calculation programs.

7. Manages the stock of full sheets and short bars.

8. Graphic display and printing of the optimized sheets, with clear indication of the
cuts to be made and layout of the workpieces.

9. Provides statistical information on use of the sheets.
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Figure 4.4: Sheet from the printout of the commercial product.

As can be seen from the printout, the commercial product version V.2.0 / 2 (Build
2) only works with rectangular plates. It is allowed to rotate the plates. According to
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the operator, the optimization lasted about 20 minutes or 1200 seconds. Dimensions
of the �lling sheet 1500mm / 6000mm. Operating time is not speci�ed in the printout.
Waste 18.2 %. All plates have an o�set contour of 5mm. We will work with this
contour in the calculations. Actual waste can be calculated as follows:

1. Total used area - 2 sheets x 1500mm x 6000mm = 18,000,000 mm2;

2. Real area of all 106 plates - 9,859,421 mm2 ;

The real waste is 8,140,579 mm2. Or 45 % waste. Actual occupancy 54 %.
Results of the presented method in the present paper. Number of plates are 106.

All plates have an o�set contour of 5 mm from their actual contour. Permitted rotation
of the plates: Yes. Outline: offsetP tL.

Table 4.1: Comparison of a commercial product and the presented algorithm

Turn On parameters Contour Count plates Ratio Time [s]
1 2 3 4 5

(a) Mirror:Yes, Rortate:Yes, Intervals:No box 106 0.72 18 776
(b) Mirror:Yes, Rortate:Yes, Intervals:No Offset 106 0.70 109 519
(c) Mirror:Yes, Rortate:Yes, Intervals:No Offset 106 0.71 227 846
(d) Mirror:Yes, Rortate:Yes, Intervals:No Offset 106 0.69 7 555
(e) Mirror:Yes, Rortate:Yes, Intervals:No Offset 106 0.76 41 031
(f.1) Mirror:Yes, Rortate:Yes, Intervals:No box 51 0.71(0.67) 2 194
(f.2) Mirror:Yes, Rortate:Yes, Intervals:No box 55 0.57 (0.44) 2 454

(Commercial product)
Mirror:N/A, Rortate:Yes, Intervals:N/A box 106 0.54 1200

For the case f.1 and f.2 in brackets are given the �llings of the plates relative to the
base sheet 1500mm x 6000mm. The same parameters were used as for the commercial
product. The commercial product has a number of limitations. Some of them are
that the �gures are approximated to a rectangle, a mirror image of the �gures is not
used. The angles of rotation are reduced to two: 0 ◦ and 90 ◦. In terms of the �ll
ratio Ratio, the presented algorithm is much better. see table 4.1. The odds are 0.71
for the current algorithm compared to 0.67 for the commercial product. The second
comparison is 0.57 for the current algorithm compared to 0.44 for the commercial
product. With large volumes of work or expensive material from which it will be cut
the di�erence increases even more in favor of the presented algorithm. The algorithm
presented in this dissertation is better than the commercial product because it gives
a higher percentage of compaction of the �gures. Another advantage is the very good
one its suitability for parallelization of calculations.
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Chapter 5

Conclusion

1D Cutting Stock Problem.

As can be seen from the comparison table 3.4 the ant method (ACO) gives the best
result in a very short time. In this case, the ACO method exhibits the character of a
Greedy algorithm. The ACO algorithm is better than the commercial product both
in time and in optimization. For large decoupling volumes and computers with weaker
processors, the ACO method is very suitable.

2D Cutting Stock Problem.

After the tests of di�erent types of boards, the conclusion is that a larger number
of iterations are needed for an acceptable solution of a given problem. The results
in the present dissertation are in 3 iterations. Three iterations are accepted because
�nding a solution takes considerable time. For some types of plates this number is
insu�cient. The tests were performed on a Windows®10 Pro, x64 desktop computer.
Intel textregistered Core (TM) i5-9500@3.0 GHz processor. Used processors one. CPU
CPU type. Although the processor is one of the last generations at the time of writing
this paper is proving weak for a higher degree of compaction of the plates. But if
you are looking for a relatively fast arrangement and a small number of boards, the
desktop computer can handle it. The presented approach to solving the problem can
be applied in 90 % of the cases in practice. It should be noted that a slightly higher
density of the solution requires signi�cantly more calculation time. Whether time will
be sacri�ced at the expense of material depends on how expensive the material from
which the �gures will be cut is expensive. A further development of the problem will
be its development for hardware with su�cient computing resources based on GPU
processors. The results of this dissertation have been reported at various national and
international conferences.
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5.2 Approbation of the results

The results in the present dissertation have been reported to di�erent events of the
section "Parallel Algorithms" at IICT-BAS such as:

1. 113th European Study Group with Industry (BGSIAM - 2015);

2. 11th Annual Meeting of the Bulgarian Section of SIAM (BGSIAM - 2016);

3. 120th European Study Group with Industry (ESGI'120 - 2016);

4. 12th Annual Meeting of the Bulgarian Section of SIAM (BGSIAM - 2017) ;

5. 13th Annual Meeting of the Bulgarian Section of SIAM (BGSIAM - 2018);

6. Conference on Large-Scale Scienti�c Computations LSSC'17, Sozopol, 2017;

7. Ninth International Conference on Numerical Methods and Applications NM&A'18,
Borovets.
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5.3 Yields

Contributions to this dissertation can be divided into scienti�c and applied sci-
ence, as scienti�c contributions concern the development of methods and algorithms for
1D and 2D cutting, and the scienti�c-applied ones refer to their program realization.

The scienti�c contributions are:

� An algorithm for optimal cutting in one-dimensional space has been developed;

� An algorithm for optimal cutting in two-dimensional space has been developed;

� A method for two-dimensional cutting based on hybrid optimization has been
developed;

The scienti�c and applied contributions are:

� A program implementation of the algorithm for one-dimensional cutting has been
made;

� A program implementation of the two-dimensional cutting algorithm has been
made;

The results of this dissertation can be used in various �elds of science and engineer-
ing practice:

� The design of buildings and facilities;

� The design of the wear of parts in machines as well as the design of mechanisms;

� Earth mechanics - soil consolidation;

� Aviation equipment - �nding the optimal path in an environment with obstacles;

� And in many other areas where CAD systems are used.

Applied contributions can also be developed in companies that produce steel struc-
tures. The application software can be implemented in other industries that are not
related to the construction of buildings and facilities. Another very great application
advantage is that the input data is taken directly from the database of the CAD system
with which the facility was designed. This repeatedly increases the speed of receiving
and accuracy of the data with which the program works. With a few clicks, thousands
of polygons can be selected and the cutting program can be started. The software
can automatically remove or correct "incorrect" polygons to avoid inaccuracies in the
initial results. The solution takes a few minutes depending from the performance of
the computer system on which the software is used. The algorithm developed in the
presented dissertation, allows the use of a mirror image of the polygons, rotation and
other operations, which can lead to a signi�cant improvement of the obtained approxi-
mate solution. Of course, for the purposes of large-scale research, the algorithm can be
implemented of a supercomputer as it allows signi�cant parallelization of calculations.
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