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RELEVANCE OF THE TOPIC

General characteristic of the dissertation

Relemance of the topic

Numerical solution of large-scale problems requires the use of high-performance computer
systems, as well as specialized hardware and software – graphics cards, accelerators, high-
speed communication between the system’s servers, software standards and packages for
communication between processor cores and servers, software packages implementing effec-
tive numerical methods and much more.

There are a number of methods for discretization of differential equations. For example
the mesh method such as finite element method, boundary elements method and finite
differences method. After applying such methods the problem is reduced to solving large
systems linear equations. The Gaussian eliminated is the universal method for solving such
problems. In the general case it has high computational complexity – O(n3), where n is
the number of unknowns [27].

When the discretization of the differential equation is carried out with the boundary
element method and when the finite element method is applied to non-local problems (such
as the examined in this dissertation anomalous (fractional) diffusion) [2], the arising matrix
is dense. One way of lowering the computational complexity of solving problems with such
matrices is the hierarchical compression introduced by Hackbusch [10]. In it the structure
of the matrix is utilized. The aim is to reduce the required memory and to improve the
computational complexity. Here the term dense matrix structure is understood as the
presence of low-rank off-diagonal blocks. This property allows the representation of the off-
diagonal blocks as the product of smaller matrices. There are several types of hierarchical
matrices: H, H2, Hierarchically Semi-Separable (HSS) and so on.

Overview of key results in the field

The huge progress in the capabilities of modern high-performance computing systems fur-
ther underlines the role of efficient numerical methods and parallel algorithms. Supercom-
puter simulations are crucial for development in a number advanced areas. Examples are
in silico molecular biology and medicine design, analysis of turbulent flows,non-destructive
testing,3D image processing,fluid dynamicsand many others.

After suitable discretization, mathematical models are usually reduced to problems of
linear algebra, among which central role has the solution of systems of linear algebraic
equations. For this purpose, specialized software tools are developed.

In the general case variants of the Gaussian method are employed in order to solve sys-
tems of linear algebraic equations with dense matrices. Such methods utilize the sequential
elimination of the unknowns. In general, the dense matrix is thought to be homogeneous,
as it is not assumed to contain zeros. The Gaussian elimination method has computational
complexity O(n3). In this dissertation an alternative approach based on hierarchical com-
pression is investigated. The goal is to reduce the computational complexity of the solution
process. Here by structure of dense matrices we understand the existence of low-rank
off-diagonal blocks. More to the point, such property is found in a matrix approximat-
ing the original. The existence of such suitable structure is the basis of the hierarchical
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CHAPTER OVERVIEW OF KEY RESULTS IN THE FIELD

compression and the arising methods for solving systems of linear algebraic equations for
classes of computational mathematics problems. Hierarchical compression is introduced by
Hackbusch in [10], where the so-called H-matrices are studied. Other types of hierarchical
compression are H2-matrices [11] and hierarchical semi-separable matrices (HSS) [15]. A
theoretical basis for HSS compression methods can be found in [26].

A large part of this dissertation is dedicated to the numerical solution of fractional
diffusion problems. Fractional (also known as anomalous) diffusion describes non-local
processes observed in different physical and social media. Unlike ordinary (local) diffu-
sion, anomalous diffusion includes the so-called fast transitions or tunnel effects. Various
examples of mathematical models have been published in the literature for processes and
phenomena described by fractional diffusion. Some examples are: flows in strongly non-
homogeneous porous media, superconductivity, diffusion of polymers in supercold media
[4]; electrodiffusion of ions into nerve cells [14] and photon diffusion diagnostics [23]; image
processing and machine learning [19]; spread of viral diseases, computer viruses and crime
[6]. The fractional Laplace operator describes anomalous diffusion in space. There are
different definitions of the fractional Laplacian. It is important to note that they are not
equivalent. For example, in [13] the difference between integral and spectral definitions is
studied (see also articles [16] and [12] and the literature in them).

Goals and objectives of the dissertation

The major goals of the thesis are:

• Comparative analysis of the performance and parallel speed-up of frequently used
software packages applying direct Gaussian elimination for solving systems of linear
algebraic equations with dense matrix on CPUs and accelerators (MICs).

• Analysis of the performance, parallel speed-up and accuracy of an approximate
method for solving systems of linear algebraic equations based on hierarchical
semi-separable compression from the software package STRUMPACK for systems
with suitable structure.

• Development of reordering algorithms for the unknowns for systems of linear alge-
braic equations arising from discretization with finite element method of fractional
diffusion. The reordering is aimed at improving the effectiveness of hierarchical semi-
separable compression when applied on the stiffness matrix.

• Numerical solution of elliptic and parabolic problems in the field of fractional diffu-
sion, modeled with the integral formulation of the fractional Laplacian and discretized
with finite elements.

Research methodology

In this thesis we analyze the effectiveness, in terms of performance, parallel speed-up and
accuracy (for approximate solutions), of tile methods for solving dense systems of linear
algebraic equations. For this purpose, software packages are used, in which the studied
methods are applied.
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1.2 DIRECT METHODS

For the problem, examined in Chapter 2 we utilize the parallel program developed in
[22] for the discretization and generation of the system of linear algebraic equations. For
the fractional diffusion problems, examined in Chapters 3 and 4, the MatLab program
developed in [2] is used for the generation of the system of linear algebraic equations. We
developed Matlab programs for the calculation of the reordering schemes (Appendix А)
and the lumped matrix of mass (Appendix Б).

Content structure

The Introduction Chapter provides the motivation for the current work. A short description
of the methods and problems is provided.

Chapter 1 has an introductory character and describes the utilized tile methods for
solving dense systems of linear algebraic equations, as well as an estimation of their com-
putational complexity. In Section 1.1 we provide a short description of the universal direct
method Gaussian elimination and the LU factorization based on it. Section 1.4 examines
the hierarchical methods for solving systems of linear algebraic equations, developed for
solving systems with structured matrices (both dense and sparse). The advantages of HSS
compression are also described – lower computational complexity for problems with suitable
matrix structure.

Chapter 2 presents numerical results for laminar flow around Zhukovsky airfoils. The
arising system has a dense matrix and is used as a benchmark for the the comparative
analysis of the analyzed tile algorithms.

In Chapter 3 we examine a two dimensional anomalous diffusion problem modeled with
the fractional Laplace operator. Finite element method is utilized for the discretization in
time.

Chapter 4 examines a parabolic in time problem for two dimensional anomalous diffu-
sion.

Chapter Conclusion presents the concluding remarks summarizing the results obtained
in the thesis. We also present a list of the papers and reports in scientific forums on which
this work is based on.

Chapter 1 Methods for solving systems of linear algebraic equa-
tions with dense systems

Many problems in the calculation practice are solved numerically by reduction into a system
of linear algebraic equations. For example, when utilizing the boundary element method or
the finite element method with on a fractional power Laplace operator (fractional diffusion),
the arising system has a dense coefficient matrix.

1.1 Direct methods

Gaussian elimination is an universal method for solving systems of linear algebraic equa-
tions. It is the basis of most direct methods. For example the LU factorization is based
on the sequential elimination of unknowns in the Gauss method. The LU factorization is a
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CHAPTER 1. METHODS FOR SOLVING SLAE WITH DENSE MATRICES

primary method, implemented in the high performance software libraries for computational
linear algebra.

1.2 Gauss method

The Gauss method for solving systems of linear algebraic equations Ax = b involves two
parts: (i) Forward elimination. Applies elementary row operations to to transform the
system into one with an Upper triangular matrix; (ii) Back substitution. Recursively in
reverse order the off-diagonal elements in the i-th row of the matrix are eliminated for
i = n− 1, n− 2, . . . , 1.

The computational complexity of the Gauss method is determined by the forward elim-
ination [27]:

NGauss ∼ 2n3

3
= O(n3).

1.3 LU factorization

The LU factorization is expressing the matrix A as a product of two triangle matrices
A = LU . Here L is a lower triangular matrix with ones on the main diagonal, and U
is an upper triangular matrix. This factorization is calculated with a modified Gaussian
elimination and is used in high performance libraries (LAPACK, MKL, ACML, PLASMA,
ATLAS, etc.) for solving systems of linear algebraic equations.

The forward elimination can be written as

Ln−1Ln−2 . . . L2L1︸ ︷︷ ︸
L̃

A = U,

where L1, L2, . . . , Ln−1 are lower triangular matrices with ones on the main diagonal. We
can check that L̃ and L = L̃−1 are also lower triangular matrices with ones on the main
diagonal. Thus:

L̃A = U ⇐⇒ A = LU, L = L̃−1.

After factorization of A, the system of linear algebraic equations is reduced to solving
two systems with triangular matrices. We denote

L Ux︸︷︷︸
y

= b,

afterwards we will:

1. Solve the system Ly = b with forward substitution;

2. Solve the system Uy = y with backward substitution;

The numerical complexity of the factorization is O
(

2
3
n3
)
, while the forward and back-

ward substitutions have – O
(
n2
)
.
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1.5 HIERARCHICAL SEMI-SEPARABLE COMPRESSION

1.4 Hierarchical matrices. Methods for solving systems of linear alge-
braic equations with hierarchical semi-separable compression

Hierarchical semi-separable matrices is applied for the approximation of data-sparse matri-
ces. By data-sparse we understand such matrices, that have structure that allows approxi-
mation by compressed matrices, which could be expressed with lower amount of elements.
In the general case the data-sparse matrices do not satisfy the condition to have O(n)
nonzero elements. Hackbusch introduced the term Hierarchical matrices in [10] by devel-
oping the theory and algorithms for the so called H-matrices.

Methods utilizing hierarchical matrices are a part of the wider group of methods for
solving systems with the so called structured matrices. An overview of the existing methods
for such methods can be found inside [3], including hierarchically semi-separable matrices.
in this work we will examine the efficiency of algorithms based on this class of methods.

STRUMPACK (STRUctured Matrices PACKage) is a parallel software library, that
implements hierarchical semi-separable compression for solving dense systems of linear
algebraic equations [20]. The algorithm involves three steps:

1. Hierarchically Semi-separable compression (approximation) of the matrix of the sys-
tem. When certain conditions are satisfied this step has computational complexity of
O(r2n), where r is the maximum rank of the off-diagonal blocks of the approximating
matrix. It is calculated during the compression. In the general case the complexity
is O(r2n).

2. ULV-like factorization. In this step the compressed matrix is factorized. For this
step a variant of the Gauss method is applied, similar to the one described in the
LU factorization above. First O(r) unknowns are eliminated, then the rest of the
O(n− r). Computational complexity of this step is O(r2n).

3. Solution. In this step the compressed and factorized matrix is used along the right
hand side to obtain the solution. Computational complexity is O(rn).

The overall computational complexity of the method is O(r2n). As seen later this
evaluation is valid for certain assumptions. In the general case the complexity is O(rn2).

1.5 Hierarchical Semi-Separable compression

In this subsection we will examine in short the hierarchical semi-separable matrices (HSS).
They are first introduced by Martinsson in [15]. Algorithms implementing it are described in
[20] as a part of the STRUMPACK project, fir solving systems of linear algebraic equations
with dense matrices. Hierarchical compression may be applied to any non-singular matrix,
however it is effective only if the original matrix A has suitable structure – meaning that it’s
off-diagonal blocks have low rank. By effective compression we mean one that approximates
the matrix, such that the memory needed to store it is much lower and we can apply
transformations on the compressed matrix with lower computational complexity.

We will denote the compress matrix of A with H. The algorithm could be written as:
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CHAPTER 1. METHODS FOR SOLVING SLAE WITH DENSE MATRICES

1. We divide the matrix A in four blocks. We assume that the off-diagonal blocks have
low rank (and Singular Value Decomposition, or another rank calculating factoriza-
tion, can be applied to them):

A =

[
A1,1 A1,2

A2,1 A2,2

]
=

[
D1 Ubig

1 B1,2V
big
2

∗

Ubig
2 B2,1V

big
1

∗
D2

]
.

The matrices U , B and V are called generators. If the off-diagonal blocks have low
rank, U will be “tall and slim”, B will be small and square (or close to) and V will be
“short and wide”. The relation between rows and columns will depend on the rank r.
D are unchanged diagonal blocks. The “big” notation will be described below.

2. Assuming, that the diagonal blocks D also have off-diagonal low rank blocks, they
are compressed in the same fashion, the process continues recursively. The second
level of recursive compression can be written as:

A =


[

D1 Ubig
1 B1,2V

big
2

∗

Ubig
2 B2,1V

big
1

∗
D2

]
Ubig

3 B3,6V
big
6

∗

Ubig
6 B6,3V

big
3

∗
[

D4 Ubig
4 B4,5V

big
5

∗

Ubig
5 B5,4V

big
4

∗
D5

]


3. There is a recursive property between the generators of different levels of compression.
This is denoted with the “big” notation. The following relations apply

Ubig
3 =

[
Ubig

1 0

0 Ubig
2

]
U3 and V big

3 =

[
V big

1 0

0 V big
2

]
V3 (1)

The third level of recursive HSS compression can be written as:

A =



[
D1 U

big
1 B1,2V

big
2

∗

U
big
2 B2,1V

big
1

∗
D2

] [
U

big
1 0

0 U
big
2

]
U3B3,6V

∗
6

[
V

big
4

∗
0

0 V
big
5

∗

]
[
U

big
4 0

0 U
big
5

]
U6B6,3V

∗
3

[
V

big
1

∗
0

0 V
big
2

∗

] [
D4 U

big
4 B4,5V

big
5

∗

U
big
5 B5,4V

big
4

∗
D5

]

(2)

Generators with the notation “big” can be computed outside of the highest levels of
recursive compression. U ca be computed from the Uτ and Ubig at the higher level of
compression. At the last level U = Ubig.

In the general case equation 2 isn’t exact, but approximate. This means that as a result
we obtain an approximation of A, that we will denote as H ≈ A.

To achieve this a suitable threshold εmust be supplied. It is necessary for the calculation
of the generators. When a larger threshold is used, the generators are smaller and the
compressed matrix takes less memory and allows more effective arithmetic operations with
it, but this is at the price of lower accuracy. If a smaller threshold is chosen it is exactly
the opposite.

As we will show in the later chapters, the ordering of the unknowns while assembling
the matrix A is pivotal for the effectiveness of the HSS compression. I A is scrambled
randomly, that will almost assuredly destroy any suitable for this method structure.
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2.0 ULV-LIKE FACTORIZATION AND SOLUTION

For certain classes of problems it is possible to reorder the unknowns in such a way,
that the arising structure of the matrix is improved. For example in [18], several methods
for clusterization are studied for Kernel Ridge Regression. In Chapter 3 we will propose
and analyze several methods for reordering of the unknowns for a system of linear algebraic
equations, arising from the discretization of an elliptic problem with a fractional power of
the Laplace operator (fractional diffusion problem).

1.6 Compression with randomized sampling

The HSS algorithm deployed in STRUMPACK is based on applying randomized sampling,
which utilizes multiplication of random vectors with the original matrix A. This method
is first proposed by Martinsson in [15]. This algorithm doesn’t need the explicit form of A.
Instead a function that accesses (or calculates on demand) and another one that calculates
a product of A with a vector is needed. The advantages of this approach, as well as an
adaptive random sampling algorithm are studied by Gorman et al. in [9]. The Randomized
sampling is also useful when integrating HSS kernels in sparse solvers [8].

In the general case the computational complexity of a matrix-vector product is O(n2).
This leads to O(rn2) for the HSS compression algorithm. For certain classes of problems
r is much smaller than r. For example for 2D Poisson problems (FEM) r is a constant,
while for 3D Helmholtz (BEM) it rises slowly with n. If a fast algorithm for multiplying
the compressed matrix with a vector is supplied, the complexity of the compression can be
lowered to O(r2n).

1.7 ULV-like factorization and solution

The compressed matrix H in HSS form can be factorized with a special form of LU factor-
ization known as ULV factorization [5]. This factorization uses orthogonal transformations
to first eliminate n − r. The rest r unknowns are then eliminated with LU factorization.
The factorization employed inside STRUMPACK is realized as ULV-like factorization, that
instead uses orthogonal transformations utilizes the HSS structure of the compressed matrix
H.

The process is visualized in Figure 1.

at parent

Figure 1: ULV-like factorization.

After applying the ULV-like factorization, the system of linear algebraic equations Ax =
b is reduced to solving two systems with triangular matrices. The computational complexity
of this step is O(rn) [20].
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CHAPTER 2. BEM FOR FLOW AROUND AIRFOILS

Chapter 2 Boundary Element Method for numerical solution of a
two dimensional flow around airfoils problem

This chapter studies a numerical method for a computational simulation of laminar flow
around Zhukovsky airfoils. This work employs the method described in [17]. We have
developed an implementation for a cascade of airfoils in ideal fluid. The method is based
on spline collocation with interpolation in parts. A parallel C program is developed in [22]
for this problem.

After discretization of the integral equation with the boundary element method the
problem is reduced to a dense system of linear algebraic equations. The results from the
studied in the thesis hierarchical method are compared with results obtained with Gaussian
elimination, implemented in several popular software packages. On the CPUs we compare
the performance of Intel Math Kernel Library (MKL) and Parallel Linear Algebra for
Scalable Multi-core Architectures (PLASMA), while on the Intel Xeon Phi coprocessors
(abbreviated as MICs from the Many Integrated Core architecture) the performance of
MKL is compared with Matrix Algebra on GPU and Multicore Architectures (MAGMA)
for MIC architecture (abbreviated as MAGMA MIC).

2.1 Problem statement

2.2 Boundary Element Method calculating the flow function in an ideal
fluid in unbounded two dimensional domain

Let Ω ⊂ R2 be an unbounded multi-connected domain with a smooth enough internal
border S. The flow function Ψ satisfies the Laplace equation:

∇2Ψ ≡ ∂2Ψ

∂x2
+
∂2Ψ

∂y2
= 0 (3)

in Ω ⊂ R2 and can be written as

Ψ(P ) = − 1

4π

∫
S

γ(σ) ln
(
r2(P,Q)

)
dσQ + Ψ∞(P ) + C0, P ∈ Ω. (4)

where r2(P,Q) = (x−ξ)2 +(y−η)2, P = (x, y), Q = (ξ, η) and dσQ is a measure on S. The
first term on the right hand side represents a simple layer (stream function of the vortex
layer), where γ(σ) is the density of the layer, Ψinfty is a harmonic function added to the
potential of the layer in order to satisfy the condition at infinity for external boundary
problems. The velocity field

−→
C = (u, v) is defined by

u =
∂Ψ

∂y
, v =

∂Ψ

∂x

satisfying the equations

u =
1

2π

∫
S

γ(σ)
y − η
r2

dσ, v = − 1

2π

∫
S

γ(σ)
x− ζ
r2

dσ.
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2.6 LU FACTORIZATION

2.3 Fluid flow around airfoils

In this section we will examine the problem of fluid flow around Zhukovsky airfoils. We
assume that the flow at infinity has homogeneous velocity

−→
C∞ = (1, 0). Here S denotes

the contours of the airfoils. For the examined problem the flow function Ψ satisfies the
Laplace equations (3). The airfoils S are impermeable, therefore the following boundary
condition is in force Ψ|S = K = const. In order to satisfy the conditions at

−→
C∞, we should

choose Ψ∞ such that
−→
C∞ =

(
∂Ψ∞
∂y

,−∂Ψ∞
∂x

)
.

Here, we have
Ψ∞(P ) = γ∞(P ).

The boundary condition takes the form

γ(P )− 1

4π

∫
S

γ(σ) ln
(
r2(P,Q)

)
dσQ + C = 0. (5)

Finally, the Kutta-Joukowsky’s condition γ(A) = 0, is used to obtain a unique solution
of the boundary value problem, where A are the points on the sharp tip of the airfoils.

2.4 Discretization

For the numerical solution of the integral equation (5) we apply the boundary element
method. The problem is reduced to a system of linear algebraic equation of the form:

(Aγ) s = f(s).

We look for a numerical solution

γh(S) =

n∑
i=1

γiφi(s),

where {φi(s)}ni=1 is the Lagrangian basis, corresponding to the discretization mesh Sh on
the airfoils and γi = γh (si) , i = 1, . . . , n are the BEM nodal unknowns. The collocation
method is applied to the mid points of the boundary elements from Sh. Following [22] we
obtain the system of linear algebraic equations

n∑
i=1

γiΨji = fj , j = 1, 2, . . . , n, (6)

където Ψji = Ψi(sj), f(sj) = fj ,Ψi(s) = (Aφi)(s).

2.5 Analysis of numerical experiments on computers with shared mem-
ory

Computing the matrix D has computational complexity O(n2). The calculation of drag
and lift forces have complexity O(n). The focus of this work is on the most computationally
complex part – the solving of the system of linear algebraic equations.
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CHAPTER 2. BEM FOR FLOW AROUND AIRFOILS

2.6 LU factorization

2.6.1 CPU processors with shared memory

PLASMA (Parallel Linear Algebra Software for Multicore Architectures) [7] is a software
library for solving systems of linear algebraic equations implementing the standard LA-
PACK library. The effectiveness of PLASMA is based on using highly optimized BLAS
library (Basic Linear Algebra Subprograms) in which the basic linear algebra operations
are implemented – vector, matrix-vector and matrix-matrix multiplications. For this level
of computation we employ the libraries MKL BLAS and ATLAS ATLAS (Automatically
Tuned Linear Algebra Software) BLAS [25].

In Table 1 we present the results of the numerical experiments for solving systems
of linear algebraic equations obtained when applying the boundary element method for
discretization of a flow around airfoils problem. We compare the sequential and parallel
execution times for PLASMA + ATLAS, PLASMA + MKL and MKL solvers for n = 5 000
and n = 40 000 and varying the number of threads used.

Table 1: Sequential and parallel execution times on CPU processors with shared memory

Library Plasma + ATLAS PLASMA + MKL MKL
Threads n time [s] speed-up time [s] speed-up time [s] speed-up

1 5 000 8.42 1.00 5.03 1.00 5.30 1.00
16 5 000 0.67 12.57 0.47 10.69 0.47 11.26
32 5 000 0.88 9.59 0.65 7.76 0.65 8.12
1 40 000 4008.76 1.00 2497.12 1.00 2233.93 1.00
16 40 000 282.94 14.17 166.41 15.01 147.64 15.13
32 40 000 325.17 12.33 169.58 14.73 148.59 15.03

The results show good parallel speed-up for all tested libraries up to 16 threads. The
speed up achieved comes close to 15, which is close to the theoretical maximum of 16.

The parallel effectiveness of PLASMA with MKL and MKL is quite similar, increas-
ing up to 94% for the larger problem. They outperform more than 1.5 times PLASMA
with ATLAS. One possible reason for this could be that the gcc compiler doesn’t employ
vectoring as well as icc.

2.6.2 MIC coprocessors

In this subsection we analyze the parallel effectiveness of the Intel Xeon Phi 7120P acceler-
ators (MICs). The MICs are designed for massive parallelism and vectorization as required
in High Performance computing. Every MIC has 61 cores and each core can run 4 threads
simultaneously for a total of 244 threads. We use the Offload mode which reserves one of
the cores for communication with the CPU, thus we can use up to 60 cores (240 threads).

In Table 2 we present the results from numerical experiments with sizes n = 5 000 and
n = 40 000, varying the number of threads from 1 to 240. The results show very good
performance of MKL in comparison with MAGMA MIC. This may be because of better
communication between the threads in MKL. For the biggest problem we achieve parallel
speed-up of 32.

On Figure 2 we compare the performance of the studied software libraries for the CPU
and MIC architectures. The performance of PLASMA with MKL is better than that of
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2.7 HIERARCHICAL SEMI-SEPARABLE COMPRESSION

Table 2: Sequential and parallel times and speed up for solving systems of linear algebraic
equations on MIC coprocessors

Library MAGMA MIC MKL
Threads n time [s] speed-up time [s] speed-up

1 5 000 11.70 1.00 17.64 1.00
60 5 000 5.81 2.01 2.86 6.16
120 5 000 6.76 1.73 3.55 4.97
240 5 000 5.39 2.17 3.80 4.64
1 40 000 4896.49 1.00 2101.93 1.00
60 40 000 665.53 7.36 154.23 13.63
120 40 000 432.89 11.31 93.80 22.41
240 40 000 208.48 23.49 64.43 32.62

(a) Sequential (b) Parallel with 16 threads

Figure 2: Comparison of the performance of LU solvers for CPU and MIC

MAGMA MIC. That may be due to better communication.
In conclusion we note that the MKL package has better performance both in the CPUs

and the MIC coprocessor. The best time on the coprocessor is 4 times faster than the best
on the CPU.

2.7 Hierarchical Semi-Separable compression

The Hierarchically Semi-Separable compression, implemented in the software library
STRUMPACK is approximate. This means that the compressed matrix H approximates
the original matrix A. The user must provide two thresholds – absolute εabs and relative
εrel [9]. In the results presented on this thesis we fix the absolute threshold at εabs = 10−8

and vary the relative one εrel = 10−2, 10−4, 10−6, 10−8 and 10−12.

2.7.1 Comparative analysis of hierarchical and LU factorization on CPUs with
shared memory

In this subsection we analyze the performance of the HSS compression method and its
software implementation in STRUMPACK in comparison with Gaussian elimination and
its best (based on the analysis above) implementation MKL, where we use LU factorization.
The sequential Figure 3a and parallel times Figure 3b are presented. The results affirm the
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CHAPTER 2. BEM FOR FLOW AROUND AIRFOILS

better computational complexity of the HSS compression O(rn2) in comparison to the LU
factorization O(n3). The impact of the relative threshold εrel can be seen clearly.

(a) Sequential (b) Parallel with 16 threads

Figure 3: Performance of STRUMPACK in comparison with MKL

For the sequential experiments STRUMPACK is more efficient than the best direct
solver employed – MKL. STRUMPACK shows lower parallel speed up - around ∼2 to ∼5.
This is due to the more complex recursive structure of the HSS compression.

2.7.2 Error analysis for the HSS-based solver

Let us remind that the HSS compression is approximate, i.e. the compressed matrix H is
an approximation of A. The solution of the system of linear algebraic equations, obtained
with HSS compression, is thus an approximation of the exact solution. In order to estimate
the error of the method we use the solution obtained with the LU solver as a reference (see
Subsection 2.6). Here we analyze the relative error Rrelative with the following definition:

Rrelative =

∥∥xGauss − xHSS
∥∥
l2

‖xGauss‖l2
=

√∑n
i=1(xGauss

i − xHSSi )2√∑n
i=1(xGauss

i )2

, (7)

where xGauss is the reference solution obtained with the MKL solver, while xHSS is the
solution obtained with HSS compression.

In Table 3 we show the relative errors Rrelative, varying the size of the problem n ∈
{5 005, 10 005, 15 005, 20 005, 25 005, 40 005}, as well as the relative thresholds εrel ∈
{10−6, 10−8, 10−12}.

The accuracy and computational effectiveness of the hierarchical method rely on the
max rank of the off-diagonal blocks r, which is in turn dependent on the chosen error
thresholds and the structure of the original matrix A. Higher rank r will result in smaller
relative error Rrelative as well as longer solution time and vice versa.

The analysis of the presented results shows that in order to achieve high accuracy for
the method we require very small threshold corresponding to higher rank r. In these case
HSS compression may not be sufficiently effective.
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Table 3: Relative accuracy Rrelative

n
εrel n

εrel
10−6 10−8 10−12 10−6 10−8 10−12

5005 1.1 0.085 0.00019 15005 0.29 0.23 0.00097
20005 0.28 0.34 0.0038 25005 0.3 1.48 0.013
10005 0.75 0.17 0.00075 40005 0.37 1.59 0.027

(a) Rank r (b) Relation r/n

Figure 4: Maximum off-diagonal rank r

2.8 Parallel scalability on computer systems with distributed memory

This section is concentrated on some specifics and hardships when working with HPC
systems with hybrid architecture. Those machines have distributed memory on the server
level and shared memory on each server. As in the previous section the comparative analysis
includes the parallel libraries MKL and STRUMPACK. In order to solve the system of linear
algebraic equations, arising from the BEM discretization of flow around Zhukovsky airfoils,
we employ one or two servers connected with Ethernet. We analyze the following variants
with MKL and STRUMPACK: Sequential; Parallel with 24 OpenMP threads; Parallel
with 24 MPI processes on 1 server; Parallel with 48 MPI processes on 2 servers; Hybrid
parallelization with 2 MPI processes on 2 servers, each with 24 OpenMP threads.

2.9 LU factorization

On Figure 5 we show the execution times for solving the system of linear algebraic equa-
tions with MKL. The best times are obtained when using a single server with OpenMP,
followed by MPI Figure 5b. This is explained by the slower Ethernet communications when
employing more than a single server.

2.10 HSS compression

When solving the system with HSS compression, the obtained parallel speed up is lower
than when using the direct Gaussian solver Figure 6. This can be explained with the
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(a) MKL times (b) MKL parallel speed up

Figure 5: Parallel times and speed up with MKL.

recursive structure of the HSS compression.
In the numerical experiments with the lowest relative threshold εrel we obtain the best

computational time when using MPI on a single server. This could likely be explained by
the fact that OpenMP parallelization is implemented later than the MPI optimization.

(a) STRUMPACK times with
εrel = 10−2

(b) STRUMPACK times with
εrel = 10−6

(c) STRUMPACK times with
εrel = 10−8

Figure 6: Times and parallel speed up for STRUMPACK.

The behavior of the parallel speed up is drastically changed when employing two servers.
This is due to the much slower (relatively) connection between them – 1000 Mb Ethernet.
We can conclude that effectiveness could significantly be improved with faster communica-
tion medium, like InfinBand, as well as increasing the size of the solved systems of linear
algebraic equations.

2.11 Concluding remarks

Central part in the presented results is given to the examination of the Hierarchically
Semi-Separable compression method. The experimental comparative analysis is based on
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the implementation in the STRUMPACK package. It shows much better performance than
the Gaussian solvers, utilizing LU factorization. In the same time the parallel speed up
of STRUMPACK is found lacking. This is explained with the more complex hierarchical
structure of the algorithm.

The accuracy and computational effectiveness of the HSS compression depends on the
choice of the absolute and relative thresholds. These parameters must be determined by
the user. The presented analysis shows how to achieve best performance with the given
accuracy.

Chapter 3 Finite Element Method for numerical solution of a two
dimensional fractional diffusion problem

The fractional elliptic in space problems of power α ∈ (0, 1) are utilized in modeling anoma-
lous diffusion problems. The arising boundary problems or non-local in in the general case
the numerical solution of such problems is a extremely computationally expensive process.
Such models are used in image processing, financial mathematics, electromagnetostatics,
peridynamics, modeling flow in porous media and many others.

The presented numerical experiments are for model problems in a square and circle
domain, and this abstract will show results only for the former. The fractional Laplacian is
defined through the Riesz potential. The theoretical basis and the specialized finite element
method for its numerical solution can be found in [1] by Acosta et. al. The algorithmic
implementation of the method can be found in [2] from the same authors

The performance of several software packages implementing Gaussian elimination was
analyzed in Chapter 2. Here we will use only the most effective of them: Intel’s math Kernel
Library (MKL). In this chapter we will analyze the performance of the HSS compression
based algorithm, implemented in the STRUMPACK library. We will employ several re-
ordering schemes in order to improve the structure of the stiffness matrix.

3.1 Problem Statement

The fractional Laplacian can be defined as

(−∆)α u(x) = C(d, α) P.V.
∫
Rn

u(x)− u(y)

|x− y|d+2α
, (8)

where P.V. means principal value, d is the number of dimensions, α ∈ (0, 1). The normalized
constant C(d, α) can be written as

C(d, α) =
22ααΓ

(
α+ d

2

)
πd/2Γ(1− α)

,

where Γ is the gamma function.
In this chapter we utilize the integral definition of the fractional Laplace operator ac-

cording to the definitions in [2] by Acosta et. al. The examined boundary value problem
can be defined as {

(−∆)α u(x) = f(x), x ∈ Ω

u(x) = 0, x ∈ Ωc.
(9)
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CHAPTER 3. FEM FOR STATIONARY FRACTIONAL DIFFUSION

Here Ω ⊂ R is a bounded domain, Ωc is the compliment of Ω in Rd and f(x), x ∈ Ω is the
right hand side with enough smoothness.

The variational formulation is obtained from (9) by multiplying with a test function
and integrating by parts. The equation for the weak solution is: find u ∈ Hα(Ω), such that

C(d, α)

2
〈u, v〉HαRd =

∫
Ω

fv, v ∈ H̃α(Ω). (10)

The scalar product of u and v can be defined in the Hilbert space Hα(Ω) with norm
‖ · ‖Hα(Ω) = ‖ · ‖L2(Ω) + | · |Hα(Ω). Here | · |Hα(Ω) is the Aronszajn-Slobodeckij half norm.
〈u, v〉HαRd can be written as

〈u, v〉HαRd =

∫∫
Rd×Rd

(u(x)− u(y)) (v(x)− v(y))

|x− y|d+2α
dxdy.

We will point out that integration is carried out over the whole space Rd

Correctness of the variational definition of the problem (10 as well as the existence and
uniqueness of the solution H̃α(Ω) follow from the Lax-Milgram lemma.

3.2 Finite element settings

Let T be an admissible triangulation of the domain Ω containing NT triangular elements.
We examine the finite element space Vh of continuous linear in part functions over T . Let
{ϕ1, . . . , ϕN} ⊂ Vh be the Lagrangian nodal basis, corresponding to the internal nodes
x1, . . . , xN . Then ϕi(xj) = δji . Let T ∈ T is a an element on the triangulation and let’s
denote with hT and ρT the diameter and the inner radius. We also write h = maxT∈T hT .
We examine shape-regular triangulations, such that τ > 0 independent of T such that

hT ≤ τρT , ∀T ∈ T .

Under these conditions for any α ∈ (0, 1) the discreet analog of the variational problem
(10) can be written as

C(d, α)

2
〈uh, vh〉Hα(Rn) =

∫
Ω

fvh, vh ∈ Vh. (11)

Here uh =
∑
j uj , ϕj denotes the numerical FEM solution of the stationary diffusion prob-

lem (9).
Solving the discrete variational problem (11) is reduced to solving the system of linear

algebraic equations KU = F , where U = (uj) ∈ RN are the nodal unknowns. The stiffness
matrix K is symmetrical and positively defined, therefore the system has a single solution.

Figure 7: Admissible trian-
gulation Ω with an auxil-
iary ball B.

In the proposed in [1] FEM variant integration is reduced
to a ball domain B ⊃ Ω, such that the distance between the
border Ω and the compliment Bc is sufficient. This intro-
duces the additional triangulation T̃A over V \Ω, such that
the summary triangulation T̃ = T ∪ TA over B is admissible.
An example of such triangulation is shown on Figure 7. The
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nodes denoted with bold font correspond to the unknowns
uj .

Let’s denote the elements in the triangulation over B with
MT̃ . Then the elements inside the stiffness matrix K may be
written as

Kij =
C(d, α)

2

NT̃∑
`=1

 NT̃∑
m=1

Ii,j`,m + 2J i,j`

 , `,m ∈ [1, . . . , NT̃ ] ,

(12)
where for the integrals I and J the following equations hold true

Ii,j`,m =

∫
T`

∫
Tm

(ϕ(x)− ϕi(y)) (ϕj(x)− ϕj(y))

|x− y|2+2α
dxdy (13)

J i,j` =

∫
T`

∫
Bc

ϕi(x)ϕ(x)

|x− y|2+2α
dydx. (14)

3.3 Reordering of the unknowns

In Section 1.5 we have mentioned that for certain classes of problem it is possible to sig-
nificantly improve the structure of the matrix by reordering the unknowns. The analysis
carried out in this subsection shows that for the fractional diffusion problem this is neces-
sary.

The original ordering of the triangulation nodes is shown on Figure 9a. This ordering is
obtained from the MatLab function in i tmesh when generating the finite element mesh.
The structure of the matrix corresponding to this ordering is not suitable for the HSS solver
from STRUMPACK.

3.4 Reordering by “Y” coordinate – “top”

With this reordering scheme the nodes in Ω are reordered by their “Y” coordinate. The
obtained reordering and matrix structure can be seen on Figure 9b.

3.4.1 Reordering by lines – „stripes“

With this reordering scheme the nodes are reordered on horizontal lines. An example of
this reordering and matrix structure can be see on Figure 9c.

3.4.2 Reordering on a spiral – „snake“

This algorithm reorders the unknowns on a spiral, similar to a coiled snake. The reordering
and the structure of the arising matrix can be seen on Figure 9d

3.4.3 Reordering with Nested Dissection

The Nested Dissection method applies a “divide and conquer” heuristic for the division of a
graph representing a sparse symmetrical matrix. The algorithm is executed in three steps:
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1. Construction of an undirected graph corresponding to the triangulation, such that
the vertices are the mesh nodes and the edges are the sides of the corresponding
triangles.

2. Recursive partitioning of the graphs with separators (small sets of vertices which,
when removed, divide the graph in subgraphs).

3. Reordering of the nodes in accordance with the recursive structure: First on sub-
graphs and then by separators.

Figure 8: Reordering with
nested dissection. “X”
marks the first node, “O”
marks the last.

The separators for an example square domain can be seen
on Figure 8. The reordering and the matrix structure are
visualized on Figure9d.

3.4.4 Reordering with recursive bisection

Recursive Bisection [21] is examined as another method for
division of graphs. Unlike the Nested Dissection the graph
is divided in two subgraphs by removing edges. This pro-
cess continues recursively. The subgraphs in each recursive
partitioning are numbered sequentially.

Recursive Bisection is used to balance the load on dis-
tributed memory HPC machines [21].

(a) No reordering (b) „top“ (c) „stripes“

(d) „snake“ (e) Nested Dissection (f) Recursive bisection

Figure 9: Reordering of the nodes in a square domain Ω and the structure of the corre-
sponding matrix. Dark gray lines represent the ordering of the nodes from the first (marked
with“X”) and the last (marked with “O”).

3.5 Analysis of numerical experiments on computational systems with
shared memory

The experimental results presented in this section are obtained on a single server of the
AVITOHOL supercomputer. The original ordering is obtained from the mesh generation
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implemented in the program from [2]. In order to improve the effectiveness of the hierar-
chical solver from STRUMPACK we analyze several reordering schemes.

The numerical experiments are for a fractional Laplacian with power α = 0.5. Visual-
ization of the numerical solutions for the problem in a square and circle domain are shown
on Figure 10. In the abstract we show results only for the square domain.

(a) Square domain (b) Circle domain

Figure 10: Solution of a fractional diffusion problem in square and circle domains.

In this section we analyze the performance of the two examined solver, based on
their software implementation: LU factorization from MKL and HSS compression from
STRUMPACK.

3.6 Square domain

On Figure 11 we present the sequential execution times for solving the system of linear
algebraic equations. In most experiments the hierarchical solver shows better times with
recursive bisection, followed by the nested dissection, “top” and “stripes”. Experiments
show that MKL has better performance for all values of the relative threshold except for
εrel = 10−2, where the recursive bisection, “stripes” and “top” reorderings show better
results.

We can also conclude that, except for the results without reordering and with the “snake”
algorithm, STRUMPACK shows similar performance to MKL.

(a) εrel = 10−2 (b) εrel = 10−4 (c) εrel = 10−6 (d) εrel = 10−8

Figure 11: Comparative analysis of the execution times for solving the system of linear
algebraic equations with MKL and STRUMPACK with reorderings “top”, “snake”, “stripes”,
nested dissection and recursive bisection.
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3.6.1 Off-diagonal rank

On Figure 12 we present the off diagonal rank r, calculated in the HSS compression step.
On Figure 13 we show the relation n/r. The value of r is a measure for the effectiveness
of the HSS compression on a given matrix. The smaller the rank is, the more effective the
compression is. With the original ordering r has higher ranks that vary between 1/3 and
1/4 of the number of unknowns. The “snake” reordering shows the next highest ranks. The
rest of the reorderings have similar values for the ranks with the recursive bisection having
the edge on most of the experiments. The role of the maximum off-diagonal rank is visible
from the results analyzed in the previous section, shown on Figure 11.

(a) Without reordering (b) „top“ (c) „snake“

(d) „stripes“ (e) Nested dissection (f) Recursive bisection

Figure 12: Maximum off-diagonal rank r.

3.6.2 Parallel times and speed-up

In this subsection we analyze the parallel speed up. The numerical experiments are carried
out with increasing problem size n ∈ [2 131, 32 302]. The parallel results obtained with
16 threads are presented in Figure 14. The graphs have similar behavior an for the larger
values of n the acceleration becomes linear. This is according to the theoretical assessments.
We will also note that for εrel = 10−2 and “top” reordering HSS compression has better
times for the two largest sizes n = 24 892 and 32 302. In the rest of the case the MKL solver
is faster. This is due to the more complex recursive structure of the HSS compression. For
larger problems we can expect STRUMPACK to show better times than MKL when using
smaller thresholds, too.
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(a) Without reordering (b) „top“ (c) „snake“

(d) „stripes“ (e) Nested dissection (f) Recursive bisection

Figure 13: Relation of the number of unknowns and maximum off-diagonal rank r.

(a) εrel = 10−2 (b) εrel = 10−6 (c) εrel = 10−8

Figure 14: Comparison of the parallel times with MKL and STRUMPACK with the studied
reorderings

3.6.3 Analysis of the accuracy of the HSS based solver

When applying the HSS solver from STRUMPACK we obtain an approximation of the
solution. This is because the compressed matrix H is an approximation of the original
stiffness matrix K. As with the previous chapter we will analyze the error of the method
by calculating the relative error Rrelative (7). Again we will utilize the direct Gaussian
solution as reference.

The relative errors for the original ordering and the analyzed reorderings is presented in
Table 4. For most of the experiments the relative error is similar to the relative threshold
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Table 4: Relative error for square domain.

No reorder „top“

n
Rrelative за rtol Rrelative за rtol

10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

2131 0.0125 0.000124 1.633e-06 1.088e-08 0.122 0.00014 1.469e-06 1.003e-08
4167 0.0244 0.000211 2.195e-06 1.414e-08 0.194 0.000345 1.868e-06 1.95e-08
8030 0.0435 0.000422 7.515e-06 5.049e-08 0.237 0.00681 5.732e-06 3.446e-08
12805 6.74 0.0212 6.258e-06 5.04e-08 0.329 0.00976 4.3e-06 6.554e-08
16184 0.136 0.000818 1.307e-05 1.035e-07 0.335 0.00117 5.96e-06 6.16e-08
24892 0.115 0.000955 1.791e-05 1.659e-07 0.45 0.00192 4.920e-06 9.5e-08
32302 0.145 0.0011 3.409e-05 1.533e-07 0.479 0.00246 9.788e-06 9.09e-08

„snake“ „stripes“

n
Rrelative за rtol Rrelative за rtol

10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

2131 0.0786 0.000229 1.353e-06 1.144e-08 0.111 0.000324 2.01e-06 1.283e-08
4167 0.172 0.000355 2.212e-06 2.357e-08 0.193 0.000623 2.178e-06 4.491e-08
8030 0.206 0.00107 2.737e-06 5.342-08 0.287 0.00108 7.943e-06 4.421-08
12805 0.324 0.00286 6.105e-06 1.995e-07 0.382 0.00117 6.793e-06 7.977e-08
16184 0.397 0.00363 8.919e-06 9.394e-08 0.393 0.00163 5.446e-06 7.988e-08
24892 0.513 0.00753 1.32e-05 1.174e-07 0.478 0.00176 7.613e-06 1.211e-07
32302 0.587 0.00647 3.129e-05 1.774e-07 0.497 0.00231 9.161-06 1.088e-07

Nested dissection Recursive bisection

n
Rrelative for STRUMPACK with rtol Rrelative for STRUMPACK with rtol

10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

2131 0.145 0.000403 2.837e-06 3.022e-08 0.0892 0.000338 2.694e-06 2.373e-08
4167 0.247 0.00138 2.866e-06 6.963e-08 0.223 0.000987 3.28e-06 5.245e-08
8030 0.378 0.00221 6.636e-06 7.277e-08 0.373 0.00172 6.402e-06 7.322e-08

12805 0.469 0.00342 8.211e-06 1.159e-07 0.424 0.000929 7.06e-05 1.043e-07
16184 0.499 0.00268 8.668e-06 1.542e-07 0.487 0.00217 8.736e-06 1.745e-07
24892 0.583 0.00318 1.04e-05 1.536e-07 0.536 0.0033 1.738e-05 2.e-07
32302 0.615 0.00539 1.432e-05 2.159e-07 0.612 0.0031 1.419e-05 3.386e-07

εrel. There are a few exceptions, where the accuracy is lower than expected. For example
when using the “stripes” and “top” reorderings for the the largest problems (n = 32 302,
the relative error is substantially larger than εrel. This is another indicator of the need for
suitable reordering methods.

The relative error depends on the effectiveness of the compression. This means that
when the maximum off-diagonal rank r is small, the compression is more effective. This
leads to smaller computational times, but larger relative error Rrelative.

3.7 Concluding remarks

The experimental comparative analysis is based on the realization of HSS compression and
ULV-like factorization in the software library STRUMPACK. Th analysis shows the better
performance of the sequential algorithms in comparison with tile LU factorization. In the
same time the acquired parallel performance and speed-up with STRUMPACK are lower,
which is explained by their more complex hierarchical and recursive nature.

The accuracy and computational performance of the HSS compression is highly depen-
dent on the relative εrel and absolute εabs thresholds as well as the existence of suitable
matrix structure. The observed relative error has similar value to the corresponding rela-
tive threshold. In order to improve the structure of the matrix five reordering schemes are
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studied. The presented numerical analysis shows that the recursive bisection has the best
results in most of the experiments.

The structure of the matrix obtained from the fractional diffusion problem is less suitable
than the problem investigated in Chapter 2 This can be explained with the fact that the
fractional Laplacian is strongly non-local. The examined reordering schemes significantly
improve the effectiveness of STRUMPACK. Despite this the parallel performance of the
HSS compression is significantly lower than the direct Gaussian elimination.

One of the advantages of the HSS compression is that when solving sequence of systems
of linear algebraic equations, in which the matrix doesn’t change, the lower computational
complexity of the solve with the factorized matrix O(nr) has advantage over the solving
after the LU decomposition – O(n2). Such problem is the case with the problem studied
in the next chapter – a parabolic fractional diffusion with lumped mass matrix.

Chapter 4 Finite Element Method for solving two dimensional
parabolic fractional diffusion problems

The main interest in the chapter is solving systems with an already factorized matrix
after applying the HSS based method. This step, after HSS compression and ULV-like
factorization, has computational complexity O(nr) [5]. For comparison, when applying
LU factorization, the solving step takes O(n2) arithmetic operations. With the stationary
elliptic problem this step is applied only once and has almost no impact on the performance
of the solvers. This is changed when the numerical method is used to solve a sequence of
systems of linear algebraic equations. In this case the relative weight of the solving after
factorization step is increased substantially. Such problem is the finite element method
discretization of a parabolic fractional diffusion problem examined in this chapter.

In order to generate the matrix of mass an algorithm and and a software module are
developed. It uses the information for the triangulation geometry T ∈ Ω. For the dis-
cretization in time we will use an implicit Euler scheme with an uniform time step and a
lumped matrix of mass.

For the Numerical experiments we use settings analogous to the test example in [24] by
Vabishchevich. This allows the numerical results, corresponding to the two methods to be
compared.

4.1 Problem statement

We use the integral representation (9) of the fractional Laplacian. The following parabolic
problem with unknown function u(x, t), (x, t) ∈ Ω× [0, T ] is considered∣∣∣∣∣∣∣∣∣

∂u(x, t)

∂t
+ (−∆)αu(x, t) = f(x, t), x ∈ Ω, t ∈ [0, T ],

u(x, t) = 0, x ∈ Ωc, t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ Ω.

Here [0, T ] is the time interval. The Dirichlet homogeneous boundary conditions are applied
as in the previous problem.
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We apply the same triangulation T ∈ Ω as in the previous chapter. The following
Cauchy problem is obtained

ML
du

dt
+Ku = MLf , 0 < t ≤ T, u(0) = u0,

for the unknown functions u = (uj(t)) ∈ RN , t ∈ [0, T ] and right hand side f = (fj(t)) ∈
RN . Here K = Kij ∈ RN×N is the stiffness matrix corresponding to the fractional Lapla-
cian. It has the form defined in (12) and (14). With ML = diag

(
mi
L

)
∈ RN we denote

the lumped matrix of mass, where mi
L is the concentrated mass at node xi. The algorithm

and programming module for the computation of ML can be found in Appendix Б.
For the discretization over time we use the implicit Euler method, which in the general

case has the form

ML
uj+1 − uj

τj
+Kuj+1 = ML

f j+1 + f j

2
, j = 0, . . . ,m− 1, (15)

where m is the amount of time steps,

m−1∑
j=0

τj = T,

t0 = 0, tj+1 = tj + τj and uj = u(tj), f j = f(tj).
In this dissertation we will limit ourselves to the case of a constant time step τj = τ .

Under this condition, each step in (15) comes down to solving the system of linear algebraic
equations

K̃uj+1 = f̃ j , (16)

where

K̃ =
ML

τ
+K, f̃ j = ML

(
f j+1 + f j

2
+

uj

τ

)
.

The mass and stiffness matrices are symmetric and positive definite thus (16) has a
unique solution. This means that in the implementation of Euler’s method the factorization
step is performed once, then we solve m systems with the factorized matrix.

The computational complexity of LU factorization is O
(
n3
)
. Then the m steps in time

require another O left(n2m right) arithmetic operations.
In the hierarchical method – HSS compression and ULV-like factorization have a sum-

mary complexity of O(rn2 and O(nrm) arithmetic operations are needed to solve the
factorized systems. Thus, determining the effectiveness of the hierarchical method is the
max off-diagonal rank r.

Several reordering schemes were introduced in Chapter 3 for solving the fractional dif-
fusion problem. Here we will show only results for the most effective – recursive bisection.

For the numerical experiments we will use a problem analogous to the parabolic problem
studied by Vabishchevich in [24], where the spectral definition of a fractional Laplacian is
used. The problem is solved for (x, t) ∈ Ω × [0, T ] = (−1, 1)2 × (0, 0.1). The solution is
determined from the time independent right hand side
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f(x) =
(x1 + 1)(x2 + 1)

4
,

and initial condition

u0(x) = 100

(
x1 + 1

2

)2(
1− x1 + 1

2

)(
x2 + 1

2

)2(
1− x2 + 1

2

)
The discretization in time uses the triangulation from Chapter 3 with time step τ =
T/m, m = 256.

The initial condition u0(x) and numerical solutions with α = 0.5 for t ∈
{0.025, 0.05, 0.075, 0.1} are shown on Figure 15. The solution obtained is qualitatively
similar to the results presented in [24] .

(a) t = 0 (b) t = 0.025 (c) t = 0.05 (d) t = 0.075 (e) t = 0.1

Figure 15: Numerical solutions of the model parabolic fractional diffusion problem with
α = 0.5: FEM in space and Euler’s implicit method in time.

4.2 Analysis of numerical experiments on systems with shared memory

The numerical results analyzed in this chapter are obtained on computer systems with
shared memory. As in previous chapters, the experiment was performed on the AVITOHOL
supercomputer.

The MatLab program, published in [2], was used to generate the stiffness matrix K and
the right part f . For the reordering of the unknowns with recursive bisection we use the
algorithm described in Section 3.4.4 and the developed code presented in Annex A.4. To
calculate the lumped mass matrix ML we use the algorithm presented in Appendix B.

4.3 Sequential and parallel experiments.

On Figure 16 we present: the execution times of the hierarchical semi-separable compres-
sion and ULV-like factorization from STRUMPACK and LU factorization from MKL –
(Figures 16a and 16d); the total time for solving the systems with the factorized matrices
of each of the time steps in Euler’s method – (Figures 16b and 16e); and the total time –
(Figures 16c and 16f). In almost all cases, the numerical experiments show better efficiency
of the hierarchical method, and this tends to increase with the number of unknowns n. For
the largest system (n = 32 302) the total time with the HSS compression method from the
STRUMPACK package are between ∼2.5 and ∼5 times better than when using the LU
factorization from the MKL package. These results confirm the theoretical expectations for
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stronger improvement of the efficiency of the hierarchical solver for the parabolic problem,
when compared to the stationary problem discussed in the previous chapter.

(a) Sequential times: compres-
sion and factorization

(b) Sequential times: Time
steps

(c) Sequential times: Total

(d) Parallel times with 16
threads: compression and fac-
torization

(e) Parallel times with 16
threads: Time steps

(f) Parallel times with 16
threads: Total

Figure 16: Comparison between the solution times for the parabolic problem (16) with
MKL and STRUMPACK with a relative threshold εrel ∈ {10−2, 10−4, 10−6, 10−8}.

The parallel speed of the HSS based solver from STRUMPACK is shown on Figure 17.
The parallel experiments with 16 threads show speed up from ∼3 (for n = 2 131) up
to ∼8(for n = 32 302). The lower parallel speed up of the hierarchical method can be
explained by the more complex hierarchical and recursive structure of the compression
algorithm. The parallel implementation of the solver with HSS factorized matrix also has
more complex (and less balanced) structure than the tile LU factorization.

4.4 Off-diagonal rank

The maximum off-diagonal rank r, calculated during the HSS compression, is presented on
Figure 18a, on Figure 18b the relation n/r is shown. This rank is a measure of the efficiency
of the compression, and at the same time is detrimental in estimating the computational
complexity. For the examined problem r has much smaller values than r. The compression
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(a) εrel = 10−2 (b) εrel = 10−4 (c) εrel = 10−6 (d) εrel = 10−8

Figure 17: Parallel speed up in solving the parabolic problem with the application of the
HSS-based solver for m = 256 time steps.

is strong, meaning that r/n is small, with the largest values of the relative threshold εrel.
Thus with εrel = 10−2 the rank r is between ∼20 and ∼80 times smaller than n, while
with the finest threshold εrel = 10−8 this relation is between ∼10 and ∼30. This analysis
shows that that the reordered with recursive bisection matrix K̃ has suitable structure for
HSS compression. This is also confirmed by the numerical experiments showcasing the
advantage of the hierarchical method over Gaussian elimination (block LU factorization).
It is important to note that the compression is approximate. Thus, the higher compression
efficiency, obtained with higher threshold values εrel, is at the expense of the lower accuracy
of the solution.

(a) Max off-diagonal rank r (b) Relation of r and n

Figure 18: Visualization of the max off-diagonal rank r and relation n/r.

4.5 Analysis of the relative error of the HSS-based solver

The compressed matrix H, obtained after the HSS compression is an approximation of K̃.
As with the stationary problem in the previous chapter, we will analyze the relative error
Rrelative (7).

The relative errors Rrelative for 4 chosen values of t are presented in Table 5. As it was
with the stationary problem the relative error is close to the supplied relative threshold
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εrel. The presented numerical results also show that the relative error doesn’t increase
substantially with the increase of the time interval. This confirms the stability of Euler’s
implicit method.

Table 5: Relative error of the HSS-based solver.

(a) t = 0.025 and t = 0.05

n
Relative error at t = 0.025 Relative error at t = 0.05

Rrelative for rtol Rrelative for rtol
10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

2131 0.00385 7.52e−05 2.78e−07 5.53e−08 0.00659 0.000124 4.62e−07 9.72e−08
4167 0.006 0.00013 6.4e−07 8.62e−08 0.01 0.000225 1.03e−06 1.36e−07
8030 0.0083 0.00023 1.28e−06 2.17e−07 0.0146 0.000375 2.e−06 3.49e−07

12805 0.0106 0.00028 1.68e−06 4.77e−07 0.0178 0.000484 2.49e−06 7.56e−07
16184 0.0126 0.0003 1.75e−06 5.16e−07 0.0227 0.00052 2.77e−06 7.88e−07
24892 0.0192 0.000393 2.5e−06 9.69e−07 0.0349 0.000619 3.97e−06 1.49e−06
32302 0.0234 0.000345 2.48e−06 1.18e−06 0.0437 0.000537 3.97e−06 1.76e−06

(b) t = 0.075 и t = 0.1

n
Relative error at t = 0.075 Relative error at t = 0.1

Rrelative for rtol Rrelative for rtol
10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

2131 0.0088 0.000159 5.98e−07 1.32e−07 0.0108 0.000188 7.07e−07 1.62e−07
4167 0.0135 0.000298 1.31e−06 1.707−07 0.0166 0.000361 1.55e−06 1.98e−07
8030 0.0206 0.000498 2.52e−06 4.55e−07 0.0264 0.000606 2.93e−06 5.49e−07
12805 0.0242 0.000653 3.09e−06 9.74e−07 0.0301 0.0008 3.6e−06 1.16e−06
16184 0.0324 0.000706 3.6e−06 1.01e−06 0.0419 0.000875 4.34e−06 1.2e−06
24892 0.0499 0.000807 5.19e−06 1.92e−06 0.0646 0.000973 6.26e−06 2.3e−06
32302 0.0636 0.000693 5.25e−06 2.21e−06 0.0832 0.000826 6.41e−06 2.58e−06

4.6 Concluding remarks

The main topic in the presented results is the analysis of the computational efficiency of
a method based on Hierarchical Semi-Separable compression and ULV-like factorization
and its parallel implementation in the STRUMPACK software package. On specific of the
applied implicit Euler method with a constant step τ is that the numerical solution of the
parabolic the problem is reduced to m = T/τ systems of linear algebraic equations with
the same matrix K̃, only changing the right hand side at each time step. This means that
the matrix K̃ is factorized only once and the accent falls on the solution of m systems with
a factorized matrix. Recall that this step has a computational complexity O(n2) for the
Gaussian solver and O(nr) for the hierarchical solver. The presented analysis shows that,
for the considered problem, the rank r is significantly smaller than the number of unknowns
n, which determines the advantage of the hierarchical method. As a result, both sequential
and parallel solution times utilizing the solver from the STRUMPACK software package
are significantly better than the execution times with the LU factorization from MKL.

The relative error Rrelative is close to the set relative threshold, growing steadily with
the development of the process over time. This confirms that the hierarchical method
provides good accuracy with suitably chosen εrel. The presented numerical results confirm
the significant advantage of the Hierarchical Semi-Separable compression method from the
STRUMPACK library.
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Conclusion

In this dissertation we analyze the computational efficiency of numerical methods and algo-
rithms for solving systems of linear algebraic equations with dense matrices. The motivation
for this study are applications related to the numerical solution of elliptical and parabolic
partial differential equations. Two such problems are used in the presented comparative
analysis: a) boundary value problem describing laminar flow around Zhukovsky airfoils,
discretized with the Boundary Elements Method; b) anomalous diffusion inside a bounded
domain modeled with the fractional Laplacian, where the finite element method is applied
for the discretization. In both cases the problems are reduced to systems of linear algebraic
equations with dense matrices. It is shown that the structure of these matrices is suitable
for applying a hierarchical method using HSS compression.

An important part of Chapter 2 is the comparative analysis of the computational com-
plexity of software packages implementing tile LU factorization, a variant of Gaussian
elimination. The general conclusion is that the MKL library has better performance than
the examined alternative implementations of LU factorization.

The accent of the dissertation is the analysis of the possibility for improvement of the
computational efficiency of solving systems of linear algebraic equations with dense ma-
trices with the help of an hierarchical method utilizing HSS compression. This method is
implemented in the STRUMPACK software package. In Chapters 2 and 3 the performance
of the hierarchical algorithm for systems of linear algebraic equations obtained from the
application of the boundary element and finite element methods, respectively, for the con-
sidered elliptic boundary problems. The analysis shows that the studied dense matrices
have a suitable structure for the application of the hierarchical method. This means that
the HSS compression finds low-rank off-diagonal blocks.

The sequential experiments affirm the computational complexity measures of the an-
alyzed tile methods. For both problems the hierarchical solver shows better performance
than the MKL Gaussian elimination algorithm – the most efficient from the studied software
packages implementing LU factorization.

When applying the hierarchical method we obtain an approximate solution of the sys-
tem. Its accuracy depends on the accuracy of the HSS compression. We base the analysis
of the relative error Rrelative of the numerical experiments on using the solution obtained
from LU factorization as reference. For the fractional diffusion problem the relative error
is observed to be close to the set threshold εrel. This can be accepted as a good charac-
teristic for the HSS compression solver. For the flow around Zhukovsky airfoils problem
the relative error for the corresponding εrel is larger, but this is compensated with better
execution time performance.

It is well known that the quality of the Hierarchical Semi-Separable compression de-
pends heavily on the structure of the dense matrix. With the two dimensional fractional
diffusion problem the structure of the originally obtained dense matrix is not suitable for
HSS compression. In order to improve it five reordering schemes are applied. The presented
analysis shows the advantages of using Nested Dissection and Recursive Bisection.

In Chapter 4 we study the computational performance and accuracy of the hierarchical
solver based on HSS compression for a parabolic problem with fractional in space diffusion.
The discretization in time is carried out with an implicit Euler differential scheme with
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uniform step. With this problem finding the numerical solution of the problem is reduced
to a sequence of systems of linear algebraic equations with the same matrix. In this way
on every time step we solve a system that is factorized once only. Solving such systems
with HSS compression has lower computational complexity – O(nr) in comparison to the
LU factorization’s O(n2). For the examined parabolic problem the hierarchical solver’s
execution times are better both for the sequential and parallel experiments. At the same
time, thanks to the unconditional stability of the implicit Euler method, the relative error
is close to the set relative threshold εrel.
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Approbation of the results

The results presented in this dissertation were reported in the following international con-
ferences and workshops.

International Conferences:

• Large-Scale Scientific Computations (LSSC), Sozopol, 2017, 2019, 2021

• Annual Meeting of the Bulgarian Section of SIAM (BGSIAM), Sofia, 2017, 2018, 2019

• Numerical Methods for Scientific Computations and Advanced Applications (NM-
SCAA), Hisarya, 2018

• Numerical Methods and Applications (NM&A), Borovets, 2018

• Twelfth On-Line Conference of the Euro-American Consortium for Promoting the Ap-
plication of Mathematics in Technical and Natural Sciences (AMiTaNS), Albena,2020

Workshops:

• Две години Авитохол: Иновативни Суперкомпютърни Приложения (Two years
Avitohol: Innovative supercomputing applications), Panagyurishte, 2017

• Numerical Solution of Fractional Differential Equations and Applications
(NSFDE&A), Sozopol, 2020

Main scientific and applied scientific contributions

1. The performance of the following software packages for solving systems linear alge-
braic equations with dense matrices, using block LU factorization, was studied: for
General Purpose Processors (CPUs) – Intel Math Kernel Library (MKL) and the open
access package Parallel Linear Algebra Software for Multicore Architectures Multi-
core Architectures (PLASMA); for accelerators with the Intel Many Integrated Core
(MIC) architecture – MKL and the Matrix Algebra on GPU and Multicore Archi-
tectures (MAGMA) open access package. The results of the numerical experiments
for systems obtained from Boundary Elements Method discretization of a boundary
value problem of laminar flow around Zhukovsky airfoils are consistent with asymp-
totic estimates for computational complexity. The comparative analysis shows better
performance and very good parallel scalability of the MKL package.

2. We studied the numerical complexity, parallel performance and relative error of an
Hierarchically Semi-Separable compression (HSS). Numerical experiments are carried
out with the free access library STRUctured Matrices PACKage (STRUMPACK),
where a parallel solver based on HSS compression and ULV-like factorization is im-
plemented. The comparative analysis includes two types of dense matrices, obtained
form discretization with: a) Boundary Element Method of a boundary value prob-
lem of a laminar flow around Zhukovsky airfoils; b) Finite Element Method for two
dimensional fractional diffusion boundary value problem. A comparative analysis of
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the solvers from MKL and STRUMPACK is carried out. A characterization depen-
dent on the relative threshold of HSS compression is obtained for the cases, where
the hierarchical method has better performance.

3. We show that for the for the flow around Zhukovsky airfoils problem with boundary
element method discretization the sequential ordering of the nodes on the borders
of the airfoils has suitable structure for HSS compression. This is not the case for
the fractional diffusion boundary problem, discretized with Finite Element Method.
In order to improve the effectiveness of the Hierarchical Semi-Separable compression
we propose and study five methods for reordering of the unknowns. The compara-
tive analysis shows significant improvement of the results when nested dissection or
recursive bisection are applied.

4. A method, algorithm and program implementation for the numerical solution of a
parabolic in space fractional diffusion problem are developed. The discretization in
time is carried out with an implicit Euler method with uniform time steps and lumped
mass matrix. It is shown that for, this non-stationary problem, the computational
complexity of the separate parts of the algorithm creates suitable conditions for ad-
vantageous use of the solver based on HSS compression. This is affirmed by numerical
experiments. For all studied sizes in space of the discretized problem, as well as all
studied relative threshold values, the STRUMPACK solver has better performance
than MKL.

Bibliography

[1] G. Acosta and J.P. Borthagaray. A Fractional Laplace Equation: Regularity of Solu-
tions and Finite Element Approximations. In SIAM Journal on Numerical Analysis,
volume 55, pages 472–495, 2017. doi: 10.1137/15M1033952.

[2] G. Acosta, F.M. Bersetche, and J.P. Borthagaray. A short FE implementation
for a 2d homogeneous Dirichlet problem of a fractional Laplacian. In Comput-
ers & Mathematics with Applications, volume 74, pages 784 – 816, 2017. doi:
https://doi.org/10.1016/j.camwa.2017.05.026.

[3] M. Benzi, D. Bini, D. Kressner, H. Munthe-Kaas, and C. Van Loan. Exploiting Hidden
Structure in Matrix Computations: Algorithms and Applications. Springer, Cham,
Cetraro, Italy, 2015. ISBN 978-3-319-49887-4. doi: 10.1007/978-3-319-49887-4.

[4] K. Binder, Ch. Bennemann, J. Baschnagel, and W. Paul. Anomalous diffusion of
polymers in supercooled melts near the glass transition. In A. Pękalski and K. Sznajd-
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