
Stoyan Milkov Mihov

Finite-State Automata, Transducers and

Bimachines: Algorithmic Constructions and

Implementations

DISSERTATION

for awarding of

the scientific degree “Doctor of Science”

in the professional field 4.6.
Informatics and Computer science

Sofia, 2019

Contents

Preface iii
Interest in the Topic and Overview of the Main Results in the Field iii
Aims and Objectives of the Dissertation iv
Methodology . v

1 Formal preliminaries 1
1.1 Sets, functions and relations 1
1.2 Lifting functions to sets and tuples 6
1.3 Alphabets, words and languages 7
1.4 Word tuples, string relations and string functions 10
1.5 The general monoidal perspective 13

2 Monoidal finite-state automata 19
2.1 Basic concept and examples 19
2.2 Closure properties of monoidal finite-state automata 26
2.3 Monoidal regular languages and monoidal regular expressions 29
2.4 Equivalence between monoidal regular languages and monoidal

automaton languages . 30
2.5 Simplifying the structure of monoidal finite-state automata . 32

3 Classical finite-state automata and regular languages 37
3.1 Deterministic finite-state automata 37
3.2 Determinization of classical finite-state automata 39
3.3 Additional closure properties for classical finite-state automata 41
3.4 Minimal deterministic finite-state automata and the Myhill-

Nerode equivalence relation 44
3.5 Minimization of deterministic finite-state automata 50
3.6 Coloured deterministic finite-state automata 55
3.7 Pseudo-determinization and pseudo-minimization of monoidal

finite-state automata . 58

4 Monoidal multi-tape automata and finite-state transducers 63
4.1 Monoidal multi-tape automata 63
4.2 Additional closure properties of monoidal multi-tape automata 66

i

ii CONTENTS

4.3 Classical multi-tape automata and letter automata 68
4.4 Monoidal finite-state transducers 72
4.5 Classical finite-state transducers 74
4.6 Deciding functionality of classical finite-state transducers . . 75

5 Deterministic transducers 83
5.1 Deterministic transducers and subsequential transducers . . . 83
5.2 A determinization procedure for functional transducers with

the bounded variation property 89
5.3 Deciding the bounded variation property 96
5.4 Minimal subsequential finite-state transducers - Myhill-Nerode

relation for subsequential transducers 103
5.5 Minimization of subsequential transducers 110
5.6 Numerical subsequential transducers 120

6 Bimachines 123
6.1 Basic definitions . 123
6.2 Equivalence of regular string functions and classical bimachines129
6.3 Pseudo-minimization of monoidal bimachines 134
6.4 Direct composition of classical bimachines 136

7 The C(M) language 141
7.1 Basics and simple examples 141
7.2 Types, terms, and statements in C(M) 148

8 C(M) implementation of finite-state devices 157
8.1 C(M) implementations for automata algorithms 157
8.2 C(M) programs for classical finite-state transducers 173
8.3 C(M) programs for deterministic transducers 188
8.4 C(M) programs for bimachines 199

Conclusion 211
Author’s Contributions . 211
Dissertation Publications . 212
Statement of originality . 214

Preface

The presented dissertation is closely based on the monograph [Mihov and
Schulz, 2019]. In fact, the main body of the dissertation essentially covers
Chapters 1-8 of the monograph.

Interest in the Topic and Overview of the Main Re-
sults in the Field

Finite-state techniques provide theoretically elegant and computationally
efficient solutions for various (hard, non-trivial) problems in text and nat-
ural language processing [Roche and Schabes, 1997b, Mohri, 1997, Kart-
tunen et al., 1997a], speech processing [Mohri et al., 2008], pattern match-
ing [Navarro and Raffinot, 2002], knowledge representation [Angelova and
Mihov, 2008], and many others. Due to its importance in many fundamen-
tal applications, the theory of finite-state automata and related finite-state
machines has been studied intensively and its development still continues.

The theory of finite-state automata has been described from a com-
putational point of view in numerous textbooks (e.g. [Hopcroft et al.,
2006, Kozen, 1997, Lewis and Papadimitriou, 1998]). These books are
mainly about finite-state automata and regular languages over a free monoid
and present mostly the basic automata properties such as: the Kleene the-
orem for the equivalence of regular languages with finite-state automata
languages, the determinization of finite-state automata, the closures with
respect to intersection and complement, the Myhill-Nerod relation and the
minimization of finite-state automata, and constructions of finite-state au-
tomata from regular expressions.

From a theoretical-algebraic point of view, finite automata have been
studied in the monographs [Eilenberg, 1974, Eilenberg, 1976, Berstel, 1979,
Sakarovitch, 2009]. In these books, in addition to the classical case of free
monoids, finite state automata over arbitrary monoids are also considered.
These works also explore a number of additional algebraic properties, as well
as properties of finite-state transducers.

A presentation focused on the applications of the finite-state machines
for searching and natural language processing is presented in the works [Ka-

iii

iv CONTENTS

plan and Kay, 1994, Mohri, 1996, Roche and Schabes, 1997b, Navarro and
Raffinot, 2002, Beesley and Karttunen, 2003, Maurel and Guenthner, 2005].
One of the most common applications is the use of finite-state transducers
for application and representation of replace rules. These techniques are
presented in, e.g. [Mohri and Sproat, 1996, Karttunen, 1997, Kaplan and
Kay, 1994, Gerdemann and van Noord, 1999, Hulden, 2009].

Finite-state transducers and more specifically subsequential finite-state
transducers with outputs in numerical monoids are at the heart of modern
speech recognition applications. They are described, for example, in [Mohri,
1997, Mohri et al., 2008]. The results for subsequential finite-state trans-
ducers are generalized for the case of other output monoids in [Gerdjikov
and Mihov, 2017b, Gerdjikov and Mihov, 2017a].

Similarity search is another important application area of finite-state
automata and transducers. Application of finite state techniques for text
correction is described in [Ringlstetter et al., 2007, Mitankin et al., 2014].
In [Schulz and Mihov, 2002, Mihov and Schulz, 2004, Mitankin et al., 2011]
efficient methodologies for approximate dictionary search and constructions
of deterministic Levenshtein finite-state automata are presented.

Due to the complexity of their construction, the theory of bimachines is
relatively poorly developed. After being introduced and studied in [Schützenberger,
1961, Reutenauer and Schützenberger, 1991], they are applied for natural
language processing, for example, in [Roche and Schabes, 1997b]. In order
to overcome the complexities of the bimachine constructions, in [Gerdjikov
et al., 2017] we introduce a new bimachine construction, which avoids the
preliminary step for constructing an intermedate unambiguous transducer.
For certain classes of transducers this construction is shown to lead to ex-
ponentially smaller number of states in the resulting bimachine.

There are numerous implementations of software libraries for the con-
struction and application of finite-state automata and tansducers. The most
widely used systems that also offer transducer constructions are [Karttunen
et al., 1997b, Schmid, 2006, Allauzen et al., 2007].

Aims and Objectives of the Dissertation

The aim of the dissertation is to describe the recent advances of the finite
state technology, following a combined mathematical and implementational
point of view. Though concepts are introduced in a mathematically rigorous
way and correctness proofs for all procedures are given, the dissertation is
not meant as a purely theoretical presentation of the subject. The goal of the
dissertation is to provide both – formal construction for finite-state machines
with correctness proofs and working implementations of all presented con-
structions together with corresponding documentation. These allows one to
understand and implement complex finite-state based procedures for prac-

CONTENTS v

tically relevant tasks.

Methodology

The presentation in the dissertation follows the following principles:

1. Theoretical generalisations aiming the extension of the scope of appli-
cability.
The spectrum of finite-state machines that are covered is not restricted
to classical finite-state automata and “recognition” tools. We also
treat important “input-output” and “translation” devices such as multi-
tape automata, finite-state transducers and bimachines. All these
machines can be used, e.g., for efficient text rewriting, information
extraction from textual corpora, and morphological analysis.

2. Practical feasibility of the created abstract constructions.
After a conceptual introduction, full implementations/executable pro-
grams are given for all procedures, including a documentation of the
programming code. In this way it is possible to observe the concrete
behaviour of algorithms for arbitrary examples. It is also not difficult
to enhance the given programs by means of self-written trace function-
alities, which helps to even more thorough exploration of particular
details of the algorithms and programs presented.

3. Applicability to substantial practical problems.
Conceptual descriptions and implementations in a natural way lead
to an intermediate goal reached at the end of the dissertation. Here
we show also how to use the technology introduced for solving some
important practical problems like spelling correction, phonetization,
bignum arithmetics and others.

vi CONTENTS

Chapter 1

Formal preliminaries

The aim of this chapter is twofold. First, we recall a collection of basic
mathematical notions that are needed for the discussions of the following
chapters. Second, we have a first - still purely mathematical - look at the
central topics of the dissertation: languages, relations and functions between
strings, as well as important operations on languages, relations and func-
tions. We also introduce monoids, a class of algebraic structures that gives
an abstract view on strings, languages, and relations.

1.1 Sets, functions and relations

Sets and Boolean operations on sets (i.e. union, intersection, difference,
complement) are introduced as usual. The cardinality of a set A is written
|A|.

As usual, n-tuples of elements are written 〈m1, . . . ,mn〉. Tuples represent
ordered sequences of elements. The empty tuple, which is unique, is written
〈〉 or ε. 1-tuples 〈m〉 coincide with elements m. In what follows, n-tuples
〈m1, . . . ,mn〉 are often written as m̄. If n ≥ 2 and m̄ is as above, then m̄×i
is the (n− 1)-tuple obtained from m̄ by deleting the i-th component.

Remark 1.1.1 Let l ≥ 2, let n = k1 + k2 + . . . kl (ki ≥ 1) and let āi =
〈ai,1, ai,2, . . . , ai,ki〉 denote a ki-tuple for i = 1, . . . , l. In this situation we
formally distinguish between the l-tuple

〈ā1, . . . , āl〉 = 〈〈a1,1, . . . , a1,k1〉 , 〈a2,1, . . . , a2,k2〉 , . . . , 〈al,1, . . . , al,kl〉〉

and the n-tuple

〈a1,1, . . . , a1,k1 , a2,1, . . . , a2,k2 , . . . , al,1, . . . , al,kl〉 .

Let n ≥ 1, let M1, . . . ,Mn be sets. The Cartesian product of M1, . . . ,Mn is

n∏
i=1

Mi := {〈m1, . . . ,mn〉 | mi ∈Mi for 1 ≤ i ≤ n}.

1

2 CHAPTER 1. FORMAL PRELIMINARIES

An alternative notation is M1 × . . . ×Mn. If M1 = . . . = Mn = M , then∏n
i=1Mi is also written Mn.

Definition 1.1.2 Let M,M1, . . . ,Mn be sets. Any subset R ⊆
∏n
i=1Mi is

called an n-ary relation. If M1 = . . . = Mn = M , then R is called an n-ary
relation on M . The set {〈m,m〉 | m ∈ M} is called the identity on M and
denoted IdM .

If R is an n-ary relation we often write R(m1, . . . ,mn) or R(m̄) to indicate
that m̄ = 〈m1, . . . ,mn〉 ∈ R. In the special case of a binary relation R we
also use the notation xRy to express that 〈x, y〉 ∈ R.

As a matter of fact we use the Boolean operations (union, intersection, dif-
ference, complement) for relations. For binary relations there are other
standard operations.

Definition 1.1.3 Let R1 ⊆ A × B and R2 ⊆ B × C be binary relations.
Then

R1 ◦R2 := {〈a, c〉 | ∃b ∈ B : R1(a, b), R2(b, c)}

is the composition of R1 and R2.

Note that R1 ◦ R2 is again a binary relation. It is simple to see that com-
position of relations is an associative operation.

Definition 1.1.4 Let R be a binary relation. Then

R−1 := {〈m,n〉 | 〈n,m〉 ∈ R}

is the inverse relation of R.

Definition 1.1.5 Let R ⊆ A × B be a binary relation, let X ⊆ A. Then
R(X) := {b ∈ B | ∃x ∈ X : R(x, b)} is called the image of X under R.

Definition 1.1.6 A binary relation R ⊆ M ×N is infinitely ambiguous iff
there exists an m ∈M such that the set R({m}) is infinite.

Definition 1.1.7 Let R ⊆M ×M be a binary relation.

1. R is reflexive (w.r.t. M) iff for all m ∈M always R(m,m).

2. R is symmetric iff for all m,n ∈M always R(m,n) implies R(n,m).

3. R is transitive iff for allm,m′,m′′ ∈M always R(m,m′) andR(m′,m′′)
imply R(m,m′′).

4. R is antisymmetric iff for all m,m′ ∈M always R(m,m′) and R(m′,m)
imply m = m′.

1.1. SETS, FUNCTIONS AND RELATIONS 3

To check reflexivity it is not sufficient to know R, the set M must be clear
from the context. Note that the identity IdM is both symmetric and anti-
symmetric. Given a binary relation R ⊆M×M we often look for extensions
of R to a transitive (or reflexive and transitive) relation on M . This moti-
vates the following definition.

Definition 1.1.8 For a binary relation R on a given set M we inductively
define

• R0 := IdM ,

• Ri+1 := Ri ◦R,

• R∗ :=
∞⋃
i=0
Ri,

• R+ :=
∞⋃
i=1
Ri.

R∗ is called the reflexive and transitive closure or the (relational) Kleene
star of R. Similary R+ is called the transitive closure of R.

Clearly, the (reflexive and) transitive closure is the smallest extension of R
to a binary relation on M that is (reflexive and) transitive. For computing
the reflexive and transitive closure of a binary relation R ⊆M ×M the set
M must be known. If n ≥ 2, projections represent another useful type of
operations for n-ary relations.

Definition 1.1.9 Let R ⊆
∏n
i=1Mi where n ≥ 2. The relation

R×i := {m̄×i | R(m̄)}

is called the projection of R w.r.t. the set of coordinates {1, . . . , i − 1, i +
1, . . . , n}. Let ∅ 6= {i1, . . . , ik} ⊆ {1, . . . , n}. Then

Proj(〈i1, . . . , ik〉, R) := {〈mi1 , . . . ,mik〉 | 〈m1, . . . ,mn〉 ∈ R}

is called the generalized projection of R w.r.t. the sequence of coordinates
〈i1, . . . , ik〉.

Note that in the above situation we have R×i = Proj(〈1, . . . , i − 1, i +
1, . . . , n〉, R). If n = 2 we have R−1 = Proj(〈2, 1〉, R). In what follows,
generalized projections are simply called projections.

Example 1.1.10 LetR = {〈a1, b1, c1, d1〉, 〈a1, b1, c2, d1〉, 〈a2, b1, c2, d2〉}. Then

Proj(〈3, 2〉, R) = {〈c1, b1〉, 〈c2, b1〉}
Proj(〈4, 1〉, R) = {〈d1, a1〉, 〈d2, a2〉}.

4 CHAPTER 1. FORMAL PRELIMINARIES

Definition 1.1.11 Let R ⊆M ×M . R is an equivalence relation on M iff
R is reflexive, symmetric, and transitive. Let R ⊆M×M be an equivalence
relation. For each m ∈ M the set [m]R := {n ∈ M | R(m,n)} is called
the equivalence class of m. M/R := {[m]R | m ∈ M} denotes the set of all
equivalence classes. The index of R is the cardinality |M/R|.

Equivalence relations are often written in infix notation, using symbols such
as ∼ or ≡.

Definition 1.1.12 Let R1, R2 ⊆M×M be equivalence relations on the set
M . R2 is a refinement of R1 iff [m]R2 ⊆ [m]R1 for all m ∈M .

Definition 1.1.13 Let R ⊆ M ×M . R is a partial order on M iff R is
reflexive, transitive, and antisymmetric. A partial order R ⊆ M ×M is a
linear order iff for all m,n ∈M always R(m,n) or R(n,m).

Definition 1.1.14 Let M and N be sets. A subset f ⊆M ×N is called a
partial function from M to N if 〈m,n〉 ∈ f and 〈m,n′〉 ∈ f implies n = n′.
The notation f : M → N indicates that f is a partial function from M to
N . As usual we write n = f(m) if 〈m,n〉 ∈ f . The element n is called the
image of m under f . The domain dom(f) and the codomain codom(f) of a
partial function f : M → N are respectively defined as

dom(f) := {m ∈M | ∃n ∈ N : n = f(m)}
codom(f) := {n ∈ N | ∃m ∈M : n = f(m)}.

If f : M → N and X ⊆ M , then the restriction of f to X is the partial
function f |X : X → N that maps each x ∈ (X ∩ dom(f)) to f(x). The
image of X under f is

f(X) := {n ∈ N | ∃x ∈ X : n = f(x)} = {f(x) | x ∈ X}.

A total function from M to N is a partial function with domain M .

Total functions f are often described in a rule-based way f : m 7→ n, speci-
fying the image n of a “generic” element m. For example s : IN→ IN : n 7→
n+ 1 denotes the successor function for natural numbers. Note that in the
above situation we have dom(f) = Proj(1, f) and codom(f) = Proj(2, f).
In what follows, by a function we always mean a partial function if not
mentioned otherwise. As a general convention, when writing an expression
f(m) we always mean that f is defined for m. An expression !f(n) means
that f is defined for n.

Definition 1.1.15 Let M,N be sets. A k-ary function from M to N is a
function f : Mk → N .

1.1. SETS, FUNCTIONS AND RELATIONS 5

If f : Mk → N is a k-ary function we write f(m1, . . . ,mk) for f(〈m1, . . . ,mk〉).
When using a relation R in a formal construction, concise descriptions can
often be achieved when introducing functions that are derived from R in a
particular way. The following definition describes a general and flexibel way
to derive functions from a given relation.

Definition 1.1.16 Let R ⊆
∏n
i=1Mi where n ≥ 2. Let I = 〈i1, . . . , ik〉

and J = 〈j1, . . . , jl〉 be two sequences where {i1, . . . , ik} and {j1, . . . , jl} are
non-empty subsets of the index set {1, . . . , n}. Then Func(I, J,R) denotes
the function that maps each element 〈mi1 , . . . ,mik〉 of Proj(I,R) to the set

{〈mj1 , . . . ,mjl〉 ∈ Proj(J,R) | ∃〈m1, . . .mn〉 ∈ R}.

Example 1.1.17 Extending Example 1.1.10, let

R = {〈a1, b1, c1, d1〉, 〈a1, b1, c2, d1〉, 〈a2, b1, c2, d2〉}

as above. Then Func(〈3, 2〉, 〈4, 1〉), R) is the following mapping:

〈c1, b1〉 7→ {〈d1, a1〉}
〈c2, b1〉 7→ {〈d1, a1〉, 〈d2, a2〉}

Definition 1.1.18 Let f : A→ B and g : B → C be functions. Then

f ◦ g := {〈a, g(f(a))〉 | a ∈ dom(f), f(a) ∈ dom(g)}

is called the (functional) composition of f and g. Note that f ◦ g : A→ C.

As a matter of fact, composition of functions is a special case of the more
general composition of relations introduced in Definition 1.1.3, which implies
that it is an associative operation.

Definition 1.1.19 Let f : A→ B be a function.

1. f is injective iff for all a, a′ ∈ A : (f(a) = f(a′) implies a = a′).

2. f is surjective (w.r.t. B) iff for all b ∈ B ∃a ∈ A : b = f(a).

3. f is bijective iff f is surjective and injective.

Bijective functions f : A → A are also called permutations of the set A.
When checking surjectivity of a function f : A → B the set B must be
known.

6 CHAPTER 1. FORMAL PRELIMINARIES

Figure 1.1: Lifting a function to sets. The partial function f (left-hand side)
maps elements to elements. The lifted version (right-hand side) maps sets
of elements to an image set, proceeding in an element-wise manner.

1.2 Lifting functions to sets and tuples

We now introduce two ways of “lifting” a function that are used later at
many places.

Definition 1.2.1 Let f : M → N be a function. The “set-lifted” version
of f is the function f̂ : 2M → 2N defined pointwise:

f̂(T) = {f(t) | t ∈ T ∩ dom(f)}.

The function f̂ is a total function – f̂(T) is defined for any T ⊆M .

The set-lifting of functions is illustrated in Figure 1.1. Later we will simply
use the symbol f to denote a lifted version if this does not lead to confusion.

Example 1.2.2 Let s denote the successor function n 7→ n+ 1 on IN. Let
E := {2n | n ∈ IN} and O := {2n + 1 | n ∈ IN} respectively denote the set
of even and odd natural numbers. Then ŝ(E) = O and ŝ(O) = E \ {0}.

Proposition 1.2.3 Let f : M → N be a function, let Ti ⊆ M for every
i ∈ I. Then

f(
⋃
i∈I

Ti) =
⋃
i∈I

f(Ti).

Sets as considered for the above lifting technique are unordered collections
of elements. A corresponding lifting technique exists for ordered collections.

Definition 1.2.4 Let f : Mk → N be a k-ary function, let n ≥ 2. The
“tuple-lifted” version of f is the k-ary function f̄ : (Mn)k → Nn defined
component-wise:

f̄(〈m1,1, . . . ,m1,n〉, . . . , 〈mk,1, . . . ,mk,n〉)
= 〈f(m1,1, . . . ,mk,1), . . . , f(m1,n, . . . ,mk,n)〉.

1.3. ALPHABETS, WORDS AND LANGUAGES 7

Figure 1.2: Lifting a binary function to a binary function on n-tuples. The
binary function f maps two arguments to an image element (left-hand side).
The lifted version (right-hand side) maps two n-tuples to an image n-tuple,
proceeding in a component-wise manner.

In general the function f̄ is a partial function. This concept is illustrated in
Figure 1.2 for the case of a binary function f .

Example 1.2.5

• Let s denote the successor function n 7→ n+1 on IN. Then s̄(〈2, 7, 12〉) =
〈3, 8, 13〉.

• Let + denote the addition of natural numbers. Then 〈2, 7, 12〉 +̄ 〈3, 1, 12〉 =
〈5, 8, 24〉.

Remark 1.2.6 Definition 1.2.4 can easily be generalized to the situation
where for each of the n components of the tuples a specific k-ary function
fi : Mk

i → Ni is given. In this case the corresponding definition for the
lifted mapping f̄ is simply

f̄(〈m1,1, . . . ,m1,n〉, . . . , 〈mk,1, . . . ,mk,n〉)
:= 〈f1(m1,1, . . . ,mk,1), . . . , fn(m1,n, . . . ,mk,n)〉.

Here f̄ is a k-ary function from the Cartesian product Πn
i=1Mi to Πn

i=1Ni.
We also write f1 × . . .× fn for the lifted function f̄ .

Example 1.2.7 Let f1 = + denote the addition of natural numbers, let
f2 = · denote multiplication of integers. Then f̄(〈2,−3〉, 〈11, 7〉) = 〈13,−21〉.

Once we have seen how to lift functions to sets and tuples it should be clear
that lifting can be iterated, obtaining functions that act on sets of tuples,
or tuples of sets, etc. We shall come to places where such notions naturally
occur.

1.3 Alphabets, words and languages

An alphabet Σ is a set of symbols. If not mentioned otherwise, alphabets
are assumed to be non-empty and finite.

8 CHAPTER 1. FORMAL PRELIMINARIES

Definition 1.3.1 Let Σ be an alphabet. A word w over Σ is an n-tuple

w = 〈a1, . . . , an〉

where n ≥ 0 and ai ∈ Σ for i = 1, . . . , n. The integer n is called the length
of w and denoted |w|. The empty tuple 〈〉 = ε, which has length 0, is called
the empty word. Letters σ of the alphabet Σ are also treated as words of
length 1. Σ∗ denotes the set of all words over Σ, and Σε := Σ ∪ {ε}. The
concatenation of two words u = 〈a1, . . . , an〉 and v = 〈b1, . . . , bm〉 ∈ Σ∗ is

u · v := 〈a1, . . . , an, b1, . . . , bm〉 .

Clearly, u · v ∈ Σ∗ and |u · v| = |u|+ |v|. We use the expressions “word” and
“string” as synonyms, and “texts”, from our perspective, are just strings over
a given alphabet. After we have formalized words as tuples we henceforth
simply write w = a1 . . . an instead of w = 〈a1, . . . , an〉. The concatenation
u · v of two words u and v is often written in the simpler form uv.

Definition 1.3.2 The reverse function ρ : Σ∗ → Σ∗ is defined by induction
as

ρ(ε) := ε,

∀u ∈ Σ∗ ∀a ∈ Σ : ρ(u · a) := a · ρ(u).

In “stringology”, many simple notions are related to words and concatena-
tion.

Definition 1.3.3 Let t ∈ Σ∗, assume that t can be represented in the form
t = u ·v ·w for some u, v, w ∈ Σ∗. Then v ∈ Σ∗ is an infix of t. If u = ε, then
v is a prefix of t. If w = ε, then v is a suffix of t. The prefix (suffix) v of t
is a proper prefix (suffix) of t if v 6= t. The notation v ≤ t (v < t) expresses
that v is a (proper) prefix of t.

If t ∈ Σ∗ is any word, Pref (t) and Suf (t) respectively denote the set of
prefixes and suffixes of t. The corresponding set lifted versions are de-
fined correspondingly: if M ⊆ Σ∗ is any set of strings, then Pref (M) :=⋃
m∈M Pref (m) and Suf (M) :=

⋃
m∈M Suf (m) denote the set of prefixes

(suffixes) of strings in M , respectively.

Definition 1.3.4 The expression u−1t denotes the word v if u is a prefix of
t and t = u · v, otherwise u−1t is undefined.

For any two words u, v ∈ Σ∗ the set of common prefixes is C = Pref (u) ∩
Pref (v). Since C is finite and < is a linear order on C there exists a unique
maximal element.

Definition 1.3.5 Let u, v ∈ Σ∗. Then w = u ∧ v denotes the longest
common prefix of u and v.

1.3. ALPHABETS, WORDS AND LANGUAGES 9

The following properties follow immediately.

Proposition 1.3.6 Let u, v, w ∈ Σ∗. Then

1. uv ∧ uw = u(v ∧ w),

2. (uv)−1uw = v−1w,

3. if c := u ∧ v, then c−1u ∧ c−1v = ε,

4. if u ∧ v = ε and u 6= ε, v 6= ε, then ∀x, y ∈ Σ∗: ux ∧ vy = ε.

An infix v of a string t can have several “occurrences” in t which start
at distinct “positions” in t. We formalize these notions.

Definition 1.3.7 A position of t ∈ Σ∗ is a pair 〈u, v〉 such that t = uv.
Given a string t ∈ Σ∗ the notation 〈u, v〉t indicates that 〈u, v〉 is a position
of t = uv. An infix occurrence (of the infix v) in t ∈ Σ∗ is a triple 〈u, v, w〉
such that t = uvw. Given a string t ∈ Σ∗ the notation 〈u, v, w〉t indicates
that 〈u, v, w〉 is an infix occurrence of t = uvw.

Remark 1.3.8 If Σ is an alphabet, the triple 〈Σ∗, ·, ε〉 is an algebraic struc-
ture called the free monoid for the “set of generators” Σ. This name is related
to the fact that for each word w ∈ Σ∗ there exists a unique representation of
w as a finite (possibly empty) concatenation of elements of Σ. The general
notion of a monoid is introduced below.

Definition 1.3.9 Let Σ be an alphabet. A subset L ⊆ Σ∗ is called a
language over Σ.

Later the notion of a language will be generalized, introducing “monoidal”
languages (cf. Definition 1.5.4). In situations where ambiguities might arise,
languages of the form L ⊆ Σ∗ are called “classical languages”.

Since languages are sets of words, we may use the Boolean operations (union,
intersection, difference, complement) for languages. Furthermore, the above
set-lifting techniques can be used to lift the operations introduced for words
to the level of languages. From a notational point we do not introduce new
symbols.

Definition 1.3.10 Let L1, L2 be classical languages over the alphabet Σ.
Then

L1 · L2 := {w1 · w2 | w1 ∈ L1, w2 ∈ L2}

is called the concatenation of L1 and L2.

As concatenation of words, also concatenation of languages is an associative
operation.

10 CHAPTER 1. FORMAL PRELIMINARIES

Example 1.3.11 Let Σ denote the alphabet of Latin letters with the blank
symbol “ ”, let L1 := {Susan,Peter, . . .} denote a list of pre-names, let
L2 := { }, let L1 := {Brown,Miller, . . .} denote a list of family names.
L1, L2 and L3 are languages over Σ. The language L1 · L2 · L3 contains all
names of the form “Susan Brown” obtained by combining the names in L1

and L2.

Definition 1.3.12 Let L be a classical language over the alphabet Σ. Then
the set lifted version of ρ:

ρ(L) := {ρ(w) | w ∈ L}

is called the reverse language of L.

Definition 1.3.13 Let L be a language. We inductively define

1. L0 = {ε},

2. Lk+1 = Lk · L,

The language L∗ =
⋃∞
k=0 L

k (L+ =
⋃∞
k=1 L

k) is called the Kleene star
(positive Kleene star) of L.

Words, languages and language operations provide the formal background
for the theory of (standard, one-tape) finite-state automata, which is covered
in Chapter 2. We now turn to notions that are relevant for the theory of
n-tape automata, which is treated in Chapter 4.1.

1.4 Word tuples, string relations and string func-
tions

For all notions introduced in the previous section there are natural general-
izations when moving from elements to n-tuples. First, following the lifting
techniques discussed in Remarks 1.2.4, 1.2.6 and visualized in Figure 1.2 we
define concatenation of n-tuples of words.

Definition 1.4.1 The concatenation of n-tuples of words (or n-way con-
catenation of words) is defined as

〈u1, . . . , un〉 ·̄ 〈v1, . . . , vn〉 := 〈u1 · v1, . . . , un · vn〉.

Note that ε̄ := 〈ε, . . . , ε〉 is a unit element in the sense that

〈u1, . . . , un〉 ·̄ ε̄ = ε̄ ·̄ 〈u1, . . . , un〉 = 〈u1, . . . , un〉

for all tuples 〈u1, . . . , un〉. It is sometimes helpful to imagine tuples in an
n-way concatenation written in vertical direction. Figure 1.3 illustrates Def-
inition 1.4.1 in this way.

1.4. WORD TUPLES, STRING RELATIONS AND STRING FUNCTIONS11

Figure 1.3: Illustration for Definition 1.4.1, n-way concatenation of words,
tuples written in vertical direction.

Example 1.4.2 Let Σ = {a, b}. Then 〈aaa, bb〉 ·̄ 〈ba, a〉 = 〈aaaba, bba〉.

Similarly as concatenation, also reversal of words naturally generalizes to
reversal of n-tuples of words.

Definition 1.4.3 The reversal of n-tuples of words (or n-way reversal) is
defined as

ρ̄(〈u1, . . . , un〉) := 〈ρ(u1), . . . , ρ(un)〉.

Example 1.4.4 Let Σ = {a, b}. Then ρ̄(〈aaab, bba〉 = 〈baaa, abb〉.

Remark 1.4.5 In Remark 1.3.8 we introduced the free monoid for a set of
generators (alphabet) Σ. Let n ≥ 2, let Σi be an alphabet for 1 ≤ i ≤ n.
The set

∏n
i=1 Σ∗i of all n-tuples of words, together with n-ary concatenation

and ε̄ represents an algebraic structure called the Cartesian product of the
free monoids 〈Σ∗i , ·, ε〉. Cartesian products of free monoids provide another
important example of the general concept of a monoid to be introduced
below.

After having lifted words to word tuples, we now generalize the notion of a
language to the n-ary case.

Definition 1.4.6 Let n ≥ 1. For each i = 1, . . . , n, let Σi be an alphabet.
Then each set R ⊆

∏n
i=1 Σ∗i is called an n-ary string relation.

Example 1.4.7 Let Σ1 := {a}, Σ2 := {b}. Some examples of binary string
relations are:

R1 := {〈a, b〉},
R2 := {〈an, bn〉 | n ∈ IN},
R3 := {〈ε, bn〉 | n ∈ IN}.

Since string relations are sets of n-tuples of words the Boolean operations
(union, intersection, difference, complement) can be used for n-ary string
relations. Lifting concatenation of words to sets of tuples (or n-way concate-
nation of word tuples to sets) we obtain concatenation of string relations.

12 CHAPTER 1. FORMAL PRELIMINARIES

Definition 1.4.8 Let R1, R2 be n-ary string relations. The concatenation
of R1 and R2 is

R1 ·̄ R2 := {ū ·̄ v̄ | ū ∈ R1, v̄ ∈ R2}.

Note that R1 ·̄ R2 is again an n-ary string relation. More precisely the
operation ·̄ is also called set-lifted n-way concatenation. It is important to
note that set-lifted n-way concatenation of relations R1 ·̄ R2 is distinct from
the usual relational composition R1 ◦ R2 of binary relations R1 and R2 as
defined in Definition 1.1.3.

Example 1.4.9 As above, let

R1 := {〈a, b〉},
R2 := {〈an, bn〉 | n ∈ IN},
R3 := {〈ε, bn〉 | n ∈ IN}.

Then

R1 ·̄ R2 = {〈aan, bbn〉 | n ∈ IN} = {〈an, bn〉 | 0 6= n ∈ IN},
R2 ·̄ R3 = {〈an, bm〉 | m,n ∈ IN,m ≥ n},
R1 ·̄ R3 = {〈a, bn〉 | 0 6= n ∈ IN}.

Similarly as concatenation, also reversal of words generalizes to reversal of
sets if n-tuples of words.

Definition 1.4.10 Let R be an n-ary string relation. The n-way reverse
relation of R is

ρ̄(R) := {ρ̄(ū) | ū ∈ R}.

Example 1.4.11 Let R := {〈abc, aabbcc〉, 〈bcd, bbccdd〉, 〈ad, af〉}. Then
ρ̄(R) = {〈cba, ccbbaa〉, 〈dcb, ddccbb〉, 〈da, fa〉}.

Definition 1.4.12 The (concatenation) Kleene star for an n-ary string re-
lation R is defined as R∗ =

⋃∞
k=0R

k, where

• R0 = {ε̄},

• Rk+1 = Rk ·̄ R,

We also define R+ =
⋃∞
k=1R

k.

At this point, the reader will notice a notational clash. In fact, the symbols
Ri, R∗, and R+ have been already used with another meaning in Defini-
tion 1.1.8 when introducing the relational Kleene Star. Unfortunately, these
symbols are well established in both contexts, hence we decided not to intro-
duce special symbols in one case. If in a special context both interpretations
are possible we make the intended meaning of the symbols explicit.

1.5. THE GENERAL MONOIDAL PERSPECTIVE 13

Example 1.4.13 As above, let

R1 := {〈a, b〉},
R2 := {〈an, bn〉 | n ∈ IN},

and k ∈ IN. Then Rk1 = 〈ak, bk〉 and R∗1 = R2.

Remark 1.4.14 It is useful to imagine a binary (n-ary) string relation as
a collection of (multi-ary) string translation rules. Following this picture,
an entry 〈u, v〉 of a binary string relation R means that string u can be
translated to v. We may depict such a rule in the form →u

v . If →u1
v1 and

→u2
v2 are two string translation rules it is natural to combine these rules into

the joint translation →u1u2
v1v2 . This is just 2-way concatenation. Using this

notation, the concatenation of two binary string relations R1 and R2 can be
described as

R1 ·̄ R2 := {→u1u2
v1v2 |→

u1
v1∈ R1,→u2

v2∈ R2}.

Similarly R∗ describes the set of all rules →u1...un
v1...vn where n ≥ 0 and →ui

vi∈ R
for i = 1, . . . n.

Definition 1.4.15 A binary string relation that is a function f : Σ∗1 → Σ∗2
is called a string function.

1.5 The general monoidal perspective

In Remarks 1.3.8 and 1.4.5 we introduced algebraic structures that describe
strings and n-tuples of strings. These two structures are special cases of the
general concept of a monoid. Monoids offer a common abstract background
for formal languages, string relations and multi-dimensional generalizations.
Several constructions for automata and n-tape automata covered later in the
dissertation generalize to the situation where an arbitrary monoid is used.
In order to avoid a reduplication of constructions and proofs we introduce
the general concept of a monoid, and develop a kind of rudimentary “formal
language theory” for general monoids.

Monoids

Definition 1.5.1 A monoid M is a triple 〈M, ◦, e〉 where

• M is a non-empty set, the set of monoid elements,

• ◦ : M ×M →M is the monoid operation (we will use infix notation),

• e ∈M is the monoid unit element,

and the following conditions hold:

14 CHAPTER 1. FORMAL PRELIMINARIES

• ∀a, b, c ∈M : a ◦ (b ◦ c) = (a ◦ b) ◦ c (associativity of “◦”),

• ∀a ∈M : a ◦ e = e ◦ a = a (e is a unit element).

Later we often use the set M to denote the monoid M = 〈M, ◦, e〉. As
a matter of fact, the free monoid for a set of generators (alphabet) Σ (cf.
Remark 1.3.8) and the Cartesian product of free monoids (cf. Remark 1.4.5)
are special monoids. We list some further examples.

Example 1.5.2 Let M be a set.

1. The set of natural numbers IN with addition + as operation and 0 as
unit element is a monoid.

2. The set of all binary relations R ⊆ M × M with composition ◦ as
monoid operation and the identity function IdM as unit element is a
monoid Rel(M).

3. The power set 2M with union ∪ as operation and ∅ as unit is a monoid.

4. The set of all partial or total functions f : M → M defines a sub-
monoid of Rel(M) respectively written pFun(M) or Fun(M).

5. The set of all bijections of M defines a submonoid of Rel(M) called
the permutation group of M .

The following definition shows how monoids are often obtained from simpler
monoids using lifting techniques.

Definition 1.5.3 Let M = 〈M, ◦, e〉 be a monoid, let

◦̂ : 2M × 2M : 〈A,B〉 7→ {a ◦ b | a ∈ A, b ∈ B}.

Then M̂ =
〈
2M , ◦̂, {e}

〉
is called the set-lifted version of the monoid M.

Here “◦̂” can be considered as a lifted version of “◦” where we proceed from
pairs of monoid elements to pairs of monoid sets. The set-lifted version of
a monoid is again a monoid. Later we often use the same symbol for the
basic monoid operation and for the set-lifted version.

Monoidal languages and language operations

Definition 1.5.4 Let M = 〈M, ◦, e〉 be a monoid. A monoidal language
over M is a subset of M .

The notion of a monoidal language gives a joint abstract view on languages
(Definition 1.3.9) and string relations (Definition 1.4.6). Concatenation of
languages and (set-lifted n-way) concatenation of string relations are special
instances of the following concept.

1.5. THE GENERAL MONOIDAL PERSPECTIVE 15

Definition 1.5.5 Let M = 〈M, ◦, e〉 be a monoid. For T1, T2 ⊆M the set

T1 ◦ T2 := {t1 ◦ t2 | t1 ∈ T1, t2 ∈ T2}.

is called the monoidal product of the monoidal languages T1, T2.

In a similar way, the Kleene star of a language (Definition 1.3.13) and the
concatenation Kleene star of a string relation (Definition 1.4.12) are special
instances of the following general monoidal concept.

Definition 1.5.6 Let M = 〈M, ◦, e〉 be a monoid and T ⊆ M . We induc-
tively define

1. T 0 = {e},

2. T k+1 = T k ◦ T ,

We call T ∗ =
⋃∞
k=0 T

k the iteration or (monoidal) Kleene star of T . We also
define T+ =

⋃∞
k=1 T

k.

Definition 1.5.7 A subset T ⊆ M of a monoid M = 〈M, ◦, e〉 is a sub-
monoid of M iff e ∈ T and T 2 ⊆ T .

A submonoid of a monoid is again a monoid.

Proposition 1.5.8 For any subset T ⊆ M of a monoid M, the set T ∗ is
the smallest submonoid of M containing T .

In Algebra, T ∗ is often called the submonoid generated by the set T .

Monoid homomorphisms

Definition 1.5.9 Let M1 = 〈M1, ◦, e1〉 and M2 = 〈M2, •, e2〉 be monoids.
A total function h : M1 → M2 is a monoid homomorphism iff the following
conditions hold:

• h(e1) = e2,

• ∀a, b ∈M1 : h(a ◦ b) = h(a) • h(b).

A monoid isomorphism is a bijective monoid homomorphism.

Proposition 1.5.10 The composition of two monoid homomorphisms is
again a monoid homomorphism.

Example 1.5.11 Let M1 denote the set of real numbers with addition as
operation and 0 as unit element. Let M2 denote the set of strictly positive
real numbers with multiplication as operation and 1 as unit element. Then
exp : r 7→ er is a monoid isomomorphism.

16 CHAPTER 1. FORMAL PRELIMINARIES

Proposition 1.5.12 LetM1 = 〈M1, ◦, e1〉 andM2 = 〈M2, •, e2〉 be monoids,
let h : M1 →M2 be a monoid homomorphism.

1. For all T1, T2 ⊆M1 we have h(T1 ∪ T2) = h(T1) ∪ h(T2).

2. For all T1, T2 ⊆M1 we have h(T1 ◦ T2) = h(T1) • h(T2).

3. For all T ⊆M1 we have h(T ∗) = h(T)∗.

Proof. The proof of Points 1 and 2 is straightforward. Let T1 = T ⊆ M1,
let T2 := h(T). Since h(e1) = e2 we have h(T 0

1) = h({e1}) = {e2} = T 0
2 .

Using Point 2 and a simple induction we see that h(T k1) = T k2 for all k ≥ 0.
Hence h(T ∗1) = h(

⋃∞
k=0 T

k
1) =

⋃∞
k=0 h(T k1) =

⋃∞
k=0 T

k
2 = T ∗2 = h(T)∗.

Using Point 2 of the above proposition it is easy to show that the lifted
version ĥ of a monoid homomorphism h : M1 → M2 represents a monoid
homomorphism between the lifted versions of the monoids M1 and M2.

Remark 1.5.13 Let h : M1 →M2 be a monoid homomorphism, let T ⊆
M1. Then h(T) is called the homomorphic image of the monoidal language
T .

As a matter of fact, h(T) ⊆ M2 is a monoidal language. An important
property of the free monoid is captured in the following proposition.

Proposition 1.5.14 Let M = 〈M, ◦, e〉 be a monoid, let Σ be an alphabet
and f : Σ→M be a total function. Then the natural extension hf of f over
Σ∗, inductively defined as

1. hf (ε) = e

2. hf (α · a) = hf (α) ◦ f(a), where α ∈ Σ∗, a ∈ Σ,

is a homomorphism between the monoids Σ∗ and M and the unique homo-
morphism extending f .

Cartesian products of monoids

Following Remark 1.2.6 we obtain a (tuple-) lifted monoid operation by
combining the monoid operations of n monoids in a canonical way. Since
we will meet this situation later when discussing n-tape automata we have
a closer look at this construction.

Definition 1.5.15 Let n ≥ 1, for 1 ≤ i ≤ n let Mi = 〈Mi, ◦i, ei〉 be a
monoid. Let ē := 〈e1, . . . , en〉 and let ◦̄ : (

∏n
i=1Mi)× (

∏n
i=1Mi)→

∏n
i=1Mi

denote the function

〈u1, . . . , un〉 ◦̄ 〈v1, . . . , vn〉 := 〈u1 ◦1 v1, . . . , un ◦n vn〉 .

Then the triple
∏n
i=1Mi := 〈

∏n
i=1Mi, ◦̄, ē〉 is called the Cartesian product

of the monoids Mi.

1.5. THE GENERAL MONOIDAL PERSPECTIVE 17

As a matter of fact, the Cartesian product of monoids is again a monoid. In
the special situation where all component monoids Mi represent the same
monoid M the Cartesian product is written Mn.

Remark 1.5.16 Let M :=
∏n
i=1Mi be a Cartesian product of monoids

where n > 1, let 1 ≤ i ≤ n. Let M×i denote the projection of M with
respect to the set of coordinates 1, . . . , i− 1, i+ 2, . . . , n as introduced in
Def. 1.1.9. The mapping pi : M → M×i : m̄ 7→ m̄×i is called the i-th
projection mapping.

It is simple to see that the i-th projection mapping is a monoid homomor-
phism.

Remark 1.5.17 Let n ≥ 2, for i = 1, . . . , n let Mi be a free monoid
〈Σ∗i , ·, ε〉. Let

∏n
i=1Mi be the Cartesian product of the monoids Mi as

introduced in Definition 1.5.15. Then
∏n
i=1Mi is not a free monoid. The

elements of the form 〈ε, . . . , ε, σi, ε, . . . , ε〉 (where σi ∈ Σi occupies the i-th
position) generate the Cartesian product monoid, however, monoid elements
〈u1, . . . , un〉 can be represented in multiple ways as a product of such gen-
erators.

18 CHAPTER 1. FORMAL PRELIMINARIES

Chapter 2

Monoidal finite-state
automata

In the previous chapter we introduced a large set of operations on strings,
languages, and string relations. We now look at the procedural side. As
a starting point we study finite-state automata, which represent the sim-
plest devices for recognizing languages. The theory of finite-state automata
has been described in numerous textbooks both from a computational (e.g.
[Hopcroft et al., 2006, Kozen, 1997, Lewis and Papadimitriou, 1998]) and an
algebraic point of view (e.g., [Eilenberg, 1974, Eilenberg, 1976, Sakarovitch,
2009]). The notes below offer a brief introduction. Here we immediately
look at the more general concept of a monoidal finite-state automaton, and
the focus of this chapter are general constructions and results for finite-state
automata over arbitrary monoids and monoidal languages. Similar gener-
alized perspectives are found in [Eilenberg, 1974]. Refined pictures for the
special (and more standard) cases where we only consider free monoids or
Cartesian products of monoids will be given later.

2.1 Basic concept and examples

We introduce the central concept of this chapter.

Definition 2.1.1 A monoidal finite-state automaton (MSA) is a tuple of
the form A = 〈M, Q, I, F,∆〉 where

• M = 〈M, ◦, e〉 is a monoid,

• Q is a finite set of states,

• I ⊆ Q is the set of initial states,

• F ⊆ Q is the set of final states, and

19

20 CHAPTER 2. MONOIDAL FINITE-STATE AUTOMATA

Figure 2.1: A monoidal finite-state automaton over the monoid of all per-
mutations of the set {1, 2, 3}.

• ∆ ⊆ Q×M ×Q is a finite set called the transition relation.

Triples 〈p,m, q〉 ∈ ∆ are called transitions. The transition 〈p,m, q〉 begins
at p, ends at q and has the label m.

Transitions 〈p,m, q〉 are also denoted in the form p→m q.

Example 2.1.2 Figure 2.1 shows a monoidal finite-state automaton with
six states over the monoid of all permutations of the set {1, 2, 3} (cf. Part 5 of
Example 1.5.2). The single start state is marked by an incoming unlabeled
arrow. Each state is final, which is indicated by a double contour. The
monoid operation is functional composition. The states correspond to the
six permutations of {1, 2, 3}. A transition label of the form t(i, j) denotes
the transposition of i and j. Composing transition labels in this way (s.b.),
from the start state we reach the state (permutation) that represents the
composition of the transpositions. The figure shows that each permutation
can be represented as a sequence of transpositions, a well-known fact also
valid for larger finite sets.

Definition 2.1.3 Classical finite-state automata are monoidal finite-state
automata where the underlying monoid is the free monoid over a finite
alphabet Σ and the transition labels are in Σε = Σ ∪ {ε}.

It should be noted that alternatively classical finite-state automata could
be defined in a more liberal way, with transition labels in Σ∗. We shall
see below (cf. Remark 2.5.8) that this would not modify the computational
power. For some constructions it is advantageous to immediately have all
transition labels in Σ ∪ {ε}.

2.1. BASIC CONCEPT AND EXAMPLES 21

a

b

a

b
1

2

3

Figure 2.2: A classical automaton with three states.

Figure 2.3: A classical automaton for searching occurrences of the pattern
abracadabra in a text.

Example 2.1.4 Figure 2.2 shows a classical finite-state automaton as a
graph. The automaton has three states 1, 2, and 3. The single start state
is 1. The single final state 3 is marked by a double contour. The input
alphabet consists of the letters a and b.

Example 2.1.5 Figure 2.3 shows a classical finite-state automaton with 12
states. This automaton can be used for finding occurrences of the pattern
abracadabra in a text. When reading a text t ∈ Σ∗, the final state 12 is
reached (s.b.) always after having read an occurrence of abracadabra in t.

Classical finite-state automata with monoid Σ∗ are also denoted in the form
〈Σ, Q, I, F,∆〉.

Example 2.1.6 Let M = M2
1 be the Cartesian product of two copies of

the free monoidM1 = {a, b}∗, let Q = I = F = {1}, let ∆ = {〈1, 〈a, b〉, 1〉}.

Figure 2.4: A monoidal automaton with just one state.

22 CHAPTER 2. MONOIDAL FINITE-STATE AUTOMATA

Then A = 〈M, Q, I, F,∆〉 is a monoidal finite-state automaton. The au-
tomaton is shown in Figure 2.4. Using terminology introduced below (cf.
Definition 4.1.1), A is a two-tape automaton.

The language of a monoidal finite-state automaton. As we men-
tioned above, monoidal finite-state automata are used for recognizing ele-
ments belonging to a given monoidal language. The language of a monoidal
finite-state automaton can be defined in distinct ways. One way is based on
the notions of paths and path labels.

Definition 2.1.7 Let A = 〈M, Q, I, F,∆〉 be a monoidal finite-state au-
tomaton. A proper path in A is a finite sequence of k > 0 transitions

π = 〈q0, a1, q1〉 〈q1, a2, q2〉 . . . 〈qk−1, ak, qk〉

where 〈qi−1, ai, qi〉 ∈ ∆ for i = 1 . . . k. The number k is called the length of
π, we say that π starts in q0 and ends in qk. States q0, . . . , qk are the states
on the path π. The monoid element w = a1 ◦ . . . ◦ ak is called the label of π.
We may denote the path π as

π = q0 →a1 q1 . . .→ak qk.

The null path of q ∈ Q is 0q starting and ending in q with label e. A
successful path is a path starting in an initial state and ending in a final
state. A loop path is a proper path that starts and ends in the same state.

Example 2.1.8 Consider the monoidal finite-state automaton introduced
in Example 2.1.2.

123
123

→t(23) 123
132

→t(12) 123
231

is a path of length 2 leading from the start state 123
123

to the final state 123
231

.

The label is the product of the transpositions t(23) and t(12), which is the
permutation 1 7→ 2, 2 7→ 3, 3 7→ 1.

Definition 2.1.9 Let A be as above. A state q ∈ Q is called reachable from
a start state iff there exists a path starting in an initial state and ending in
q. There exists a final state reachable from a state q iff there exists a path
starting in q and ending in a final state.

Note that q satisfies both conditions iff q is on a successful path of A.

Definition 2.1.10 LetA be as above. Then the set of all labels of successful
paths of A is called the monoidal language accepted (or recognized) by A and
is denoted L(A).

2.1. BASIC CONCEPT AND EXAMPLES 23

In general, an element of L(A) can occur as the label of several successful
paths. Specialized notions of automata where each element of L(A) repre-
sents the label of a unique path are considered later.

Example 2.1.11 Consider the classical automaton shown in Figure 2.2.
Here

π = 1→a 2→a 3→b 3→b 3

is a successful path of length 4 with label aabb, and we have

L(A) = {aabn | n ∈ IN} ∪ {bbn | n ∈ IN}.

Second, consider the monoidal automaton shown in Figure 2.3. Here

π = 1→a 1→a 2→b 3→r 4→a 5 . . .→r 11→a 12

is a successful path of length 12 with label aabracadabra. L(A) is the set of
all words over the alphabet Σ ending with suffix abracadabra.
Third, consider the monoidal automaton shown in Figure 2.4. Here

π = 1→〈a,b〉 1→〈a,b〉 1→〈a,b〉 1

is a successful path of length 3. Recall that 〈v1, v2〉 ·̄ 〈w1, w2〉 := 〈v1w1, v2w2〉
represents the monoid operation of the Cartesian product. This shows that
the path has label 〈aaa, bbb〉. We have

L(A) = {〈an, bn〉 | n ∈ IN}.

Definition 2.1.12 Two monoidal finite-state automataA1 andA2 are equiv-
alent iff L(A1) = L(A2).

Definition 2.1.13 A monoidal language over M is called a monoidal au-
tomaton language iff it is recognized by some monoidal finite-state automa-
ton. A classical language is called a classical automaton language iff it is
recognized by a classical finite-state automaton.

The following notion offers a second way to describe the language of a
monoidal finite-state automaton.

Definition 2.1.14 Let A be a monoidal finite-state automata. The gener-
alized transition relation ∆∗ is defined as the smallest subset of Q×M ×Q
with the following closure properties:

• for all q ∈ Q we have 〈q, e, q〉 ∈ ∆∗.

• For all q1, q2, q3 ∈ Q and w, a ∈M : if 〈q1, w, q2〉 ∈ ∆∗ and 〈q2, a, q3〉 ∈
∆, then also 〈q1, w ◦ a, q3〉 ∈ ∆∗.

24 CHAPTER 2. MONOIDAL FINITE-STATE AUTOMATA

Triples 〈p, u, q〉 ∈ ∆∗ are called generalized transitions. The generalized
transition 〈p, u, q〉 begins at p, ends at q and has the label u.

Clearly, generalized transitions are simplified descriptions of (proper or null)
paths, representing the beginning, label, and ending of a path while abstract-
ing from intermediate states. Hence the language L(A) can be described as

L(A) = {m ∈M | ∃i ∈ I, f ∈ F : 〈i,m, f〉 ∈ ∆∗}.

Yet another way of describing L(A) is based on the notion of the language
of a (set of) state(s).

Definition 2.1.15 Let A be as above. For q ∈ Q the set

LA(q) := {w ∈M | ∃f ∈ F : 〈q, w, f〉 ∈ ∆∗}

is called the language of state q in A. For S ⊆ Q we define the set lifted
version

LA(S) :=
⋃
q∈S

LA(q).

It follows that for each state q we have LA(q) 6= ∅ iff there exists a final state
reachable from q, and the language of the automaton can be described as

L(A) = LA(I).

Example 2.1.16 For the classical automaton A shown in Figure 2.2 we
have

LA(3) = {bn | n ∈ IN}
LA(2) = {abn | n ∈ IN}
LA(1) = {aabn | n ∈ IN} ∪ {bbn | n ∈ IN}

For the monoidal automaton A shown in Figure 2.4 we have

LA(1) = {〈an, bn〉 | n ∈ IN}.

The following result, which gives an inductive definition for the language of
a state, follows immediately from Definition 2.1.15.

Proposition 2.1.17 Let A be as above, let p ∈ Q. Then

LA(p) = E(p) ∪
⋃

〈p,w,q〉∈∆

w ◦ LA(q)

where E(p) := {e} if p ∈ F and E(p) := ∅ otherwise.

2.1. BASIC CONCEPT AND EXAMPLES 25

Definition 2.1.18 Two states q1, q2 ∈ Q are called equivalent iff LA(q1) =
LA(q2).

We write q1 ≡ q2 if the states q1 and q2 are equivalent. Our last charac-
terization for the language of a monoidal finite-state automaton uses the
following notions.

Definition 2.1.19 Let A = 〈M, Q, I, F,∆〉 be as above. For p ∈ Q and
w ∈M , the set of w-successors of p is

SucA(p, w) := {q ∈ Q | 〈p, w, q〉 ∈ ∆∗}.

For P ⊆ Q the set of w-successors of P is

SucA(P,w) :=
⋃
p∈P

SucA(p, w).

The set of active states for input w ∈M is ActA(w) = SucA(I, w).

Clearly an element w ∈ M belongs to L(A) iff the set of active states for
input w contains a final state and L(A) = {w ∈M | ActA(w) ∩ F 6= ∅}.

Definition 2.1.20 LetA′ = 〈M, Q′, I ′, F ′,∆′〉 andA′′ = 〈M, Q′′, q′′0 , F
′′,∆′′〉

be two monoidal finite-state automata. A′ is isomorphic to A′′ by the state
renaming function f : Q′ → Q′′ if f is a bijection such that

• f(I ′) = I ′′,

• f(F ′) = F ′′, and

• ∆′′ = {〈f(p),m, f(q)〉 | 〈p,m, q〉 ∈ ∆′}.

Intuitively, two automata are isomorphic iff they are identical up to a re-
naming of states. Clearly isomorphic automata are always equivalent.

Connections between classical finite-state automata and monoidal
finite-state automata. Though the concept of a classical finite-state
automaton is much more restricted than the general notion of a monoidal
finite-state automaton, both can be related using the concept of a homo-
morphism.

Definition 2.1.21 LetM1 = 〈M1, ◦, e1〉 andM2 = 〈M2, •, e2〉 be monoids,
let h : M1 →M2 be a monoid homomorphism. If A1 = 〈M1, Q, I, F,∆1〉 is
a monoidal finite-state automaton over M1, the automaton

A2 := 〈M2, Q, I, F, {〈p, h(a), q〉 | 〈p, a, q〉 ∈ ∆1}〉

is called the homomorphic image of A1 under h.

26 CHAPTER 2. MONOIDAL FINITE-STATE AUTOMATA

It is trivial to see that in the above situation we have L(A2) = h(L(A1)).

Theorem 2.1.22 Any monoidal finite-state automaton is the homomorphic
image of a classical finite-state automaton. Any monoidal automaton lan-
guage can be obtained as a homomorphic image of a classical automaton
language.

Proof. Let A = 〈M, Q, I, F,∆〉 be a monoidal finite-state automaton over
M = 〈M, ◦, e〉. Let Σ be the finite alphabet

Σ := {am | ∃ 〈q1,m, q2〉 ∈ ∆}.

Consider the function h0 : Σ → M defined as h0(am) := m. Following
Proposition 1.5.14 there exists a unique extension of h0 to a homorphism
h : Σ∗ →M . Let A′ = 〈Σ, Q, I, F,∆′〉 be the classical finite-state automaton
where

∆′ = {〈q1, am, q2〉 | 〈q1,m, q2〉 ∈ ∆}.
Clearly, A is a homomorphic image of A′, L(A′) is a classical automaton
language and we have h(L(A′)) = L(A).

Definition 2.1.23 Let A = 〈M, Q, I, F,∆〉 be a monoidal finite-state au-
tomaton. The classical finite-state automaton A′ = 〈Σ, Q, I, F,∆′〉 defined
in the above proof is called the free companion of A.

2.2 Closure properties of monoidal finite-state au-
tomata

Many interesting monoidal languages are obtained from combining simpler
languages in a systematic way. This explains the interest in methods for com-
bining monoidal finite-state automata. We show that the class of monoidal
automaton languages is closed under four operations for monoidal languages
mentioned in Section 1.5.

Proposition 2.2.1 The class of monoidal automaton languages is closed
under monoid homomorphisms. The class of monoidal automaton languages
over a given monoidM is closed under the regular operations union, monoidal
product, and monoidal Kleene-Star.

Proof. We first consider closure under monoid homomorphisms. Let A1 =
〈M, Q1, I1, F1,∆1〉 be a monoidal finite-state automaton, let h : M→M′
be a monoid homomorphism. Define A′ as the homomorphic image of A1

under h. Then we have L(A′) = h(L(A1)) (s.a.). To prove the second part,
let

A1 = 〈M, Q1, I1, F1,∆1〉
A2 = 〈M, Q2, I2, F2,∆2〉

2.2. CLOSURE PROPERTIES OF MFSA 27

Figure 2.5: Union of two monoidal automata. The two input automata are
shown on the left side, the result ist shown on the right side. We assume
that the sets of states of the two input automata are disjoint.

Figure 2.6: Monoidal product of two monoidal automata. The two input
automata are shown above the result. Since the sets of states of the two
input automata are disjoint the new transitions with label e (dashed arrows)
represent the only connection.

be two monoidal finite-state automata over the same monoid M. We may
assume that Q1 ∩ Q2 = ∅. It is simple to see that the following properties
hold:

1. (Union) For the monoidal finite-state automaton

A = 〈M, Q1 ∪Q2, I1 ∪ I2, F1 ∪ F2,∆1 ∪∆2〉

we have L(A) = L(A1)∪L(A2). The union is illustrated in Figure 2.5.

2. (Monoidal product) For the monoidal finite-state automaton

A = 〈M, Q1 ∪Q2, I1, F2,∆1 ∪∆2 ∪ {〈q1, e, q2〉 | q1 ∈ F1, q2 ∈ I2}〉

we have L(A) = L(A1) ◦ L(A2). The monoidal product is illustrated
in Figure 2.6.

3. (Monoidal Kleene-Star) Let q0 be a new state, let

∆ := ∆1 ∪ {〈q0, e, q1〉 | q1 ∈ I1} ∪ {〈q2, e, q0〉 | q2 ∈ F1}.

28 CHAPTER 2. MONOIDAL FINITE-STATE AUTOMATA

Figure 2.7: Kleene-star of a monoidal automaton. The new start state and
the new transitions (label e) are marked using dashed lines.

For the monoidal finite-state automaton

A = 〈M, Q1 ∪ {q0}, {q0}, F1 ∪ {q0},∆〉

we have L(A) = L(A1)∗. The monoidal Kleene-star is illustrated in
Figure 2.7.

For classical automata the above constructions can be generalized in the
sense that the input automata may come with distinct input alphabets. For
the output automaton we use the union of the two input alphabets. Classical
finite-state automata have additional closure properties, see Section 3.2.

Remark 2.2.2 An alternative way to prove closure of monoidal automaton
languages under the regular operations union product/concatenation and
Kleene-Star is to show this property first for the case of free monoids, and
then to use the first part, Proposition 1.5.12 and the fact that monoidal
finite-state automata can be represented as homomorphic images of classical
finite-state automata (Theorem 2.1.22). If two monoidal automata A1 and
A2 as above are given, we represent Ai as the homomorphic image of a
classical finite-state automaton A′i under a homomorphism hi (i = 1, 2). We
may assume that the alphabets Σ1 and Σ2 ofA′1 andA′2 are disjoint. Then h1

and h2 can be extended to a unique homomomorphism h : (Σ1∪Σ2)∗ →M .
Given a classical finite-state automaton for the union (concatenation) of
the languages of A′1 and A′2, the homomorphic image under h represents a
monoidal finite-state automaton recognizing the union (product) of L(A1)
and L(A2).

2.3. MONOIDAL REGULAR LANGUAGES ANDMONOIDAL REGULAR EXPRESSIONS29

2.3 Monoidal regular languages and monoidal reg-
ular expressions

Monoidal regular languages are defined using a simple induction. The empty
language and the “singleton languages” containing exactly one monoid ele-
ment are defined to be regular. Inductive rules then close the set of monoidal
regular languages under union, monoidal product, and Kleene star. We shall
see that the monoidal regular languages are exactly the monoidal automaton
languages. This yields another, less procedural characterization of monoidal
automaton languages.

Definition 2.3.1 Let M = 〈M, ◦, e〉 be a monoid. We define the class of
monoidal regular languages over M by induction:

1. ∅ is a monoidal regular language over M;

2. if m ∈M , then {m} is a monoidal regular language over M;

3. if L1, L2 ⊆M are monoidal regular languages over M, then

• L1 ∪ L2 is a monoidal regular language over M (union),

• L1 ◦ L2 is a monoidal language over M (monoidal product, cf.
Def. 1.5.5),

• L∗1 is a monoidal regular language overM (monoidal Kleene star,
cf. Def. 1.5.6).

4. There are no other monoidal regular languages over M.

Definition 2.3.2 Let L be a monoidal regular language over the monoid
M. If M is the free monoid over a finite alphabet Σ, then L is called a
classical regular language.

Remark 2.3.3 Since each monoid element m can be considered as a letter
am of an alphabet, an induction using Proposition 1.5.12 shows that each
monoidal regular language is the homomorphic image of a classical regular
language. At the induction steps for union and product we may assume
that L1 and L2 are homomorphic images h1(L′1) and h2(L′2) of classical
regular languages L′1 and L′2 over free monoids with disjoint alphabets. Then
there exists a unique homomorphism h12 for the free monoid over the joined
alphabet that extends both h1 and h2. We have h12(L′1∪L′2) = L1∪L2 and
h12(L′1 ◦ L′2) = L1 ◦ L2.

Definition 2.3.4 A monoidal regular n-relation is a monoidal regular lan-
guage over a monoid M which is a Cartesian product of n monoids.

As in the classical case, monoidal regular languages can be represented by
means of special expressions.

30 CHAPTER 2. MONOIDAL FINITE-STATE AUTOMATA

Definition 2.3.5 Let M = 〈M, ◦, e〉 be a monoid. A monoidal regular ex-
pression overM forM∩{(,), ∗,+, ·, ∅} = ∅ is a word overM∪{(,), ∗,+, ·, ∅}.The
set of monoidal regular expressions over M is defined by induction:

1. ∅ is a monoidal regular expression over M;

2. if m ∈M , then m is a monoidal regular expression over M;

3. if E1 and E2 are monoidal regular expressions over M, then

• (E1 + E2) is a monoidal regular expression over M,

• (E1 · E2) is a monoidal regular expression over M,

• (E∗1) is a monoidal regular expression over M.

4. There are no other monoidal regular expressions over M.

As usual, for each monoidal regular expression E over M we inductively
define a monoidal language L(E), using the clauses

L(∅) := ∅,
L(m) := {m} (m ∈M),

L(E1 + E2) := L(E1) ∪ L(E2),

L(E1 · E2) := L(E1) ◦ L(E2),

L(E∗) := L(E)∗.

This defines a natural correspondence between monoidal regular expressions
and monoidal regular languages: obviously, the language of each monoidal
regular expression is a monoidal regular language, and conversely each monoidal
regular language can be represented by a monoidal regular expression.
If M is the free monoid over a finite alphabet Σ, then monoidal regular
expressions are called classical regular expressions. In this case the second
clauses in Definitions 2.3.1 and 2.3.5 can be refined, replacing arbitrary
monoid elements m by ε or by letters σ ∈ Σ.

2.4 Equivalence between monoidal regular languages
and monoidal automaton languages

In this section we show that monoidal regular expressions and monoidal
finite-state automata yield two descriptions of the same class of languages.
Our first proposition shows that the simplest monoidal regular languages
can be represented by means of monoidal finite-state automata.

Proposition 2.4.1

1. (Empty language) For A∅ = 〈M, ∅, ∅, ∅, ∅〉 we have L(A∅) = ∅.

2.4. EQUIVALENCE BETWEENMONOIDAL REGULAR LANGUAGES ANDMONOIDAL AUTOMATON LANGUAGES31

2. (Single element languages) Let m ∈ M . For the monoidal finite-
state automaton Am = 〈M, {q0, q1}, {q0}, {q1}, {〈q0,m, q1〉}〉 we have
L(Am) = {m}.

The following theorem presents a deeper result for the correspondence be-
tween monoidal automaton languages and regular languages.

Theorem 2.4.2 (Kleene) A monoidal language is regular if and only if it
is a monoidal automaton language.

Proof. (“⇒”) This direction follows directly from Propositions 2.4.1
and the closure properties given in Proposition 2.2.1.

(“⇐”) Let A = 〈M, Q, I, F,∆〉 be a monoidal finite-state automaton.
Let n := |Q|, let 〈q1, . . . , qn〉 be a fixed enumeration of the states in Q. For
0 ≤ k ≤ n let Qk := {q1, . . . , qk}. For i, j ∈ {1, . . . , n} let Rkij denote the set
of all labels of paths π starting in qi and ending qj for which all intermediate
states (beside the beginning and the ending states) are in Qk. For i = j the
set Rkij includes the neutral element e, which is the label of the null path of

qi. Each set Rkij is a monoidal language. Note that there are no intermediate
states for k = 0 since Q0 = ∅. Thus

R0
ij =

{
{m ∈M | 〈qi,m, qj〉 ∈ ∆} if i 6= j
{e} ∪ {m ∈M | 〈qi,m, qj〉 ∈ ∆} if i = j.

Each set R0
ij - as a finite collection of monoid elements - is a regular monoidal

language. For 1 ≤ i ≤ n we have

Rkij = Rk−1
ij ∪ (Rk−1

ik ◦ (Rk−1
kk)∗ ◦Rk−1

kj)

The expression takes into account paths from qi to qj with intermediate
states in Qk−1 and in addition paths with some visits of the intermediate
state qk. See Figure 2.8 for an illustration. From the above presentation
- which uses the monoidal operations union, product, and Kleene star - it
follows by induction over k that for any i, j, k ∈ {0, . . . , n} the monoidal
languages Rkij are regular. Since

L(A) =
⋃

qi∈I,qj∈F
Rnij

it follows that L(A) is a monoidal regular language.

Remark 2.4.3 The above general form of the Kleene Theorem can be con-
sidered as a direct consequence of the fact that the theorem holds for the spe-
cial case of free monoids. In fact, an alternative way to prove Theorem 2.4.2
would be to first prove the theorem for the special case of free monoids, and

32 CHAPTER 2. MONOIDAL FINITE-STATE AUTOMATA

Figure 2.8: Illustration for the above proof of Theorem 2.4.2. The expression
Rk−1
ik ◦ (Rk−1

kk)∗ ◦ Rk−1
kj describes paths that first lead from qi to qk, only

visiting states in {q1, . . . , qk−1}, with label δi,k in Rk−1
ik , then a sequence

of similar l ≥ 0 subpaths from qk to qk with labels δ
(1)
k,k, . . . δ

(l)
k,k in Rk−1

kk ,

and finally a similar path from qk to qj with label δk,j in Rk−1
kj . In the

figure, states on the subpaths that are not explicitly shown are always in
{q1, . . . , qk−1}.

then to use Remark 2.3.3: given a monoidal automaton A = 〈M, Q, I, F,∆〉
we may represent it as the homomorphic image of a classical automaton
A′. Once we have constructed a classical regular expression α′ such that
L(α′) = L(A′) we may translate α′ into a monoidal regular expression α
such that L(α) = L(A). Details are left to the reader.

2.5 Simplifying the structure of monoidal finite-
state automata

In contrast to the operations considered in Section 2.2 the operations con-
sidered here do not modify the monoidal language of the given automaton.
The goal is rather to simplify automata from a structural point of view, thus
facilitating the recognition process.

Trimming. Monoidal finite-state automata sometimes contain states that
are “useless” in the sense that deleting those states with their transitions
will not change the language. A state is useless in this sense whenever it
does not belong to a successful path.

Definition 2.5.1 A monoidal finite-state automaton A = 〈M, Q, I, F,∆〉
is trimmed iff each state q ∈ Q is on a successful path of A.

2.5. REMOVAL OF E-TRANSITIONS FOR MFSA 33

It is straightforward to check for a given state q ∈ Q of a given monoidal
finite-state automaton A if it is on a successful path. In the negative case we
may delete q and all transitions leading to or departing from q. In this way,
a trimmed monoidal finite-state automaton A′ equivalent to A is obtained.
For details we refer to Algorithm 8.1.6.
Removal of e-transitions. In general, complex procedures are needed
to see if a word or monoid element belongs to the language of a finite-state
automaton. The following definition captures a structural restriction that
leads to a simpler acceptance procedure.

Definition 2.5.2 Let A = 〈M, Q, I, F,∆〉 be a monoidal finite-state au-
tomaton whereM = 〈M, ◦, e〉. A is called e-free iff ∆ ⊆ Q× (M \ {e})×Q.

We next show how to convert a given monoidal finite-state automaton to an
equivalent e-free monoidal finite-state automaton. There are several ways
to proceed. The following notions are central.

Definition 2.5.3 Let A = 〈M, Q, I, F,∆〉 be a monoidal finite-state au-

tomaton. The forward e-closure Cfe : Q→ 2Q is defined as

Cfe (q) = {q′ ∈ Q |
〈
q, e, q′

〉
∈ ∆∗}.

The backward e-closure Cbe : Q→ 2Q is defined as

Cbe(q) = {q′ ∈ Q |
〈
q′, e, q

〉
∈ ∆∗}.

We now present two constructions for removal of e-transitions. In both cases
we do not modify the set of states. The first construction is based on the
forward e-closure.

Proposition 2.5.4 For any monoidal finite-state automaton A = 〈M, Q, I, F,∆〉
there exists an equivalent e-free monoidal finite-state automaton A’ with the
same set of states.

Proof. The monoidal finite-state automaton

A′ =
〈
M, Q,Cfe (I), F,∆′

〉
,

where

∆′ = {〈q1, a, q2〉 | ∃
〈
q1, a, q

′〉 ∈ ∆ : q2 ∈ Cfe (q′) & a 6= e}.

is e-free. If w ∈M is in L(A), then there exists a path π from an initial state
i to a final state with label w. If this path starts with some e-transitions, all
states on this initial part are initial states of A′. The remaining transitions
in π (if any) can be split into subsequences where a transition of the form
〈q1, a, q

′〉 ∈ ∆ with a 6= e is followed by a (possibly empty) sequence of

34 CHAPTER 2. MONOIDAL FINITE-STATE AUTOMATA

Figure 2.9: Construction of an ε-free automaton - removal of ε-transitions
using forward ε-closures. Though the language of the automaton is not
affected, the language of several states is changed.

e-transitions. Each subsequence corresponds to a single transition in A′.
Thus we have a path π′ from an initial state i′ to a final state with label w
in A′ and w ∈ L(A′). Conversely, from each successful path π′ in A′ from

i′ ∈ Cfe (I) to a final state f we obtain a parallel path π in A′ from an initial
state i ∈ I to f . It follows that A′ is equivalent to A.

Example 2.5.5 The construction based on forward e-closure is illustrated
in Figure 2.9. A classical input automaton A is shown in the upper part.
The lower part shows the resulting automaton A′. All ε-transitions are
removed. New transitions added are shown using dashed lines. In order to
preserve the language of the automaton, states 2, 3 and 6 are made initial.

A symmetric construction based on backward e-closure where the set of
final states is extended is omitted. Though the above construction yields an
automaton accepting the same language, it has the disadvantage that the
language of a given state can be changed. For example, in Figure 2.9 the
language of states 1, 2, and 4 becomes empty after the transformation. We
now present an alternative construction that preserves the language of each
state, which is useful for later constructions. The price is that we have to
add more transitions. Here we use both forward and backward e-closures.

Proposition 2.5.6 For any monoidal finite-state automaton A = 〈M, Q, I, F,∆〉
there exists an equivalent e-free monoidal finite-state automaton A’ with the
same set of states such that for each q ∈ Q we have LA(q) = LA′(q).

Proof. Consider the monoidal finite-state automaton

A′ =
〈
M, Q, I, Cbe(F),∆′

〉
,

where

∆′ = {
〈
q′1,m, q

′
2

〉
| ∃ 〈q1,m, q2〉 ∈ ∆ : q′1 ∈ Cbe(q1) & q′2 ∈ Cfe (q2) & m 6= e}.

Let q ∈ Q. First, let m ∈ LA(q). Then there exists a path π of A leading
from q to a final state f with label m. Clearly, if π contains at least one

2.5. REMOVAL OF E-TRANSITIONS FOR MFSA 35

Figure 2.10: Construction of an ε-free automaton - removal of ε-transitions
using forward and backward ε-closures. New transitions added are shown
using dashed lines. The language of each state is preserved. To this end,
states 1 and 4 become final.

transition with a label m′ 6= e, then we can build in A′ a path π′ with label
w from q to f using the transitions in ∆′. If m = e and all transitions in π
have label e, then q ∈ Cb(f), q ∈ F ′ := Cbe(F) and again e ∈ LA′(q). This
shows that LA(q) ⊆ LA′(q). Conversely, from each successful path π′ in A′
from p to a final state f we obtain a parallel path π in A′ from p to f . From
f , using a sequence of e-transitions we reach a final state f ′ in F .

As an illustration consider Figure 2.10. A discussion of distinct constructions
for removal of e-transitions and their computational properties can be found
in [van Noord, 2000].

Remark 2.5.7 The e-removal only makes sense in situations where the
underlying monoid does not contain zero divisors, i.e., for monoids where
for all m1,m2 ∈ M we have m1 6= e & m2 6= e → m1 ◦ m2 6= e. The
most important examples are free monoids and Cartesian products of free
monoids. If the underlying monoid does not contain zero divisors, then every
proper path of an e-free automaton has a label different from e.

Removal of complex transition labels for automata over a free
monoid. An important subcase are finite-state automata over the free
monoid for an alphabet Σ. In this situation we often want to avoid complex
transition labels, i.e., words of length ≥ 2. Note that we then obtain a
classical finite-state automaton in the sense of Definition 2.1.3. The following
construction adds new states, preserving the language of “old” states.

Proposition 2.5.8 Let A be a monoidal finite-state automaton over a free
monoid M = Σ∗. Then A can be converted to a classical finite-state au-
tomaton A′ with a set of states Q′ such that Q ⊆ Q′ and for each q ∈ Q we
have LA(q) = LA′(q).

36 CHAPTER 2. MONOIDAL FINITE-STATE AUTOMATA

Proof. The automatonA′ is obtained by introducing intermediate states for
each label consisting of more than one symbol: we substitute each transition

t =
〈
q′, a1a2 . . . an, q

′′〉 ∈ ∆

where n > 1 with a sequence of transitions of the form〈
q′, a1, q

t
1

〉
,
〈
qt1, a2, q

t
2

〉
, . . . ,

〈
qtn−1, an, q

′′〉
where qt1, q

t
2, . . . , q

t
n−1 are new non-final states (the ei representing the neu-

tral elements of the monoids). Obviously the set of states Q is extended and
the language of states q ∈ Q is not modified.

Chapter 3

Classical finite-state
automata and regular
languages

Classical finite-state automata represent the most important class of monoidal
finite-state automata. Since the underlying monoid is free, this class of au-
tomata has several interesting specific features. Many textbooks consider
exclusively the classical case (e.g. [Hopcroft et al., 2006, Kozen, 1997, Lewis
and Papadimitriou, 1998]). We see below that each classical finite-state au-
tomaton can be converted to an equivalent classical finite-state automaton
where the transition relation is a function. This form of “deterministic” au-
tomata offers a very efficient recognition mechanism since each input word
is consumed on at most one path. The fact that each classical finite-state
automaton can be converted to a deterministic automaton can be used to
show that the class of languages that can be recognized by a classical finite-
state automaton is closed under intersections, complements, and set differ-
ences. The characterization of regular languages and deterministic finite-
state automata in terms of the “Myhill-Nerode equivalence relation” to be
introduced below offers an algebraic view on these notions and leads to the
concept of minimal deterministic automata.

3.1 Deterministic finite-state automata

Deterministic finite-state devices are characterized by the property that with
any input at most one state can be reached. Deterministic finite-state au-
tomata represent the simplest form.

Definition 3.1.1 Let A = 〈Σ, Q, I, F,∆〉 be a classical finite-state automa-
ton. A is deterministic iff the following conditions hold:

• A has exactly one initial state q0,

37

38CHAPTER 3. CLASSICAL FINITE-STATE AUTOMATAANDREGULAR LANGUAGES

Figure 3.1: A deterministic classical finite-state automaton for searching oc-
currences of the pattern abracadabra in a text, cf. Examples 2.1.5 and 3.1.2.

• all transition labels are letters in Σ and

• 〈p, a, q〉 ∈ ∆ and 〈p, a, q′〉 ∈ ∆ implies q = q′ for all triples in ∆.

In this situation the transition relation can be described as a (partial) func-
tion δ : Q× Σ→ Q.

Deterministic finite-state automata are often represented in the form

〈Σ, Q, q0, F, δ〉

using the start state (instead of the singleton set) as third component and
representing the transition relation as a partial function. The importance of
the concept of determinism relies on the fact that the “recognition problem”
for a classical automaton A - the problem to decide if a given input string
w belongs to the language of A (s.b.) - can be solved very efficiently -
in time O(|w|) - if A is deterministic. We did not introduce this concept
for monoidal finite-state automata since determinization of monoidal finite-
state automata is not possible in general (see Section 3.7). There are however
distinct options in some special cases, which will be introduced in Chapter 5.

Example 3.1.2 Figure 3.1 shows a deterministic variant of the classical
finite-state automaton presented in Example 2.1.5, see Figure 2.3. Outgoing
transitions from a state q with the dummy label “?” are used for all letters
σ of the alphabet Σ where q does not have another outgoing transition
with letter σ. Hence the automaton has a total transition function and the
automaton can be used for finding occurrences of the pattern abracadabra
in any text over the alphabet Σ. When reading a text t ∈ Σ∗, the automaton
is in state 12 always after having read an occurrence of abracadabra in t.

3.2. DETERMINIZATION OF CLASSICAL FINITE-STATE AUTOMATA39

Remark 3.1.3 If A = 〈Σ, Q, q0, F, δ〉 is a deterministic classical finite-state
automaton, then the generalized transition relation can be described as a
(partial) function δ∗ : Q × Σ∗ → Q. It is called the generalized transition
function.

The trie for a finite set of words. We finish the section with an
important special case of a classical deterministic finite-state automaton.

Definition 3.1.4 Let D ⊆ Σ∗ be a finite set of words over the alphabet Σ.
The trie for D is the deterministic finite-state automaton

AD = 〈Σ,Pref (D), ε,D, δ〉

where

δ = {〈α, σ, α · σ〉 |σ ∈ Σ & α, α · σ ∈ Pref (D)}.

The proof of the following proposition is obvious.

Proposition 3.1.5 Let D ⊆ Σ∗ be a finite set of words. Then

1. L(AD) = D,

2. Each state q of AD can be reached on exactly one path from the initial
state ε. The label of this path is the string q.

In Definition 3.1.4, using the prefixes of strings in D as names for the states
of the trie is elegant from a mathematical point of view. However, in praxis
often other state names (e.g., 1, . . . , n) are used. In this sense “the” trie for a
finite set of strings is only fixed up to isomorphism, i.e., renaming of states.
When using a version of the trie where there is no connection between state
names and prefixes, the following notion is useful.

Definition 3.1.6 Let AD = 〈Σ, Q, q0, F, δ〉 represent the trie for the finite
set D ⊆ Σ∗, let q ∈ Q. The label of the unique path π from q0 to q is called
the path label for q and denoted plab(q). The length of π is called the depth
of q and denoted d(q).

Example 3.1.7 Figure 3.2 shows the trie for D = {a, ab, abcc, babc, bac, c}.
For State 4 we have d(4) = 3 and plab(4) = abc.

3.2 Determinization of classical finite-state automata

Our next aim is to show that each classical finite-state automaton can be
effectively converted to an equivalent deterministic classical finite-state au-
tomaton. As a preliminary step, combining Propositions 2.5.6 and 2.5.8 we
obtain

40CHAPTER 3. CLASSICAL FINITE-STATE AUTOMATAANDREGULAR LANGUAGES

Figure 3.2: The trie for D = {a, ab, abcc, babc, bac, c}.

Proposition 3.2.1 Every monoidal finite-state automaton A = 〈Σ, Q, I, F,∆〉
over the free monoid Σ∗ can be converted to an equivalent classical finite-
state automaton A′ without ε-transitions with a set of states Q′ such that
Q ⊆ Q′ and for each q ∈ Q we have LA(q) = LA′(q).

The proof of the following theorem provides an effective procedure for de-
terminization of classical finite-state automata.

Theorem 3.2.2 (Determinization of classical finite-state automata)

Every classical finite-state automaton A = 〈Σ, Q, I, F,∆〉 can be converted
to an equivalent deterministic finite-state automaton AD with total transi-
tion function.

Proof. Using Proposition 3.2.1 we may assume without loss of generality
that A does not have ε-transitions and no transition labels with more than
one symbol, which means that ∆ ⊆ Q× Σ×Q. Consider the automaton

AD :=
〈
Σ, 2Q, I, FD, δ

〉
where FD := {S ⊆ Q |S ∩ F 6= ∅} and

δ(S, a) := {q ∈ Q | ∃q1 ∈ S : 〈q1, a, q〉 ∈ ∆}

for S ⊆ Q, a ∈ Σ. Clearly δ is a total function 2Q × Σ → 2Q and AD has
exactly one initial state I. This shows that AD is a deterministic finite-state
automaton with total transition function δ. We claim that for all w ∈ Σ∗

and all p ∈ Q the following properties are equivalent:

1. ∃i ∈ I : (i, w, p) ∈ ∆∗,

2. p ∈ δ∗(I, w).

3.3. ADDITIONAL CLOSURE PROPERTIES FOR CLASSICAL FINITE-STATE AUTOMATA41

For the proof we use induction on n := |w|. For n = 0 we have w = ε. Since
A does not have ε-transitions, ∃i ∈ I : (i, ε, p) ∈ ∆∗ iff p ∈ I = δ∗(I, ε). For
the induction step, let w = w′σ denote a word of length n+ 1 where σ ∈ Σ.
Assume that ∃i ∈ I : (i, w′σ, p) ∈ ∆∗. The properties of ∆ show that there
exists p′ ∈ Q such that (i, w′, p′) ∈ ∆∗ and (p′, σ, p) ∈ ∆. The induction
hypothesis shows that p′ ∈ δ∗(I, w′) =: S. It follows from the definition of
δ that p ∈ δ∗(I, w). For the converse direction assume that p ∈ δ∗(I, w′σ).
The definition of δ implies that S := δ∗(I, w′) contains a state p′ ∈ Q such
that (p′, σ, p) ∈ ∆. The induction hypothesis shows ∃i ∈ I : (i, w′, p) ∈ ∆∗,
which implies that ∃i ∈ I : (i, w, p) ∈ ∆∗. Hence the claim is proved.

Using the claim and the definition of FD we have for any w ∈ Σ∗:

w ∈ L(A) ↔ ∃i ∈ I, f ∈ F : (i, w, f) ∈ ∆∗

↔ ∃f ∈ F : f ∈ δ∗(I, w)

↔ δ∗(I, w) ∈ FD
↔ w ∈ L(AD)

Hence A and AD are equivalent.

Remark 3.2.3 It should be noted that the simple determinization proce-
dure obtained from this proof can be considerably refined. The basic idea is
to use the collection of all sets of active states (cf. Definition 2.1.19) for ar-
bitrary input of the given non-deterministic classical finite-state automaton
as the new set of states of the deterministic finite-state automaton. In this
case, the states of the deterministic automaton are exactly the subsets S of
Q with the following property (†): there exists a string w ∈ Σ∗ such that S
is the set of states that can be reached from a start state i ∈ I on a path
with label w.

Remark 3.2.4 In practice we may omit the explicit construction of the
empty set, all subsets that are not reachable, and all transitions to and from
those subsets, which often leads to a much smaller deterministic automaton
with partial transition function. There are also determinization procedures
that directly include removal of ε-transitions.

Example 3.2.5 The determinization of a classical finite-state automaton
using the procedure described in the proof of Theorem 3.2.2 is illustrated in
Figure 3.3.

3.3 Additional closure properties for classical finite-
state automata

In the previous chapter we have seen that the class of languages accepted by
monoidal finite-state automata is closed under homomorphic images, union,

42CHAPTER 3. CLASSICAL FINITE-STATE AUTOMATAANDREGULAR LANGUAGES

Figure 3.3: Determinization of a classical finite-state automaton (left-hand
side) using the procedure described in the proof of Theorem 3.2.2. The
resulting deterministic finite-state automaton (right-hand side) has one su-
perfluous state that cannot be reached from the start state. When using the
improved construction described in Remark 3.2.3 this state is not produced.

monoidal product, and monoidal Kleene-Star. Theorem 3.2.2 can be used to
prove that the class of languages accepted by classical finite-state has addi-
tional closure properties. We start with a series of automaton constructions.

Proposition 3.3.1 (Complementing deterministic FSA) Let

A = 〈Σ, Q, q0, F, δ〉

be a deterministic finite-state automaton where δ is a total function. Let

A′ = 〈Σ, Q, q0, Q \ F, δ〉 .

Then L(A′) = Σ∗ \ L(A).

Proof. Using induction on |w| we show that for each word w ∈ Σ∗ there
exists a unique path in A (and thus in A′) starting at q0 with label w. For
w = ε the null path for q0 is the unique path starting at q0 with label w. For
the induction step let w = w′σ be a word of length n+ 1 > 0 where σ ∈ Σ.
By induction hypothesis there exists a unique path π′ from q0 to some state
q′ ∈ Q with label w′. Since δ is a function and δ(q′, σ) is defined, adding to
π′ the transition q′ →σ δ(q′, σ) we obtain a path π from q0 with label w′σ.
Uniqueness of π′ implies uniqueness of π. The definition of the set of final
states for A′ shows that a path π starting at q0 is successful in A iff it is
not successful in A′. Hence any word w ∈ Σ∗ is accepted in A iff it is not
accepted in A′.

The next proposition introduces constructions for intersection, difference,
and reversal of automaton languages.

3.3. ADDITIONAL CLOSURE PROPERTIES FOR CLASSICAL FINITE-STATE AUTOMATA43

Proposition 3.3.2 Let A1 = 〈Σ, Q1, I1, F1,∆1〉 and A2 = 〈Σ, Q2, I2, F2,∆2〉
be two classical ε-free finite-state automata. Then the following holds:

1. (Intersection for ε-free classical finite-state automata) For the finite-
state automaton

A :=
〈
Σ, Q1 ×Q2, I1 × I2, F1 × F2,∆

′〉
where ∆′ := {〈〈q1, q2〉 , a, 〈r1, r2〉〉 | 〈q1, a, r1〉 ∈ ∆1 & 〈q2, a, r2〉 ∈ ∆2}
we have L(A) = L(A1) ∩ L(A2).

2. (Difference for deterministic classical finite-state automata) If A2 is a
deterministic classical finite-state automaton and the transition func-
tion of A2 is total, then for the finite-state automaton

A :=
〈
Σ, Q1 ×Q2, I1 × I2, F1 × (Q2 \ F2),∆′

〉
where ∆′ := {〈〈q1, q2〉 , a, 〈r1, r2〉〉 | 〈q1, a, r1〉 ∈ ∆1 & 〈q2, a, r2〉 ∈ ∆2}
we have L(A) = L(A1) \ L(A2).

Proof.

1. Let w = σ1 · · ·σn ∈ L(A1) ∩ L(A2) where σi ∈ Σ (1 ≤ i ≤ n). Since
A1 and A2 are ε-free there exists successful paths

π1 : i1 →σ1 q1,1 . . .→σn q1,n

π2 : i2 →σ1 q2,1 . . .→σn q2,n

in A1 and A2, respectively. Note that 〈i1, i2〉 ∈ I1 × I2 and 〈q1,n, q2,n〉 ∈
F1 × F2. Thus

π : 〈i1, i2〉 →σ1 〈q1,1, q2,1〉 . . .→σn 〈q1,n, q2,n〉

is a successful path with label w in A. Conversely, if w = σ1 · · ·σn ∈ A,
then there exists a successful path π in A with label w, which must have
the above form and can be decomposed into successful paths π1 and π2 of
A1 and A2, respectively.
2. Let w ∈ L(A). Then there exists a successful path π of A with label w.
Using the first (second) projection of the states we obtain a successful path
π1 with label w of A1 and a parallel path π2 of A2 leading from the start to a
non-final state. Since A2 is deterministic it follows that w ∈ L(A1) \L(A2).
Conversely, if w ∈ L(A1) \ L(A2) we have a successful path with label w
in A1. Since the transition function of A2 is total we have a parallel path
from the start to a non-final state in A2. The paths can be combined to a
successful path with label w in L(A) as in the previous point.

44CHAPTER 3. CLASSICAL FINITE-STATE AUTOMATAANDREGULAR LANGUAGES

Remark 3.3.3 The construction used in Point 1 and 2 of the above propo-
sition is called Cartesian product of automata. It can be used for an alterna-
tive construction of the union of two automaton languages and will be used
in various other constructions in the next chapters.

Proposition 3.3.4 Let A := 〈Σ∗, Q, F, I,∆〉 be a monoidal finite-state au-
tomaton over the free monoid Σ∗. Then for the monoidal finite-state au-
tomaton

A′ :=
〈
Σ∗, Q, F, I,∆′

〉
where ∆′ = {〈q2, ρ(a), q1〉 | 〈q1, a, q2〉 ∈ ∆} we have L(A′) = ρ(L(A)).

Proof. Note that initial (final) states of A represent final (initial) states
of A′ and vice versa. Since labels in A and in A′ are in Σ∗, when reading
a successful path in A with label w in reverse order we obtain a successful
path in A′ for ρ(w) and vice versa.

From the above constructions, using Proposition 3.2.1 and Theorem 3.2.2
we immediately obtain the following result.

Corollary 3.3.5 The class of languages accepted by classical finite-state
automata is closed under complement, intersection, set difference, and re-
versal.

3.4 Minimal deterministic finite-state automata and
the Myhill-Nerode equivalence relation

Since the size of automata is often large, there is an obvious interest in
finding equivalent small automata. In this part we describe a classical result
on how to build for any classical automaton language L a deterministic
finite-state automaton accepting L that is minimal with respect to the class
of all deterministic finite-state automata recognizing L. Minimality only
refers to deterministic automata, in general there can be non-deterministic
automata for L with a smaller number of states.

In order to find a minimal deterministic automaton for a classical lan-
guage it is important to take an algebraic perspective. In this section we
describe deterministic finite-state automata recognizing a classical language
L in terms of specific equivalence relations. Studying the spectrum of these
equivalence relations will lead us to a minimal deterministic automaton for
L. Let Σ be a finite alphabet.

Definition 3.4.1 An equivalence relation R ⊆ Σ∗ × Σ∗ is called right in-
variant if

∀u, v ∈ Σ∗ : u R v → (∀w ∈ Σ∗ : u · w R v · w).

3.4. MINIMAL DETERMINISTIC FINITE-STATE AUTOMATAAND THEMYHILL-NERODE EQUIVALENCE RELATION45

Definition 3.4.2 Let L ⊆ Σ∗ be a language, let R ⊆ Σ∗ ×Σ∗ be an equiv-
alence relation. L and R are called compatible if

∀u, v ∈ Σ∗ : (u ∈ L & u R v)→ v ∈ L.

The condition means that each equivalence class [v]R is either a subset of L
or we have [v]R ∩ L = ∅.

Example 3.4.3 Let Σ := {a, b}. Define two strings u, v ∈ Σ∗ to be equiva-
lent (written u ∼ v) if the numbers of occurrences of the letter a in u and v
respectively are congruent modulo 3. Then ∼ is a right invariant equivalence
relation since for each w the numbers of occurrences of the letter a in uw
and vw respectively are again congruent modulo 3. Let L be the set of all
strings u ∈ Σ∗ where the number of occurrences of the letter a is divisible
by 3. Then ∼ and L are compatible.

We now show that given a right invariant equivalence relation R with finite
index that is compatible with a language L we may use R to define a classical
finite-state automaton accepting the language L.

Proposition 3.4.4 Let R ⊆ Σ∗ × Σ∗ be a right invariant equivalence re-
lation such that the index of R is finite, let L ⊆ Σ∗ be a language over Σ
compatible with R. Then for the deterministic classical finite-state automa-
ton

AR,L = 〈Σ, {[s]R | s ∈ Σ∗}, [ε]R, {[s]R | s ∈ L}, δR〉

with transition function δR = {〈[u]R, a, [u · a]R〉 |u ∈ Σ∗, a ∈ Σ} we have
L(AR,L) = L.

Proof. We first prove that δR is a correctly defined function - we have to
show that the definition of function values does not depend on the choice of
the member of the equivalence class. Let v ∈ [u]R, i.e. u R v. Then, since
R is right invariant we have u · a R v · a for any a ∈ Σ. Hence

δR([u]R, a) = [u · a]R = [v · a]R = δR([v]R, a).

In a similar way we see that compatibility of L with R ensures that the
definition of final states does not depend on the representative s chosen: if
u ∈ [s]R and s ∈ L, then u ∈ L.

We finally show that L = L(AR,L). Let u = a1a2 . . . ak. Consider the path

[ε]→a1 [a1]→a2 [a1a2]→a3 . . .→ak [u].

We have u ∈ L(AR,L) iff [u] is a final state iff u ∈ L.

The automaton AR,L introduced in Proposition 3.4.4 is called the canonical
deterministic automaton for R and L.

46CHAPTER 3. CLASSICAL FINITE-STATE AUTOMATAANDREGULAR LANGUAGES

Figure 3.4: Canonical deterministic automaton for the equivalence relation
∼ and language L given in Example 3.4.3, cf. Example 3.4.5.

Example 3.4.5 Let ∼ and L be defined as in Example 3.4.3. Let na(w)
denote the number of occurrences of the letter a in w. The canonical deter-
ministic automaton for ∼ and L has three states

S0 := {w ∈ Σ∗ | na(w) ≡ 0 mod 3}
S1 := {w ∈ Σ∗ | na(w) ≡ 1 mod 3}
S2 := {w ∈ Σ∗ | na(w) ≡ 2 mod 3}

given by the equivalence classes of ∼. The final state, which corresponds to
L, is S0. The automaton is shown in Figure 3.4.

Remark 3.4.6 For the rest of this section, to simplify the formulation we
make the following general assumption: all automata considered are clas-
sical deterministic finite-state automata with total transition function, and
each state is reachable from the start.

Since we are interested in minimal deterministic automata, the accessibility
condition helps to disregard automata that cannot be minimal for obvious
reasons. In Remark 3.4.19 below we come back to the general situation
where transition functions may be partial.

We now show that (under the general assumption) for each deterministic
finite-state automaton A there exists an isomorphic automaton where the
states are given as the equivalence classes of a relation RA derived from A.

Proposition 3.4.7 Let A = 〈Σ, Q, q0, F, δ〉 be a deterministic classical finite-
state automaton. Then

3.4. MINIMAL DETERMINISTIC FINITE-STATE AUTOMATAAND THEMYHILL-NERODE EQUIVALENCE RELATION47

1. RA := {〈u, v〉 ∈ Σ∗ × Σ∗ | δ∗(q0, u) = δ∗(q0, v)} is a right invariant
equivalence relation and L(A) is compatible with RA,

2. the automaton ARA,L(A) is isomorphic to A by the state renaming
function h : {[s]RA | s ∈ Σ∗} → Q defined as h([w]RA) = δ∗(q0, w).

Proof. 1. Let u RA v and w ∈ Σ∗. Then

δ∗(q0, u · w) = δ∗(δ∗(q0, u), w) = δ∗(δ∗(q0, v), w) = δ∗(q0, v · w).

Hence u · w RA v · w, which shows that RA is right invariant. If u ∈ L(A)
and u RA v, then δ∗(q0, v) = δ∗(q0, u) ∈ F and thus v ∈ L(A).
2. Since δ is total, δ∗(q0, w) is defined for all w ∈ Σ∗. Clearly, for any w ∈ Σ∗

the state δ∗(q0, w) determines the equivalence class of w and therefore h is
an injective function. Since all states in Q are reachable the mapping h is
surjective. Hence h is a bijection. Obviously h([ε]) = q0 and h({[s]RA | s ∈
L(A)}) = F . The definitions of RA and the transition function in ARA,L(A)

show that for every u ∈ Σ∗ and a ∈ Σ we have δ(h([u]RA), a) = h([ua]RA).
It follows that ARA,L(A) is isomorphic to A by the state renaming function
h.

In what follows, RA is called the equivalence relation induced by A, and
ARA,L(A) is called the canonical automaton isomorphic to A. Note that
number of states of A and ARA,L(A) coincides with the index |Σ∗/RA| of
RA.

Definition 3.4.8 Let L ⊆ Σ∗ be a language over Σ. Then the relation

RL = {〈u, v〉 ∈ Σ∗ × Σ∗ | ∀w ∈ Σ∗ : u · w ∈ L iff v · w ∈ L}

is called the Myhill-Nerode relation for the language L.

Proposition 3.4.9 Let L ⊆ Σ∗ be a language over Σ. Then the Myhill-
Nerode relation RL is a right invariant equivalence relation and RL is com-
patible with L.

Proof. Let u RL v and w ∈ Σ∗. In order to prove that u · w RL v · w we
show that for any w′ ∈ Σ∗ we have (u · w) · w′ ∈ L iff (v · w) · w′ ∈ L. This
is true since u · w′′ ∈ L ↔ v · w′′ ∈ L holds for w′′ = w · w′ by definition of
RL. If u ∈ L and u RL v then, by the definition of RL, we have v ∈ L.

Definition 3.4.10 Let RL have finite index. Then the canonical determin-
istic automaton ARL,L for RL and L is called the Myhill-Nerode automaton
for the language L.

Note that the number of states ofARL,L coincides with the index |Σ∗/RL|.

48CHAPTER 3. CLASSICAL FINITE-STATE AUTOMATAANDREGULAR LANGUAGES

Example 3.4.11 Let ∼ and L be defined as in Examples 3.4.3 and 3.4.5.
Then ∼ is the Myhill-Nerode relation for L, and the automaton shown in
Figure 3.4 is the Myhill-Nerode automaton for L.

The following proposition shows that the equivalence relation induced by
a deterministic finite-state automatonA is a refinement of the Myhill-Nerode
relation of the language recognized by the automaton. This observation gives
the key to later compare the size of A with the size of the Myhill-Nerode
automaton for the automaton language.

Proposition 3.4.12 Let A = 〈Σ, Q, q0, F, δ〉 be a classical deterministic
finite-state automaton. Then RA ⊆ RL(A).

Proof. Let u RA v. Then δ∗(q0, u) = δ∗(q0, v). Then for any w ∈ Σ∗ we
have

u · w ∈ L(A) ⇔ δ∗(q0, u · w) ∈ F
⇔ δ∗(δ∗(q0, u), w) ∈ F
⇔ δ∗(δ∗(q0, v), w) ∈ F
⇔ δ∗(q0, v · w) ∈ F
⇔ v · w ∈ L(A).

Hence u RL(A) v.

Following the above general assumption, the minimality condition in the
following theorem refers to the class of deterministic finite-state automata
with total transition function.

Theorem 3.4.13 For each classical deterministic finite-state automaton
there exists a unique (up to renaming of states) equivalent deterministic
finite-state automaton that is minimal with respect to the number of states.

Proof. Let A = 〈Σ, Q, q0, F, δ〉 be a classical deterministic finite-state au-
tomaton. We have seen that |Q| = |Σ∗/RA|. Proposition 3.4.12 shows that
the number of states |Σ∗/RL| of the Myhill-Nerode automaton ARL,L for
the language L = L(A) does not exceed |Q|. Hence the number of states
of the Myhill-Nerode automaton ARL,L, which recognizes L(A) (Proposi-
tion 3.4.4), is minimal among all deterministic finite-state automata equiva-
lent to A. Let A′ be a deterministic finite-state automaton equivalent to A
such that A′ and ARL,L have the same number of states. Proposition 3.4.12
shows that RA′ = RL(A). Proposition 3.4.7 shows that ARA′ ,L(A′) = ARL,L
is isomorphic to A′.

Theorem 3.4.14 Let L ⊆ Σ∗ be a classical language. Then L is a classical
automaton language iff the index of RL is finite.

3.4. MINIMAL DETERMINISTIC FINITE-STATE AUTOMATAAND THEMYHILL-NERODE EQUIVALENCE RELATION49

Proof. If L is a classical automaton language, let A be a deterministic
finite-state automaton recognizing L with set of states Q. As in the above
proof we see that |Σ∗/RL| does not exceed |Q|. Conversely, if |Σ∗/RL| is
finite, the Myhill-Nerode automaton for L recognizes L.

Combining Theorem 3.4.14 and Theorem 2.4.2 we obtain

Theorem 3.4.15 Let L ⊆ Σ∗ be a classical language. Then the following
are equivalent:

1. L is a classical automaton language,

2. L is a regular language,

3. The index of RL is finite.

Remark 3.4.16 Theorem 3.4.15 can be used to directly prove that specific
languages L ⊆ Σ∗ are regular/non-regular. As a first example, consider the
language

L = {anbn | n ∈ IN}.
Obviously all strings in the set {an | n ∈ IN} are non-equivalent with respect
to the Myhill-Nerode relation RL. Hence L is not regular. As a second
example, let Σ be an arbitrary alphabet containing the letter a. Let E (O)
denote the set of words over Σ with an even (odd) number of occurrences
of the letter a. Then all elements in E and O are equivalent with respect to
the relations RE and RO, which shows that E and O are regular languages.

Minimal deterministic finite-state automata have characteristic structural
properties. Following our general assumption, in the following proposition
we consider automata with total transition function where each state is
reachable from the start. The next proposition gives a characterization of
the minimal automaton in terms of equivalent states (cf. Definition 2.1.18).

Proposition 3.4.17 A deterministic finite-state automaton A = (Σ, Q, q0, F, δ)
is minimal iff distinct states of A are never equivalent.

Proof. First note the following equivalences, which hold for all u, v ∈ Σ∗:

[u]RL(A)
= [v]RL(A)

⇔ ∀w ∈ Σ∗ : uw ∈ L(A) iff vw ∈ L(A)

⇔ ∀w ∈ Σ∗ : δ∗(q0, uw) ∈ F iff δ∗(q0, vw) ∈ F
⇔ δ∗(q0, u) ≡ δ∗(q0, v).

We obtain the following equivalences. The second equivalence is a conse-
quence of Proposition 3.4.12.

A is not minimal ⇔ |RL(A)/Σ
∗| < |RA/Σ∗|

⇔ ∃u, v ∈ Σ∗ : [u]RA 6= [v]RA & [u]RL(A)
= [v]RL(A)

⇔ ∃u, v ∈ Σ∗ : δ∗(q0, u) 6= δ∗(q0, v) & [u]RL(A)
= [v]RL(A)

⇔ ∃u, v ∈ Σ∗ : δ∗(q0, u) 6= δ∗(q0, v) & δ∗(q0, u) ≡ δ∗(q0, v).

50CHAPTER 3. CLASSICAL FINITE-STATE AUTOMATAANDREGULAR LANGUAGES

Departing from the general assumption, for the sake of generality in the
next proposition we consider trimmed deterministic finite-state automata,
which in general have a partial transition function. For such automata an
inductive characterization of the equivalence of two states (cf. Def. 2.1.18)
can be given.

Proposition 3.4.18 Let A = 〈Σ, Q, q0, F, δ〉 be a trimmed classical deter-
ministic finite-state automaton. Then q1 and q2 are equivalent iff

1. q1 ∈ F iff q2 ∈ F ,

2. for all σ ∈ Σ the following holds: δ(q1, σ) is defined iff δ(q2, σ) is
defined. If both are defined, then δ(q1, σ) and δ(q2, σ) are equivalent.

Note that this characterization is an immediate consequence of Proposi-
tion 2.1.17.

Remark 3.4.19 The Myhill-Nerode automaton for a classical regular lan-
guage L as defined above may contain a unique state q from which we cannot
reach a final state. In this case, when we are interested in minimal deter-
ministic automata with partial transition function for L, then this state and
all transitions leading to q have to be deleted.

3.5 Minimization of deterministic finite-state au-
tomata

Given a deterministic finite-state automaton A = 〈Σ, Q, q0, F, δ〉 for the lan-
guage L(A) = L we now show how to build an equivalent minimal automa-
ton AL by simultaneously identifying all equivalent states. For simplicity
we assume that the transition function δ of A is total. Consider
Definition 2.1.18 and Remark 3.4.17. To construct AL we have to build the
classes of equivalent states of A. For all p, q ∈ Q we have

q ≡ p ⇔ LA(q) = LA(p)

⇔ ∀α ∈ Σ∗ : (δ∗(q, α) ∈ F ↔ δ∗(p, α) ∈ F).

In general it is difficult to directly find all classes of equivalent states. Using a
more indirect procedure we now introduce a sequence of equivalence relations

R0, R1, R2, . . .

on Q. We shall see that

1. we may compute R0 directly, and Ri+1 can be computed from Ri for
all i ≥ 0.

3.5. MINIMIZATION OF DETERMINISTIC FINITE-STATE AUTOMATA51

2. after at most |Q| − 1 steps the sequence becomes stationary, and the
final equivalence relation obtained is the desired equivalence relation
≡.

Definition 3.5.1 The relations Ri ⊆ Q×Q (i ≥ 0) are formally defined as

q Ri p :⇔ ∀α ∈ Σ∗ s.th. |α| ≤ i : (δ∗(q, α) ∈ F ↔ δ∗(p, α) ∈ F).

Note that this condition relaxes the above condition for p ≡ q, only looking
at words α of length ≤ i. Clearly Ri+1 is always a refinement of Ri (i ≥ 0)
and we have q ≡ p iff q Ri p for all i ≥ 0. For the direct computation of R0

we use that
q R0 p⇔ (q ∈ F ↔ p ∈ F).

The next lemma shows how Ri+1 can be obtained from Ri.

Lemma 3.5.2 For all states q, p ∈ Q the following two conditions are equiv-
alent:

1. ∀α ∈ Σ∗ s.th. |α| ≤ i+ 1 : (δ∗(q, α) ∈ F ↔ δ∗(p, α) ∈ F),

2. (a) ∀α ∈ Σ∗ s.th. |α| ≤ i : (δ∗(q, α) ∈ F ↔ δ∗(p, α) ∈ F), and

(b) ∀σ ∈ Σ, ∀α ∈ Σ∗ s.th. |α| ≤ i : (δ∗(δ(q, σ), α) ∈ F ↔ δ∗(δ(p, σ), α) ∈
F).

The following proposition follows from the above equivalence.

Proposition 3.5.3

q Ri+1 p ⇔ q Ri p & ∀a ∈ Σ : δ(q, a) Ri δ(p, a)

This shows how Ri+1 can be computed from Ri. We also see that once
Ri+1 = Ri we also have Ri+k = Ri for all k ≥ 0. Since Ri+1 is always a
refinement of Ri and we cannot have more than |Q| equivalence classes it
follows that the sequence R0, R1, . . . becomes stationary, say at Rk. Since
q ≡ p iff q Ri p for all i ≥ 0 it follows that Rk coincides with ≡.

Corollary 3.5.4 Let A = 〈Σ, Q, q0, F, δ〉 be a deterministic finite-state au-
tomaton where δ is total and each state is reachable. Then the relation
R =

⋂∞
i=0Ri, where

q R0 p ⇔ (q ∈ F ↔ p ∈ F)

q Ri+1 p ⇔ q Ri p & ∀a ∈ Σ : δ(q, a) Ri δ(p, a)

coincides with the equivalence of states ≡ for A. The automaton

A′ =
〈
Σ, {[q]R | q ∈ Q}, [q0]R, {[f]R | f ∈ F}, δ′

〉
where δ′([q]R), σ) := [δ(q, σ)]R is the minimal deterministic automaton equiv-
alent to A.

52CHAPTER 3. CLASSICAL FINITE-STATE AUTOMATAANDREGULAR LANGUAGES

We now look at algorithmic details. When we want to compute the rela-
tions Ri+1, given Ri, we need a procedure for testing the conditions on the
right-hand side of the second equivalence above. Instead of looking at each
candidate pair 〈p, q〉 in isolation we shall find the full relation Ri+1 directly
by computing the intersection of Ri with several equivalence relations. We
denote the intersection of two equivalence relations S, T ⊆ Q×Q as S ∩ T .
The following notions lead to the equivalence relations needed.

Definition 3.5.5 Let g : Q→ X. Then the equivalence relation kerQ(g) ⊆
Q×Q defined as

〈p, q〉 ∈ kerQ(g) :⇔ g(p) = g(q)

is called the kernel of g over Q.

Proposition 3.5.6 Let us define f : Q→ {0, 1}

f(q) :=

{
1 if q ∈ F
0 otherwise

and for every a ∈ Σ and i ∈ IN the function f
(i)
a : Q→ Q/Ri as

f (i)
a (q) := [δ(q, a)]Ri .

Then

1. R0 = kerQ(f)

2. Ri+1 =
⋂
a∈Σ kerQ(f

(i)
a) ∩Ri

The second equation expresses that Ri+1 is obtained from Ri by restricting
the relation to pairs q and q such that for all σ ∈ Σ the σ-successors of p
and q have the same equivalence class with respect to Ri. Proposition 3.5.6
represents our final reformulation of the equivalences in Corollary 3.5.4 used
for programs.

Example 3.5.7 Figure 3.5 illustrates the inductive computation of the re-
lation ≡ for a deterministic finite-state automaton A and the Myhill-Nerode
automaton for L(A). The example automaton with 10 states accepts the
two words aaaa and baaa. In the upper representation of the automaton,
the two equivalence classes of R0 (final states, non-final states) are shown
using two boxes. From each of the two states 4 and 8, with letter a we
reach a final state, while with letter b we reach a non-final state. Hence at
the next step, States 4 and 8 remain equivalent. In contrast, from states
1, 2, 3, 6, 7, and 10, both transitions lead to a non-final state. For R1 we
obtain the three equivalence classes {5, 9}, {4, 8}, {1, 2, 3, 4, 7, 10} shown in

3.5. MINIMIZATION OF DETERMINISTIC FINITE-STATE AUTOMATA53

the second diagram. Continuing in the same way, in this example we obtain
four equivalence classes for R2, five equivalence classes for R3 and six equiv-
alence classes for R4. Note that each relation Ri+1 represents a refinement
of Ri. The construction stops after reaching R4 since no further refinement
is obtained, we have R4 = R5 = R6 =

Remark 3.5.8 Recall that the above definitions and algorithmic descrip-
tions assume that the transition function of input automata is total. How-
ever, in many practical situations deterministic automata are found that
- for the sake of space economy - come with a partially defined transition
function. There are several ways of generalizing the above construction to
this more general case.

We first consider trimmed deterministic input automata. Note that all
transitions of a trimmed automton are “promising” in the sense that we may
reach a final state using the transition. There are no “useless” states. For
trimmed deterministic input automata with partial transition function, the
above inductive definition of Ri+1 in Corollary 3.5.4 is modified, defining

q Ri+1 p⇔ q Ri p & ∀a ∈ Σ : δ(q, a), δ(p, a) undefined or δ(q, a) Ri δ(p, a).

In Proposition 3.5.6 the definition of the functions f
(i)
a has to be adapted

accordingly, introducing a special value⊥ for f
(i)
a (q) if δ(q, a) is undefined. In

Corollary 3.5.4 the automatonA′ = 〈Σ, {[q]R | q ∈ Q}, [q0]R, {[f]R | f ∈ F}, δ′〉
is now defined with a partial transition function: δ′([q]R), σ) is defined (as
[δ(q, σ)]R) iff δ(q, σ) is defined. With these modifications, A′ is the minimal
deterministic automaton with partial transition function equivalent to A.

A straightforward, but more space-consuming method can be used for
arbitrary deterministic input automata A = (Σ, Q, q0, F, δ): if δ is not total,
just introduce one new nonfinal state b and minimize the variant input au-
tomaton A′ = (Σ, Q ∪ {b}, q0, F, δ

′) where δ′ is the extension of δ to a total
transition function such that

• δ′(q, σ) := b whenever δ(q, σ) is undefined (q ∈ Q, σ ∈ Σ),

• δ′(b, σ) := b for all σ ∈ Σ.

Obviously, A and A′ are equivalent. The minimal deterministic automa-
ton obtained when minimizing A′ using the above standard construction
contains exactly one state that can be deleted when considering minimal
deterministic automata with partial transition function. The disadvantage
of this method relies on the fact that the number of new transitions intro-
duced in A′ can be large.

Remark 3.5.9 For finite languages there exist direct methods for con-
structing the minimal finite-state automata which provide better efficiency
[Daciuk et al., 2000]

54CHAPTER 3. CLASSICAL FINITE-STATE AUTOMATAANDREGULAR LANGUAGES

Figure 3.5: Inductive minimization of a deterministic finite-state automaton,
cf. Example 3.5.7. At each step, equivalence classes are split looking for each
state at the classes reached with letters a and b. The minimal automaton
has 6 states corresponding to the equivalence classes shown in the bottom
diagram.

3.6. COLOURED DETERMINISTIC FINITE-STATE AUTOMATA 55

3.6 Coloured deterministic finite-state automata

In many cases it is useful to categorize the words recognized by an automaton
into a finite set of classes. Following this view we introduce a simple general-
ization of deterministic finite-states automata called coloured deterministic
finite-state automata and show how this generalization can be represented
by classical automata. A generalization of the above minimization technique
for the case of coloured automata is presented. For simplicity we only look
at deterministic automata with totally defined transition function.

An abstract view of formalizing properties of states is captured by the
following definition.

Definition 3.6.1 Let C be a finite set called the set of colours. A C-
coloured deterministic finite-state automaton is a deterministic finite-state
automaton 〈Σ, Q, q0, F, δ〉 with total transition function δ together with a
surjective total function col : F → C. We write A = 〈Σ, C,Q, q0, F, δ, col〉
for the coloured automaton. Colour col(q) is called the colour of state q ∈ F .
The language L(A) accepted by a coloured automaton A is defined as usual,
ignoring colours.

Throughout this section we assume that a finite set of colours C is given
and that C ∩ Σ = ∅.

Definition 3.6.2 Let A = 〈Σ, C,Q, q0, F, δ, col〉 be a C-coloured determin-
istic finite-state automaton. The colouring of words recognized by A is the
function colA : L(A)→ C,w 7→ col(δ∗(q0, w)).

Proposition 3.6.3 Let L ⊆ Σ∗ be a language and let c : L → C be a
colouring function for the words of L. Consider the modified language

Lc := {α · c(α) |α ∈ L} ⊆ Σ∗ · C.

Let A = 〈Σ, C,Q, q0, F, δ, col〉 be a C-coloured deterministic finite-state au-
tomaton such that L(A) = L and colA = c. Let

Ac := 〈Σ ∪ C,Q ∪ {f}, q0, {f}, δ ∪ {〈q, col(q), f〉 | q ∈ F}〉

where f 6∈ Q is a new state. Then L(Ac) = Lc.

Using the correspondence from Proposition 3.6.3 it is possible to transfer
classical automata results to the case of coloured automata, including min-
imization results. In order to avoid the above translation we now explicitly
describe minimization of coloured automata.

56CHAPTER 3. CLASSICAL FINITE-STATE AUTOMATAANDREGULAR LANGUAGES

Minimization of coloured deterministic finite-state automata

Proofs of the following results are directly obtained from the corresponding
proofs for the case of classical automata.

Definition 3.6.4 Let A1 and A2 be C-coloured deterministic finite-state
automata. A1 and A2 are equivalent iff L(A1) = L(A2) and colA1 = colA2 .

Definition 3.6.5 A language L ⊆ Σ∗ with a colouring c : L → C is com-
patible with the equivalence relation R ⊆ Σ∗ × Σ∗ iff

∀u, v ∈ Σ∗ : u ∈ L & u R v → (v ∈ L & c(u) = c(v)).

Proposition 3.6.6 Let R ⊆ Σ∗ × Σ∗ be a right invariant equivalence rela-
tion such that the index of R is finite, let L ⊆ Σ∗ be a language over Σ with a
colouring c : L→ C compatible with R. Then for the coloured deterministic
finite-state automaton

AR,L,c := 〈Σ, C, {[s]R | s ∈ Σ∗}, [ε]R, {[s]R | s ∈ L}, δ, col〉

with transition function δ := {〈[u]R, a, [u · a]R〉 |u ∈ Σ∗, a ∈ Σ} and colour-
ing col = {〈[s]R, c(s)〉 | s ∈ L} we have L(AR,L,c) = L and colAR,L,c = c.

Definition 3.6.7 Let

A′ =
〈
Σ, C,Q′, q′0, F

′, δ′, col′
〉

A′′ =
〈
Σ, C,Q′′, q′′0 , F

′′, δ′′, col′′
〉

be two coloured deterministic finite-state automata. A′ is isomorphic to A′′
by the state renaming function f : Q′ → Q′′ if f is a bijection such that

• f(q′0) = q′′0 ,

• f(F ′) = F ′′,

• for all q′ ∈ Q′ and all a ∈ Σ we have f(δ′(q′, a)) = δ′′(f(q′), a), and

• for all q′ ∈ F ′ we have col′(q′) = col′′(f(q′)).

Proposition 3.6.8 Let A = 〈Σ, C,Q, q0, F, δ, col〉 be a coloured determin-
istic finite-state automaton. Then

1. RA := {〈u, v〉 ∈ Σ∗ × Σ∗ | δ∗(q0, u) = δ∗(q0, v)} is a right invariant
equivalence relation and L(A) with colouring colA is compatible with
RA,

2. the automaton ARA,L(A),colA is isomorphic to A by the state renaming

function h : {[s]RA | s ∈ Σ∗} → Q defined as h([w]RA) := δ∗(q0, w).

3.6. COLOURED DETERMINISTIC FINITE-STATE AUTOMATA 57

Definition 3.6.9 Let L ⊆ Σ∗ be a language and let c : L → C be a
colouring of L. For 〈u, v〉 ∈ Σ∗ × Σ∗ we define

u RL,c v :↔ ∀w ∈ Σ∗ : (u·w ∈ L↔ v·w ∈ L) & (u·w ∈ L→ c(u·w) = c(v·w)).

The relation RL,c is called the Myhill-Nerode relation for the pair 〈L,C〉.

Definition 3.6.10 LetRL,c have finite index. Then the automatonARL,c,L,c
is called the Myhill-Nerode automaton for the language L with colouring c.

Proposition 3.6.11 Let A = 〈Σ, C,Q, q0, F, δ, col〉 be a coloured determin-
istic finite-state automaton. Then RA ⊆ RL(A),colA.

Theorem 3.6.12 For each coloured deterministic finite-state automaton
there exists a unique (up to renaming of states) equivalent coloured deter-
ministic finite-state automaton that is minimal with respect to the number
of states.

Definition 3.6.13 Let A = 〈Σ, C,Q, q0, F, δ, col〉 be a coloured determin-
istic finite-state automaton. Two states p, q of A are equivalent if ∀w ∈
Σ∗ : (δ∗(p, w) ∈ F ↔ δ∗(q, w) ∈ F) & (δ∗(p, w) ∈ F → col(δ∗(p, w)) =
col(δ∗(q, w))).

Proposition 3.6.14 A coloured deterministic finite-state automaton A is
minimal iff distinct states of A are never equivalent.

The procedure for finding the minimal C-coloured deterministic finite-
state automaton A′ equivalent to a given coloured deterministic automaton
A = 〈Σ, C,Q, q0, F, δ, col〉 with total transition function where each state is
reachable is similar as in the uncoloured case.

Definition 3.6.15 We introduce equivalence relations Ri (i ≥ 0) on Q, in
this case inductively defining

q R0 p ↔ (q ∈ F ↔ p ∈ F) & (q ∈ F → col(q) = col(p))

q Ri+1 p ↔ q Ri p & ∀a ∈ Σ : δ(q, a) Ri δ(p, a).

If q Ri p and q′ and p′ respectively are states that are reached from q and
p with the same word w of length ≤ i, then (q′ ∈ F ↔ p′ ∈ F) & (q′ ∈
F → col(q′) = col(p′)). As in the uncoloured case we obtain the following
corollary.

Corollary 3.6.16 Let A = 〈Σ, C,Q, q0, F, δ, col〉 be a coloured deterministic
finite-state automaton where δ is total and each state is reachable, let Ri
defined as above (i ≥ 0). Then R =

⋂∞
i=0Ri coincides with the equivalence

of states ≡ on A. The coloured automaton

A′ =
〈
Σ, C, {[q]R | q ∈ Q}, [q0]R, {[f]R | f ∈ F}, δ′, col′

〉
where δ′([q]R), σ) := [δ(q, σ)]R and col′([q]R) := col(q) is the minimal coloured
deterministic automaton equivalent to A.

58CHAPTER 3. CLASSICAL FINITE-STATE AUTOMATAANDREGULAR LANGUAGES

Proposition 3.6.17 Let us define f : Q → C ∪ {0c}, where 0c 6∈ C is an
arbitrary symbol

f(q) :=

{
c(q) if q ∈ F
0c otherwise

and for every a ∈ Σ and i ∈ IN the function f
(i)
a : Q→ Q/Ri as

f (i)
a (q) := [δ(q, a)]Ri .

Then

1. R0 = kerQ(f)

2. Ri+1 =
⋂
a∈Σ kerQ(f

(i)
a) ∩Ri.

Example 3.6.18 Figure 3.6 illustrates the inductive computation of the
relation ≡ for a coloured deterministic finite-state automaton A. The two
final states have distinct colours (graphically indicated by using another
background). In the upper representation of the automaton, the three equiv-
alence classes of R0 (two classes of final states, non-final states) are shown.
From each of the two states 4 and 8, with letter a we reach a final state,
while with letter b we reach a non-final state. However, in this case the
final states reached have distinct colours. Hence at the next step, States
4 and 8 represent distinct equivalence classes. From states 1, 2, 3, 6, 7,
and 10, both transitions lead to a non-final state. For R1 we obtain the
five equivalence classes {5}, {9}, {4}, {8}, {1, 2, 3, 4, 7, 10} shown in the sec-
ond diagram. Continuing in the same way, in this example we obtain seven
equivalence classes for R2, nine equivalence classes for R3 and ten equiva-
lence classes for R4. The result shows that the input coloured automaton
us already minimal.

3.7 Pseudo-determinization and pseudo-minimization
of monoidal finite-state automata

It is natural to ask which of the additional closure results obtained for clas-
sical regular languages and classical finite-state automata in Section 3.3 can
be lifted to the general monoidal case. A simple example (cf. [Kaplan and
Kay, 1994]) shows that the set of monoidal regular languages is not closed
under intersection: we consider the monoidal regular languages R1, R2 in
the monoid 〈Σ∗ × Σ∗, ·, 〈ε, ε〉〉:

R1 = 〈a, c〉∗ · 〈b, ε〉∗ R1 = {〈anbm, cn〉 |n,m ∈ IN}
R2 = 〈a, ε〉∗ · 〈b, c〉∗ R2 = {〈ambn, cn〉 |n,m ∈ IN}

3.7. PSEUDO-DETERMINIZATION AND PSEUDO-MINIMIZATION OFMONOIDAL FINITE-STATE AUTOMATA59

Figure 3.6: Inductive minimization of a coloured deterministic finite-state
automaton, cf. Example 3.6.18. The minimal coloured automaton has 10
states corresponding to the equivalence classes shown in the bottom diagram.
Here it is isomorphic to the input coloured automaton.

60CHAPTER 3. CLASSICAL FINITE-STATE AUTOMATAANDREGULAR LANGUAGES

The intersection of R1 and R2 is

R1 ∩R2 = {〈anbn, cn〉 |n ∈ IN}

which is not regular since the first projection is not a regular language
(cf. Remark 3.4.16) – in the next chapter we show that monoidal regular
languages are closed under projection, see Proposition 4.2.1. From the above
property it follows directly that the set of monoidal regular languages is not
closed under complement and difference. Otherwise using the de Morgan
laws the monoidal regular languages would be closed under intersection.

Looking at the proof of Proposition 3.3.1 we see that the closure of clas-
sical regular languages an over alphabet Σ under complement is derived
from the following observation. We may represent the language using a de-
terministic automaton with total transition function. Then for every word
w ∈ Σ∗ there exists a unique path from the start state with label w. Since
the monoidal regular languages are not closed under complement it is clear
that there is no construction which ensures this “unique path” property
for monoidal automata. This shows that the definition of a deterministic
monoidal finite-state automaton is not natural. In the following chapters we
shall discuss specialized notions of determinism for some classes of monoidal
finite-state automata. We now introduce a weaker notion, using the fact
that each monoidal finite-state automaton can be represented as the homo-
morphic image of a classical finite-state automaton (cf. Theorem 2.1.22).

Definition 3.7.1 Let M = 〈M, ◦, e〉 be a monoid. A monoidal finite-state
automaton A = 〈M, Q, I, F,∆〉 is called pseudo-deterministic if there exists
exactly one initial state in I and for any state q ∈ Q and any m ∈M there
exists at most one state q′ such that 〈q,m, q′〉 ∈ ∆.

The definition expresses that the free companion (cf. Definition 2.1.23) of
A is deterministic. 1

Proposition 3.7.2 For each monoidal finite-state automaton A we may
effectively construct a pseudo-deterministic monoidal finite-state automaton
A′ equivalent to A.

Proof. Let A = 〈M, Q, I, F,∆〉 be as above. Let

A′ = 〈Σ, Q, I, F,∆〉

denote the free companion of A. Recall that the letters in Σ have the form
am where m is a transition label of A. Following Theorem 3.2.2, let

A′′ =
〈
Σ, Q′, q0, F

′, δ
〉

1Sometimes a more restrictive definition is used, demanding in addition that A is e-free.

3.7. PSEUDO-DETERMINIZATION AND PSEUDO-MINIMIZATION OFMONOIDAL FINITE-STATE AUTOMATA61

denote a deterministic finite-state automaton equivalent to A′. Let

A′′′ =
〈
M, Q′, q0, F

′,∆′
〉

denote the image of A′′ under the homomorphism h induced by the mapping
am 7→ m (cf. proof of Theorem 2.1.22). Then A′′′ is pseudo-deterministic
and we have L(A′′′) = h(L(A′′)) = h(L(A′)) = L(A).

Definition 3.7.3 Let M = 〈M, ◦, e〉 be a monoid. A pseudo-deterministic
monoidal finite-state automatonA = 〈M, Q, I, F,∆〉 is called pseudo-minimal
if the free companion of A is a minimal deterministic finite-state automaton.

Proposition 3.7.4 For each monoidal finite-state automaton A we may
effectively construct a pseudo-minimal monoidal finite-state automaton A′
equivalent to A.

Proof. The proof is an obvious variant of the proof of Proposition 3.7.2,
applying a minimization step for the deterministic classical finite-state au-
tomaton built during the construction.

62CHAPTER 3. CLASSICAL FINITE-STATE AUTOMATAANDREGULAR LANGUAGES

Chapter 4

Monoidal multi-tape
automata and finite-state
transducers

An important generalization of classical finite-state automata are multi-tape
automata, which are used for recognizing relations of a particular type. The
so-called regular relations (also refered as “rational relations”) have been
extensively studied [Eilenberg, 1974, Sakarovitch, 2009]. These relations of-
fer a natural way to formalize all kinds of translations and transformations,
which makes multi-tape automata interesting for many practical applica-
tions and explains the general interest in this kind of device. A presentation
with a focus on applications in Natural Language Processing is given in
[Kaplan and Kay, 1994, Roche and Schabes, 1997b]. From the perspective
developed in the previous chapters, multi-tape automata represent a special
subtype of monoidal automata. A natural subclass are monoidal finite-state
transducers, which can be defined as two-tape automata where the first
tape reads strings. In this chapter we present the most important proper-
ties of monoidal multi-tape automata in general and monoidal finite-state
transducers in particular. We have seen that many of the constructions and
closure properties for classical finite-state automata like intersection, com-
plement and determinization cannot be generalized to multi-tape automata.
Still, the class of relations recognized by n-tape automata is closed under
a number of useful relational operations like composition, Cartesian prod-
uct, projection, inverse etc. We further present a procedure for deciding the
functionality of classical finite-state transducers.

4.1 Monoidal multi-tape automata

We first introduce the general concept of a monoidal multi-tape automa-
ton and add examples for illustration. Additional notions used to describe

63

64CHAPTER 4. MONOIDALMULTI-TAPE AUTOMATAAND FINITE-STATE TRANSDUCERS

the behaviour have been introduced above for the full class of monoidal
automata and need not to be redefined here.

Definition 4.1.1 A monoidal n-tape automaton is a monoidal finite-state
automaton A = 〈

∏n
i=1Mi, Q, I, F,∆〉 over a monoid M =M1 ×M2 . . .×

Mn which is a Cartesian product of n monoids. If n ≥ 2, the automaton is
also called a multi-tape automaton.

Since the class of monoids is closed under Cartesian products (cf. Defi-
nition 1.5.15) it is clear that monoidal n-tape automata are just special
instances of monoidal finite-state automata in the sense of Definition 2.1.1.
Hence, the definitions of an 〈e1, e2, . . . , en〉-free monoidal n-tape automa-
ton, (successful) paths in n-tape monoidal automata, and monoidal n-tape
automaton languages are special instances of the more general definitions
given in Section 2, assuming that the monoid M has the form M =M1 ×
M2 . . .×Mn and unit element 〈e1, e2, . . . , en〉.
For a monoidal n-tape automaton A, the term “monoidal language accepted
by A” (cf. Definition 2.1.10) is slightly misleading in the sense that n-tape
automata are not primarily used to accept or reject input. Often one tape
(projection to a fixed component) is used to consume given input and to
define the possible traversal paths from state to state. At each transition,
the other tapes produce an output. The role of input and output tapes may
be changed. In this sense, n-tape automata can be considered as devices for
generating output(s) for given input, and for “translating” input sequences.
Later, when looking at deterministic devices we introduce the notion of an
input language and an “output function”, which reflects this functionality
(vf. Remark 5.1.3).

Example 4.1.2 Let Σ := {a, b, c} denote an alphabet. We consider the
three monoidsM1 := Σ∗,M2 := 〈IN,+, 0〉, andM3 := 〈2Σ,∪, ∅〉. Let A be
the monoidal automaton over M1 ×M2 ×M3 with just one state q = 1,
which also represents an initial and a final state. The transition relation ∆
contains the triples 〈q, 〈a, 1, {a}〉, q〉, 〈q, 〈b, 1, {b}〉, q〉, and 〈q, 〈c, 1, {c}〉, q〉.
The automaton is shown in Figure 4.1. The monoidal language recognized
by A is the relation containing all triples 〈w, n,A〉 where w ∈ Σ∗, n = |w|,
and A is the set of letters occurring in w. For example, the null-path has
the label 〈ε, 0, ∅〉, and the label of the successful path

1→〈a,1,{a}〉 1→〈a,1,{a}〉 1→〈b,1,{b}〉 1→〈a,1,{a}〉 1

is 〈aaba, 4, {a, b}〉. Following the above perspective, the input aaba on the
first tape is translated into 4 = |aaba| on the second tape and into {a, b} on
the third tape. In this way A encodes the two homomorphisms h1 : w 7→ |w|
and h2 : w 7→ {σ ∈ Σ | σ occurs in w}.

4.1. MONOIDAL MULTI-TAPE AUTOMATA 65

Figure 4.1: Illustration for Example 4.1.2 - a monoidal 3-tape automaton
for computing the length and the set of symbols of input strings.

Figure 4.2: Illustration for Example 4.1.3 - a non-deterministic monoidal
2-tape automaton for generating morphological variants.

Example 4.1.3 Let Σ := {C, c, a, t, s}, let A be the monoidal automaton
over Σ∗×Σ∗ with set of states Q = {1, 2, 3, 4, 5}, set of initial states I := {1},
set of final states F := {4, 5} and the transition relation

∆ := {〈1, 〈C, c〉, 2〉, 〈2, 〈a, a〉, 3〉, 〈3〈t, t〉, 4〉, 〈3, 〈t, ts〉, 5〉}.

The automaton is shown in Figure 4.2. Following the above perspective,
the input Cat on the first tape has the two possible translations cat, cats.
The example demonstrates that non-deterministic two-tape automata can
be used to generate orthographic and inflectional variants for a given input
word.

Example 4.1.4 Sometimes words are assumed to be “generated” by a kind
of stochastic process. Each letter σ of the input alphabet comes with a prob-
ability p(σ), there is also a probability that the production of a string stops.
Figure 4.1.4 shows a 2-tape automaton that computes the probability for
generating words over the alphabet {a, b}. The two monoids are the free
monoid over alphabet {a, b} and the set of positive real numbers with multi-
plication. The probabilities for producing a letter respectively are p(a) = 0.6
and p(b) = 0.3. Path

1→〈a,0.6〉 1→〈a,0.6〉 1→〈b,0.3〉 1→〈ε,0.1〉 2

66CHAPTER 4. MONOIDALMULTI-TAPE AUTOMATAAND FINITE-STATE TRANSDUCERS

Figure 4.3: Illustration for Example 4.1.4 - a monoidal 2-tape automaton
for computing the probability for generating a word.

shows that the probability of generating aab under the formalized process is
0, 6 · 0.6 · 0.3 · 0.1.

In order to stress that the languages accepted by monoidal multi-tape au-
tomata are relations we introduce the following terminology.

Definition 4.1.5 A monoidal n-tape automaton relation is a monoidal lan-
guage recognized by a monoidal n-tape automaton.

4.2 Additional closure properties of monoidal multi-
tape automata

In Section 2.5 we have seen that e-transitions can be removed for all monoidal
finite-state automata, hence this result holds in particular for all monoidal
n-tape automata. In Section 2.2 it has been shown that the class of monoidal
languages recognized by monoidal finite-state automata over a fixed monoid
M is closed under union, concatenation, and Kleene-Star. Hence these clo-
sure properties in particular hold for monoidal n-tape automata over the
same monoid. We now want to show that the class of relations accepted by
monoidal multi-tape automata1 is closed under some additional operations.
Some of the following constructions are obtained in a more elegant way if
we add an e-loop to each state. We define

E(∆) := ∆ ∪ {〈q, e, q〉 | q ∈ Q}.

Obviously, replacing ∆ by E(∆) will not change the language recognized by
the underlying monoidal automaton.

Proposition 4.2.1

1We do not always fix the number n.

4.2. ADDITIONAL CLOSURE PROPERTIES OFMONOIDALMULTI-TAPE AUTOMATA67

1. (Cartesian product) Let A1 = 〈M1, Q1, I1, F1,∆1〉 and A2 = 〈M2, Q2, I2, F2,∆2〉
be two monoidal automata and let

∆ := {
〈
〈q1, q2〉 , 〈u1, u2〉 ,

〈
q′1, q

′
2

〉〉
|
〈
q1, u1, q

′
1

〉
∈ E(∆1) &

〈
q2, u2, q

′
2

〉
∈ E(∆2)}.

Then for the monoidal 2-tape automaton

A := 〈M1 ×M2, Q1 ×Q2, I1 × I2, F1 × F2,∆〉

we have L(A) = L(A1)× L(A2).

2. (Projection) Let A = 〈M1 ×M2 × . . .×Mn, Q, I, F,∆〉 be a monoidal
n-tape automaton and n ≥ 2. Let ∆×i := {〈q, ū×i, q′〉 | 〈q, ū, q′〉 ∈ ∆}.
Then for the monoidal (n− 1)-tape automaton

A′ := 〈M1 × . . .×Mi−1 ×Mi+1 × . . .×Mn, Q, F, I,∆×i〉

we have L(A′) = L(A)×i.

3. (Inverse relation for 2-tape automata) Let A = 〈M1 ×M2, Q, I, F,∆〉
be a monoidal 2-tape automaton and

∆′ := {〈q1, 〈v, u〉 , q2〉 | 〈q1, 〈u, v〉 , q2〉 ∈ ∆}.

Then for the monoidal 2-tape automaton

A′ =
〈
M2 ×M1, Q, I, F,∆

′〉
we have L(A′) = L(A)−1.

4. (Identity relation) Let A = 〈M, Q, I, F,∆〉 be a monoidal automaton
and

∆′ := {〈q1, 〈u, u〉 , q2〉 | 〈q1, u, q2〉 ∈ ∆}.

Then for the monoidal 2-tape automaton

A′ =
〈
M×M, Q, I, F,∆′

〉
we have L(A′) = IdL(A).

Proof. (Sketch) The simple proofs for Parts 2-4 are omitted. As to Part
1, let m1 ∈ L(A1) and m2 ∈ L(A2). Then there exist two successful paths
in A1 and A2 of the form

q1
1 → . . . → q1

r

q2
1 → . . . → q2

s

with labels m1 and m2, respectively. If the two paths have distinct length,
then we may add transitions of the form 〈q, e, q〉 (from one of the sets E(∆1),

68CHAPTER 4. MONOIDALMULTI-TAPE AUTOMATAAND FINITE-STATE TRANSDUCERS

E(∆2)) to the shorter path such that both paths have the same length. Note
that the label of the extended path is not modified. Once the two paths have
the same length, we may combine the first (second,..) transitions of the two
paths to a transition of ∆. We obtain a successful path for A with label
〈m1,m2〉. This shows that L(A1) × L(A2) ⊆ L(A). Conversely, from a
successful path in A with label 〈m1,m2〉, using obvious projections we can
reconstruct two successful paths with labels m1 and m2 where transitions
respectively are in E(∆1) and E(∆2). Leaving out the transitions of the
form 〈q, e, q〉 we obtain successful paths in A1 and A2 with labels m1 and
m2.

Corollary 4.2.2 The class of monoidal multi-tape automaton relations is
closed under Cartesian products, projections, and inverse relations.

Remark 4.2.3 In Remark 1.5.16 we have seen that projection is a monoid
homomorphism. The inversion of relations is a monoid homomorphism
M1 × M2 → M2 × M1. Also the identity function is a monoid homo-
morphism M1 → M1 ×M1. Hence the second, the third and the fourth
construction in Proposition 4.2.1 are special cases of our earlier observation
that monoidal languages accepted by monoidal finite-state automata are
closed under homomorphic images.

4.3 Classical multi-tape automata and letter au-
tomata

Definition 4.3.1 A classical n-tape automaton is an n-tape automaton
over a monoid that is a Cartesian product of free monoids.

Classical n-tape automata are often written in the simpler form

〈Σ1 × Σ2 × . . .× Σn, Q, I, F,∆〉 ,

specifying the underlying alphabets of the free component monoids. Note
that in a classical n-tape automaton the components of the transition labels
are arbitrary strings over the given alphabet. A formally more restricted
kind of classical n-tape automaton is captured by the following definition.

Definition 4.3.2 An n-tape letter automaton is a classical n-tape automa-
ton A = 〈Σ1 × Σ2 × . . .× Σn, Q, I, F,∆〉 such that ∆ ⊆ Q × (Σε

1 × . . . ×
Σε
n)×Q.

In a letter automaton each component of a transition label is either a single
symbol or the empty word. As to the recognition power, there is no difference
between classical n-tape automata and n-tape letter automata.

4.3. CLASSICALMULTI-TAPE AUTOMATAAND LETTER AUTOMATA69

Figure 4.4: Illustration for the proof of Proposition 4.3.3. A single transition
of an automaton with three tapes shown on the left-hand side is split into
several transitions with simple labels (letters or empty word) on the right-
hand side. Grey tones correspond to tapes, grey boxes to letters, white
boxes to ε.

Proposition 4.3.3 Let A be a classical n-tape automaton. Then A can be
converted to an equivalent n-tape letter automaton.

Proof. We substitute each transition〈
q′, 〈α1, α2, . . . , αn〉 , q′′

〉
∈ ∆

and k = max
i=1,...,n

|αi| where k > 1 with a sequence of k transitions of the form

〈
q′,
〈
α1

1, . . . , α
1
n

〉
, q′1
〉
,
〈
q′1,
〈
α2

1, . . . , α
2
n

〉
, q′2
〉
, . . . ,

〈
q′k−1,

〈
αk1 , . . . , α

k
n

〉
, q′′
〉

where q′1, q
′
2, . . . , q

′
k−1 are new non-final states and αij is the i-th symbol of

αj if i ≤ |αj | and αij = ε otherwise.

The construction principle used in the above proof is illustrated in Figure 4.4.

Example 4.3.4 The automaton shown in Figure 2.4 is a two-tape letter
automaton. The automaton in Figure 4.2 is a classical two-tape automaton.
It is not a letter automaton since one transition has a label 〈t, ts〉.

Further closure properties for classical n-tape automata

Classical n-tape automata have additional closure properties. For the fol-
lowing constructions it is important that the components of transition tuples
are always single symbols or the empty word. Hence we demand that the
input automata are letter automata.

Proposition 4.3.5 (Relational composition) Let

A1 = 〈Σ1 × Σ, Q1, I1, F1,∆1〉
A2 = 〈Σ× Σ2, Q2, I2, F2,∆2〉

be 2-tape letter automata. Let ∆ be the set of all tuples

〈〈q1, q2〉, 〈u,w〉, 〈q′1, q′2〉〉

70CHAPTER 4. MONOIDALMULTI-TAPE AUTOMATAAND FINITE-STATE TRANSDUCERS

where there exists v ∈ Σ∪{ε} such that 〈q1, 〈u, v〉, q′1〉 ∈ E(∆1) and 〈q2, 〈v, w〉, q′2〉 ∈
E(∆2). Then for the 2-tape automaton

A := 〈Σ1 × Σ2, Q1 ×Q2, I1 × I2, F1 × F2,∆〉

we have L(A) = L(A1) ◦ L(A2) (here ◦ denotes relational composition, cf.
Def. 1.1.3).

Note that relational composition only makes sense if the alphabet of tape 2
of A1 coincides with the alphabet of tape 1 of A2 as above.
Proof. We have to prove that L(A) = L(A1) ◦ L(A2).

(“⊆”) Let 〈α, γ〉 ∈ L(A). Then there exists a successful path in A of the
form

π =
〈
q′0, q

′′
0

〉
→〈α1,γ1〉 〈q′1, q′′1〉 . . .→〈αk,γk〉 〈q′k, q′′k〉 ,

such that 〈α1, γ1〉 ·̄ . . . ·̄ 〈αk, γk〉 = 〈α, γ〉. The definition of the transition
relation ∆ of A implies that there exists a sequence β1, β2, . . . , βk ∈ Σε

such that
〈
q′i−1, 〈αi, βi〉 , q′i

〉
∈ E(∆1) and

〈
q′′i−1, 〈βi, γi〉 , q′′i

〉
∈ E(∆1) for

i = 1, . . . , k. The two paths

π′ = q′0 →〈α1,β1〉 q′1 . . .→〈αk,βk〉 q′k
π′′ = q′′0 →〈β1,γ1〉 q′1 . . .→〈βk,γk〉 q′′k

are successful paths in A1 and A2 respectively. Hence for β = β1 · . . . · βk
we have 〈α, β〉 ∈ L(A1) and 〈β, γ〉 ∈ L(A2).

(“⊇”) Let 〈α, β〉 ∈ L(A1), 〈β, γ〉 ∈ L(A2), let l := |β|. Then there exists
a pair of successful paths

π′ = q′0 →〈α1,β′1〉 q′1 . . .→〈αk,β
′
k〉 q′k

π′′ = q′′0 →〈β
′′
1 ,γ1〉 q′′1 . . .→〈β

′′
m,γm〉 q′′m

such that 〈α1, β
′
1〉 · . . . · 〈αk, β′k〉 = 〈α, β〉, 〈β′′1 , γ1〉 · . . . · 〈β′′m, γm〉 = 〈β, γ〉,

q′0 ∈ I1, q
′′
0 ∈ I2, q

′
k ∈ F1, q

′′
m ∈ F2 and k,m ≥ l. Recall that all transition

labels β′i and β′′j on the common tape (second tape of A1, first tape of A2)
are single letters or the empty string ε. The two paths can have distinct
lengths, and at distinct positions we may have transitions with label ε on
the common tape. We now show that using identity transitions 〈q, 〈ε, ε〉 , q〉
from E(∆1) ∪ E(∆2) it is possible to “synchronize” both paths in order to
define a suitable path of A.

Since β′1·. . .·β′k = β′′1 ·. . .·β′′m, there exist two subsets of indices {i1, i2, . . . , il} ⊆
{1, . . . , k} and {j1, j2, . . . , jl} ⊆ {1, . . . ,m}, such that β′i1 = β′′j1 ∈ Σ, . . . , β′il =
β′′jl ∈ Σ and ∀i ∈ {1, . . . , k} \ {i1, i2, . . . , il} : β′i = ε and ∀j ∈ {1, . . . ,m} \
{j1, j2, . . . , jl} : β′′j = ε. Then we construct the following synchronized path
π in A - arrows “−→” indicate that at this step we consume a letter on each

4.3. CLASSICALMULTI-TAPE AUTOMATAAND LETTER AUTOMATA71

tape:

π =
〈
q′0, q

′′
0

〉
→〈α1,ε〉 〈q′1, q′′0〉 . . .→〈αi1−1,ε〉 〈q′i1−1, q

′′
0

〉
→〈ε,γ1〉

〈
q′i1−1, q

′′
1

〉
. . .→〈ε,γj1−1〉 〈q′i1−1, q

′′
j1−1

〉
−→〈αi1 ,γj1〉

〈
q′i1 , q

′′
j1

〉
→〈αi1+1,ε〉 〈q′i1+1, q

′′
j1

〉
. . .→〈αi2−1,ε〉 〈q′i2−1, q

′′
j1

〉
→〈ε,γj1+1〉 〈q′i2−1, q

′′
j1+1

〉
. . .→〈ε,γj2−1〉 〈q′i2−1, q

′′
j2−1

〉
−→〈αi2 ,γj2〉

〈
q′i2 , q

′′
j2

〉
...

→
〈
αil−1+1,ε

〉 〈
q′il−1+1, q

′′
jl−1

〉
. . .→〈αil−1,ε〉

〈
q′il−1, q

′′
jl−1

〉
→

〈
ε,γjl−1+1

〉 〈
q′il−1, q

′′
jl−1+1

〉
. . .→〈ε,γjl−1〉 〈q′il−1, q

′′
jl−1

〉
−→〈αil ,γjl〉

〈
q′il , q

′′
jl

〉
→〈αil+1,ε〉 〈q′il+1, q

′′
jl

〉
. . .→〈αk,ε〉

〈
q′k, q

′′
jl

〉
→〈ε,γjl+1〉 〈q′k, q′′jl+1

〉
. . .→〈ε,γm〉

〈
q′k, q

′′
m

〉
Clearly π is a successful path of A and its label is 〈α, γ〉.

Proposition 4.3.6 (n-way reverse relation) Let

A1 = 〈Σ∗1 × Σ∗2 × . . .× Σ∗n, Q, F, I,∆〉

be a classical n-tape automaton. Let ∆′ = {〈q2, ρ̄(ā), q1〉 | 〈q1, ā, q2〉 ∈ ∆}.
Then for the n-tape automaton

A =
〈
Σ∗1 × Σ∗2 × . . .× Σ∗n, Q, F, I,∆

′〉
we have R(A) = ρ̄(R(A1)).

Proof. Similarly as in Proposition 3.3.4 the proof of the property follows
directly from the definitions.

Remark 4.3.7 In [Ganchev et al., 2008] the n-tape one-letter automata are
introduced which can be considered as n-tape letter automata for which the
labels have ε on all tapes but one. All properties in this section hold for
n-tape one-letter automata as well.

72CHAPTER 4. MONOIDALMULTI-TAPE AUTOMATAAND FINITE-STATE TRANSDUCERS

4.4 Monoidal finite-state transducers

In the literature there are distinct notions of finite-state transducers. Typ-
ically these notions refer to 2-tape finite-state devices that are used for
translational tasks: an input string, to be consumed on the first tape, is
translated into an output element given by the composition of the corre-
sponding labels of the second tape. Some authors use the notion only for
deterministic devices (we do not follow this line). We now generalize this
concept. Monoidal transducers in our sense also have two tapes. Since
monoidal transducers are meant to represent translation devices we always
demand that the first tape reads conventional strings over a finite alpha-
bet as opposed to elements of an arbitrary monoid. However, the second
tape may run over any monoid. In this section, after introducing monoidal
finite-state transducers we define some notions that become relevant when
we want to determinize transducers or simplify the structure.

Definition 4.4.1 A monoidal finite-state transducer is a monoidal 2-tape
automaton T = 〈Σ∗ ×M, Q, I, F,∆〉 where the underlying product monoid
has the form Σ∗×M for some alphabet Σ. If ∆ ⊆ Q× (Σε×M)×Q, then
T is called a monoidal letter transducer. A variant of Proposition 4.3.3 is
the following.

Proposition 4.4.2 Each monoidal finite-state transducer can be converted
to an equivalent monoidal letter transducer.

Proof. This is an obvious variant of the proof of Proposition 4.3.3.

For example, the 2-tape automata shown in Figures 4.3 and 4.2 are monoidal
letter transducers. Note that finite-state transducers in our sense in general
are non-deterministic machines, which means that an input string can be
translated to distinct output elements. We shall look at deterministic vari-
ants of the concept in the following chapter. In a monoidal finite-state
transducer, the first component of each transition label is a letter or the
empty string. Hence, when ignoring the second components we obtain a
classical finite-state automaton.

Definition 4.4.3 Let T = 〈Σ∗ ×M, Q, I, F,∆〉 be a monoidal finite-state
transducer. Let

∆1 = {〈p, w, q〉 | ∃m ∈M : 〈p, 〈w,m〉, q〉 ∈ ∆}.

Then A = 〈Σ, Q, I, F,∆1〉 is called the underlying finite-state automaton of
T .

The underlying automaton is the projection of T (cf. Part 2 of Proposi-
tion 4.2.1) where we “cross out” the second tape. The following definitions
become relevant when trying to determinize transducers.

4.4. MONOIDAL FINITE-STATE TRANSDUCERS 73

Definition 4.4.4 A monoidal finite-state transducer T = 〈Σ∗×M, Q, I, F,∆〉
is functional iff the language L(T) represents a partial function Σ∗ → M.
In this situation, T is said to represent the function L(T).

Definition 4.4.5 A monoidal finite-state transducer T = 〈Σ∗×M, Q, I, F,∆〉
is infinitely ambiguous if the relation L(T) is infinitely ambiguous (cf. Def-
inition 1.1.6).

Clearly, functional transducers are not infinitely ambiguous. Following Def-
inition 2.1.12, monoidal multi-tape automata are called equivalent if they
have the same monoidal language. In what follows we want to simplify
a given monoidal finite-state transducer, say, with output in the monoid
〈M, ◦, e〉, in the sense that in the new transducer at each transition step
the first tape always reads a letter. In other words, we want to get rid of
transitions where the first component of the transition label is the empty
word.

Definition 4.4.6 A monoidal finite-state transducer T = 〈Σ∗ ×M, Q, I, F,∆〉
is said to be real-time if ∆ ⊆ Q× (Σ×M)×Q.

Obviously, a real-time transducer cannot produce output distinct from e for
the empty input string. Hence, if the language of a given source transducer
contains a pair 〈ε,m〉 such that m 6= e, we cannot find an equivalent real-
time transducer. This motivates the following definition.

Definition 4.4.7 Two monoidal finite-state transducers T1 and T2 over the
same monoid monoid 〈M, ◦, e〉 are equivalent up to ε if L(T1) \ ({ε}×M) =
L(T2) \ ({ε} ×M).

Proposition 4.4.8 Let T = 〈Σ∗ ×M, Q, I, F,∆〉 be a monoidal letter trans-
ducer. Assume that the set of all path labels of the form 〈ε,m〉 in T is finite.
Then there exists a real-time transducer T ′ equivalent to T up to ε.

Proof. Similarly as in the construction presented in Proposition 2.5.6 we
introduce a new set of transitions ∆′ which consists of all transitions of the
form 〈q1, 〈σ, uvw〉 , q2〉 such that σ ∈ Σ, there exist states q′, q′′ ∈ Q and
entries 〈q1, 〈ε, u〉 , q′〉 ∈ ∆∗, 〈q′, 〈σ, v〉 , q′′〉 ∈ ∆ and 〈q′′, 〈ε, w〉 , q2〉 ∈ ∆∗. See
the illustration in Figure 4.5 for the construction of ∆′. Our assumption
on path labels ensures that ∆′ is finite. Consider the transducer T ′ =
〈Σ∗ ×M, Q, I, F,∆′〉. For each successful path of T with non-empty input
we find a corresponding successful path of T ′ with the same input and
output. The same holds in the converse direction. It follows that T ′ is
equivalent to T up to ε.

As a matter of fact the above condition on path labels always holds if the
monoidal letter transducer T does not have any ε-cycle.

74CHAPTER 4. MONOIDALMULTI-TAPE AUTOMATAAND FINITE-STATE TRANSDUCERS

Figure 4.5: Illustration for ε-removal in transducers. New transition links
(dashed line) with joined output are added to ∆′ before ε-transitions are
removed.

4.5 Classical finite-state transducers

Definition 4.5.1 A classical finite-state transducer is a transducer

T = 〈Σ∗1 × Σ∗2, Q, I, F,∆〉

where the second tape runs over a free monoid Σ∗2.

Classical letter transducers are defined in accordance with Definition 4.4.1.
When looking at classical transducers, the following notions are useful.

Definition 4.5.2 A binary regular string relation is a binary string relation
in the sense of Definition 1.4.6 which is regular (i.e., a monoidal regular 2-
relation in the sense of Definition 2.3.4).

Example 4.5.3 Let Σ = {σ1 . . . , σn} be an alphabet, let L ⊆ Σ∗ be a
regular language. Then

1. Id(Σ∗) is a binary regular string relation. We have Id(Σ∗) = ({〈σ1, σ1〉}∪
. . . ∪ {〈σn, σn〉})∗.

2. Id(L) is a binary regular string relation.

As to Point 1 note that Id(Σ∗) = ({〈σ1, σ1〉} ∪ . . .∪ {〈σn, σn〉})∗. The proof
of Point 2 is left to the reader.

The following examples show that binary regular string relations can be
infinitely ambiguous.

Example 4.5.4 Let Σ = {a, b}. Then R1 := {〈ε, bn〉 | n ∈ IN} is a binary
regular string relation. We have R1 = {〈ε, b〉}∗. Also R2 := {〈a, bn〉 | n ∈
IN} = {〈a, ε〉} ·̄ R1 is an infinitely ambigious binary string relation.

The following characterization is a direct consequence of Theorem 2.4.2.

Theorem 4.5.5 The binary regular string relations are exactly the relations
accepted by classical finite-state transducers.

4.6. DECIDING FUNCTIONALITY OF CLASSICAL FINITE-STATE TRANSDUCERS75

Definition 4.5.6 A regular string function is a binary regular string rela-
tion that is a partial function.

In the literature, regular string functions are also called rational functions.
In the following chapters we study how regular string functions can be rec-
ognized by means of deterministic finite-state devices. At this point, the
following observations become relevant. Recall Definition 4.4.5.

Proposition 4.5.7 A trimmed classical finite-state transducer T is infinitely
ambiguous iff there exists a loop in T with a label 〈ε, u〉, where u 6= ε.

Proof. Let T = 〈Σ∗1 × Σ∗2, Q, I, F,∆〉. If a loop of the above form exists,
then the transducer is obviously infinitely ambiguous.
Let us now assume that the transducer is infinitely ambiguous. Without
loss of generality we assume that the transducer is 〈ε, ε〉-free. Let α ∈ Σ∗1
be a string such that the set of translations L(T) ∩ ({α} × Σ∗2) is infinite.
Then there exists an infinite number of successful paths with a label of the
form 〈α, β〉. Since the set of transitions is finite there exists a successful
path π of this form of length > (|α| + 1)|Q|. Since at most |α| transitions
on the path have a nonempty word as input, there exists a subpath π′ in
π of length > |Q| that has the empty word as input label. Therefore there
exists a subpath π′′ of π′ which represents a loop. The input label is ε and
since there are no 〈ε, ε〉 transitions its output label is non-empty.

Remark 4.5.8 If T is a trimmed classical finite-state transducer and T is
not infinitely ambiguous, then it follows from Proposition 4.5.7 that the set
of all path labels of the form 〈ε, w〉 in T is finite. Hence we can build a
real-time transducer T ′ equivalent to T up to ε.

4.6 Deciding functionality of classical finite-state
transducers

A necessary precondition needed for the determinization of transducers (to
be described in Chapter 5 and Chapter 6) is the functionality of the trans-
ducer language. Schützenberger [Schützenberger, 1975] was the first to show
that it is decidable if a given transducer is functional. In this section we
present a procedure for deciding the functionality of a given classical finite-
state transducer based on the approach presented in [Béal et al., 2003]. We
first show how to decide the functionality of classical real-time finite-state
transducers. At the end of the section we consider the general case of clas-
sical finite-state transducers.

Functionality means that if an input string can be processed on distinct
successful paths, the outputs of all paths must be identical. Partial initial
outputs must be compatible in the sense that they have a joint extension.

76CHAPTER 4. MONOIDALMULTI-TAPE AUTOMATAAND FINITE-STATE TRANSDUCERS

We start looking at a function related to the notion of the longest common
prefix of two strings and its properties. This function is later used to check
compatibility of initial outputs and identity of full outputs for the same
input string.

Definition 4.6.1 Let Σ be a finite alphabet. The advance function ω :
(Σ∗ × Σ∗)× (Σ∗ × Σ∗)→ Σ∗ × Σ∗ is defined as:

ω(〈x, y〉 , 〈α, β〉) =
〈
c−1xα, c−1yβ

〉
, where c = xα ∧ yβ.

The iterated advance function ω∗ : (Σ∗ × Σ∗) × (Σ∗ × Σ∗)∗ → (Σ∗ × Σ∗) is
defined inductively (note that ε and U denote sequences of pairs of strings):

• ω∗(〈x, y〉 , ε) = 〈x, y〉,

• ω∗(〈x, y〉 , U 〈α, β〉) = ω(ω∗(〈x, y〉 , U), 〈α, β〉).

We say that ω(〈x, y〉 , 〈α, β〉) (resp. ω∗(〈x, y〉 , U)) is the advance of 〈x, y〉
with 〈α, β〉 (resp. U).
The advance ω(〈x, y〉 , 〈α, β〉) = 〈u, v〉 of the pair of words 〈x, y〉 ∈ Σ∗ × Σ∗

with 〈α, β〉 ∈ Σ∗ × Σ∗ is said to be balancible if u = ε or v = ε.

Example 4.6.2 Since abbc = abbc ∧ abbccc we have

ω(〈abb, ε〉 , 〈c, abbccc〉) = 〈(abbc)−1abbc, (abbc)−1abbccc〉 = 〈ε, cc〉

and since ccdd ∧ ccd = ccd we have

ω∗(〈abb, ε〉 , 〈c, abbccc〉 〈ccdd, d〉) = ω∗(〈ε, cc〉 , 〈ccdd, d〉) = 〈d, ε〉 .

Intuitively, the (iterated) advance function is meant to measure for two
strings “growing to the right” how much the two strings differ when ignoring
the longest common prefix. If the advance is balancible, then the advance
function shows how much one of the strings is “ahead” of the other string.
If the strings are not balancible, then they cannot be extended to the same
string. The next proposition formalizes these properties.

Proposition 4.6.3 For all x, y, α′, β′, α′′, β′′ ∈ Σ∗:

1. ω(ω(〈x, y〉 , 〈α′, β′〉), 〈α′′, β′′〉) = ω(〈x, y〉 , 〈α′α′′, β′β′′〉).

2. ω(〈x, y〉 , 〈α, β〉) = 〈ε, ε〉 iff xα = yβ.

3. If the advance 〈u, v〉 of 〈x, y〉 with 〈α, β〉 is balancible (i.e. ω(〈x, y〉 , 〈α, β〉) =
〈u, v〉 and u = ε or v = ε), then x · α · v = y · β · u.

4.6. DECIDING FUNCTIONALITY OF CLASSICAL FINITE-STATE TRANSDUCERS77

4. If the advance 〈u, v〉 of 〈x, y〉 with 〈α, β〉 is not balancible (i.e. ω(〈x, y〉 , 〈α, β〉) =
〈u, v〉 and u 6= ε and v 6= ε), then for all z, w ∈ Σ∗ we have x · α · z 6=
y · β · w.

Proof. (1.) Let c := xα′∧yβ′. Using the definition of the advance function
and Proposition 1.3.6, Properties 1, 2 we obtain

ω(〈x, y〉 ,
〈
α′α′′, β′β′′

〉
)

=
〈
(xα′α′′ ∧ yβ′β′′)−1xα′α′′, (xα′α′′ ∧ yβ′β′′)−1yβ′β′′

〉
=

〈
(cc−1xα′α′′ ∧ cc−1yβ′β′′)−1cc−1xα′α′′, (cc−1xα′α′′ ∧ cc−1yβ′β′′)−1cc−1yβ′β′′

〉
=1

〈
(c(c−1xα′α′′ ∧ c−1yβ′β′′))−1cc−1xα′α′′, (c(c−1xα′α′′ ∧ c−1yβ′β′′))−1cc−1yβ′β′′

〉
=2

〈
(c−1xα′α′′ ∧ c−1yβ′β′′)−1c−1xα′α′′, (c−1xα′α′′ ∧ c−1yβ′β′′)−1c−1yβ′β′′

〉
= ω(

〈
c−1xα′, c−1yβ′

〉
,
〈
α′′, β′′

〉
)

= ω(ω(〈x, y〉 ,
〈
α′, β′

〉
),
〈
α′′, β′′

〉
).

(2.) Clearly, if xα = yβ, then ω(〈x, y〉 , 〈α, β〉) = 〈ε, ε〉. If xα 6= yβ and
c = xα∧yβ, then either c 6= xα or c 6= yβ and therefore either u = c−1xα 6= ε
or v = c−1yβ 6= ε.
(3.) Without loss of generality we assume that u = ε. Then xα ∧ yβ = xα
and v = (xα)−1yβ. Therefore xαv = xα(xα)−1yβ = yβ = yβu.
(4.) Let c := xα ∧ yβ and c−1xα = u 6= ε, c−1yβ = v 6= ε and z, w ∈ Σ∗.
Proposition 1.3.6, Properties 3, 4 show that uz ∧ vw = ε and therefore
ω(〈u, v〉 , 〈z, w〉) = 〈uz, vw〉 6= 〈ε, ε〉. From (1.) we obtain ω(〈u, v〉 , 〈z, w〉) =
ω(ω(〈x, y〉 , 〈α, β〉), 〈z, w〉) = ω(〈x, y〉 , 〈αz, βw〉) 6= 〈ε, ε〉. Hence from (2.)
we obtain xαz 6= yβw.

After this preparation we now look at the problem to decide if a given
classical real-time finite-state transducer is functional.

Definition 4.6.4 Let T = 〈Σ∗I × Σ∗, Q, I, F,∆〉 be a classical real-time
finite-state transducer (∆ ⊆ Q× (ΣI ×Σ∗)×Q). The squared output trans-
ducer of T is the classical 2-tape automaton

ST =
〈
Σ∗ × Σ∗, Q×Q, I × I, F × F,∆′

〉
where ∆′ is the set of all transitions of the form〈〈

q′1, q
′
2

〉
, 〈α1, α2〉 ,

〈
q′′1 , q

′′
2

〉〉
where there exists a ∈ Σ such that 〈q′1, 〈a, α1〉 , q′′1〉 ∈ ∆, and 〈q′2, 〈a, α2〉 , q′′2〉 ∈
∆.

The squared output transducer for a transducer T combines pairs of paths
in T given by the same input sequence. However, the common input is
suppressed and only the two output strings are represented. See Figure 4.6
for an illustration.

78CHAPTER 4. MONOIDALMULTI-TAPE AUTOMATAAND FINITE-STATE TRANSDUCERS

Figure 4.6: Illustration of the squared output transducer for a classical trans-
ducer. The classical transducer partially shown on the left-hand side has
three transitions from initial states 1, 2, 3.

Proposition 4.6.5 Let T = 〈Σ∗I × Σ∗, Q, I, F,∆〉 be a classical real-time
finite-state transducer T = 〈Σ∗I × Σ∗, Q, I, F,∆〉. Then T is functional iff
for each successful path with label 〈α, β〉 in the squared output transducer ST
we have α = β.

Proof. Let T be as in the proposition. T is functional iff for all u ∈ Σ∗

and all pairs of the form 〈u, α〉 , 〈u, β〉 ∈ L(T) we have α = β. For u = ε the
property is true since T is real-time and therefore α = β = ε. Let |u| > 0. If
〈u, α〉 , 〈u, β〉 ∈ L(T), then there exist two successful paths in T with labels
〈u, α〉 and 〈u, β〉. Since T is real-time the label of the i-th transition on each
of the two paths is the i-th letter of u and the two outputs of the paths give
rise to a successful path with label 〈α, β〉 in ST . Conversely, if there exists
a successful path with label 〈α, β〉 in ST , then for some u ∈ Σ∗ we have
〈u, α〉 , 〈u, β〉 ∈ L(T). Hence T is functional iff for each successful path in
ST with label 〈α, β〉 we have α = β.

Definition 4.6.6 Let T = 〈Σ∗ × Σ∗, Q, I, F,∆〉 be a classical finite-state
transducer. The pair 〈u, v〉 ∈ Σ∗×Σ∗ is called an admissible advance of the
state q ∈ Q if there exists a path

π : q0 →〈α1,β1〉 q1 →〈α2,β2〉 q2 . . .→〈αn,βn〉 qn = q

starting from an initial state q0 ∈ I such that

〈u, v〉 = ω∗(〈ε, ε〉 , 〈α1, β1〉 . . . 〈αn, βn〉).

By Adm(q) we denote the set of all admissible advances of the state q ∈ Q.

Corollary 4.6.7 Let T = 〈Σ∗I × Σ∗, Q, I, F,∆〉 be a classical real-time finite-
state transducer. Let ST be the squared output transducer of T , with set of
final states F ′ = F × F . Then T is functional iff for each p ∈ F ′ we have
Adm(p) ⊆ {〈ε, ε〉}.

4.6. DECIDING FUNCTIONALITY OF CLASSICAL FINITE-STATE TRANSDUCERS79

Proof. Clearly, the admissible advances of the final states are exactly the
advances of 〈ε, ε〉 with the labels of the successful paths in ST . Part 2 of
Proposition 4.6.3 shows that an admissible advance of a final states is 〈ε, ε〉
iff for the label 〈α, β〉 of the corresponding successful path in ST we have
α = β. Using Proposition 4.6.5 the result follows.

Proposition 4.6.8 Let T = 〈Σ∗I × Σ∗, Q, I, F,∆〉 be a classical real-time
finite-state transducer, let ST be the squared output transducer of T , let p
be a state on a successful path of ST . Assume that

1. there exists 〈u, v〉 ∈ Adm(p) such that 〈u, v〉 is not balancible (i.e.,
u 6= ε and v 6= ε), or

2. |Adm(p)| > 1.

Then T is not functional.

Proof. Since p is on a successful path there exists a path π′ starting at p
and ending in a final state q of ST . Let π′ be such a path and 〈α′, β′〉 be
the label of π′.
First, let 〈u, v〉 ∈ Adm(p) be not balancible. There exist a path π start-
ing from a state q0 ∈ I × I and ending in p with label 〈α, β〉 such that
ω(〈ε, ε〉 , 〈α, β〉) = 〈u, v〉. Then according to Proposition 4.6.3, Point 4 we
have αα′ 6= ββ′. Since 〈αα′, ββ′〉 is the label of a successful path in ST ,
from Proposition 4.6.5 it follows that T is not functional.
Now let 〈u1, v1〉 , 〈u2, v2〉 ∈ Adm(p) be balancible admissible advances. If T
is functional, then from Corollary 4.6.7 we obtain ω(〈ui, vi〉 , 〈α′, β′〉) = 〈ε, ε〉
for i = 1, 2. From Proposition 4.6.3 Point 2 it follows that uiα

′ = viβ
′ and

therefore |ui| − |vi| = |β′| − |α′| for i = 1, 2. Since 〈u1, v1〉 and 〈u2, v2〉
are balancible we assume without loss of generality that v1 = ε, |ui| ≥ |vi|
(i = 1, 2) and therefore v2 = ε. Hence u1α

′ = u2α
′ = β′ and therefore

u1 = u2.

Example 4.6.9 Consider the squared output transducer shown in Fig-
ure 4.6. The admissible advance of state 〈4, 6〉 contains 〈c, d〉, which is not
balancible. Hence, if this state is on a successful path, then the underlying
transducer cannot be functional.

The following two propositions provide a method for the effective con-
struction of the function Adm.

Proposition 4.6.10 Let T be a classical real-time finite-state transducer
and let ST = 〈Σ∗ × Σ∗, Q×Q, I × I, F × F,∆′〉 be the squared output trans-
ducer of T . Then the pair 〈u, v〉 ∈ Σ∗ × Σ∗ is an admissible advance of
q ∈ Q×Q iff

80CHAPTER 4. MONOIDALMULTI-TAPE AUTOMATAAND FINITE-STATE TRANSDUCERS

• q ∈ I × I and 〈u, v〉 = 〈ε, ε〉, or

• there exist a state q′ ∈ Q×Q, an admissible advance 〈u′, v′〉 of q′ and
a transition 〈q′, 〈α, β〉 , q〉 ∈ ∆′ such that 〈u, v〉 = ω(〈u, v〉 , 〈α, β〉).

Proof. Using Point 1 of Proposition 4.6.3, the proof follows directly from
the observation that 〈u, v〉 ∈ Adm(q) iff there exists a path π : q0 →〈α1,β1〉

q1 →〈α2,β2〉 q2 . . .→〈αn,βn〉 qn = q starting from q0 ∈ I × I such that 〈u, v〉 =
ω∗(〈ε, ε〉 , 〈α1, β1〉 . . . 〈αn, βn〉).

Corollary 4.6.11 Let T be a classical real-time finite-state transducer and
let ST = 〈Σ∗ × Σ∗, Q×Q, I × I, F × F,∆′〉 be the squared output transducer
of T . Let the functions Adm(k) : Q×Q→ 2Σ∗×Σ∗ be defined inductively:

1. Adm(0)(q) :=

{
{〈ε, ε〉} if q ∈ I × I
∅ otherwise.

2. Adm(k+1)(q) := Adm(k)(q) ∪
{{ω(〈u′, v′〉 , 〈α, β〉)} | 〈q′, 〈α, β〉 , q〉 ∈ ∆′, 〈u′, v′〉 ∈ Adm(k)(q′)}.

Then Adm =
⋃∞
k=0 Adm

(k).

General case – classical finite-state transducers

Corollary 4.6.12 Let T be a classical finite-state transducer. Then T is
functional iff

1. |({ε} × Σ∗) ∩ L(T)| ≤ 1;

2. T is not infinitely ambiguous;

3. T ′ is functional, where T ′ is the classical real-time finite-state trans-
ducer equivalent to T up to ε.

Procedure for deciding functionality. The propositions above pro-
vide us with a procedure for deciding the functionality of a given classical
finite-state transducer T with set of states Q. After checking functionality
for empty input in a special subprocedure we convert T into a real-time
transducer T ′ equivalent up to ε. The remaining procedure starts with
building the corresponding trimmed squared output transducer ST ′ first and
constructing the admissible advances for its states applying Corollary 4.6.11
afterwards. If during the construction we obtain two distinct admissible
advances for a given state (which lies on a successful path) or if there is an
admissible advance which is not balancible, or if an admissible advance of
a final state is not equal to 〈ε, ε〉, then the construction terminates, T ′ is
not functional. Otherwise at some step k ≤ |Q|2 the construction of the
sets Adm(k)(q) stabilizes for all states q ∈ Q ×Q and T ′ is functional. See
Figure 4.7 for an illustration.

4.6. DECIDING FUNCTIONALITY OF CLASSICAL FINITE-STATE TRANSDUCERS81

Figure 4.7: Illustration of the procedure for deciding functionality of a clas-
sical real-time finite-state transducer. At the bottom we see the squared
output transducer for the input transducer on top. All states 〈n, n〉 have
admissible advance 〈ε, ε〉. The final states 〈4, 5〉 and 〈5, 4〉 respectively have
admissible advance 〈ε, s〉 and 〈s, ε〉 distinct from 〈ε, ε〉, which shows that
the input transducer is not functional.

82CHAPTER 4. MONOIDALMULTI-TAPE AUTOMATAAND FINITE-STATE TRANSDUCERS

Chapter 5

Deterministic transducers

Finite-state transducers as introduced in the previous chapter are non-deter-
ministic rewriting devices. In this chapter we explore deterministic finite-
state transducers. Obviously, it only makes sense to ask for determinism
if we restrict attention to transducers with a functional input-output be-
haviour. In this chapter we focus on transducers that are deterministic on
the input tape (called sequential or subsquential transducers). The subse-
quential finite-state transducers are widely used for text processing [Mohri,
1996, Roche and Schabes, 1997b] and speech processing [Mohri et al., 2008].
The theory of sequential finite-state transducers has been studied in [Eilen-
berg, 1974, Berstel, 1979, Sakarovitch, 2009]. We shall see that only a
proper subset of all regular string functions can be represented by this kind
of device. In the next chapter we introduce bimachines, a class of determin-
istic finite-state devices that exactly represents the class of all regular string
functions.

5.1 Deterministic transducers and subsequential
transducers

As discussed in Section 3.7 the notion of determinism is not natural for all
monoidal automata. We now look at the special case of monoidal finite-state
transducers. One natural notion of determinism is the following.

Definition 5.1.1 A monoidal finite-state transducer T = 〈Σ∗ ×M, Q, I, F,∆〉
is deterministic if the following conditions hold:

1. |I| = 1, i.e., there is exactly one initial state;

2. δ := {〈q1, a, q2〉 | ∃m ∈M : 〈q1, 〈a,m〉 , q2〉 ∈ ∆} is a (partial) function
Q× Σ→ Q;

3. λ := {〈q1, a,m〉 | ∃q2 ∈ Q : 〈q1, 〈a,m〉 , q2〉 ∈ ∆} is a (partial) function
Q× Σ→M ;

83

84 CHAPTER 5. DETERMINISTIC TRANSDUCERS

The functions δ and λ are respectively called the transition function and the
transition output function, and ∆ is called the transition relation. Note that
δ and λ have the same domain since both are derived from ∆. Deterministic
monoidal finite-state transducers are also denoted in the form

T = 〈Σ,M, Q, q0, F, δ, λ〉

where I = {q0} and ∆ = {〈q, 〈a, λ(q, a)〉 , δ(q, a)〉 | 〈q, a〉 ∈ dom(δ)}.

Classical deterministic finite-state transducers are defined accordingly, de-
manding that the monoidM is free. Condition 2 says that when only looking
at the first (string) tape, a deterministic transducer acts as a classical de-
terministic finite-state automaton. Condition 3 ensures that in each state
the translation of the following alphabet symbol is unique. In the literature,
distinct types of deterministic transducers were introduced and there is no
generally accepted terminology.

Remark 5.1.2 Let T = 〈Σ,M, Q, q0, F, δ, λ〉 be a deterministic monoidal
finite-state transducer. The underlying finite-state automaton (cf. Def. 4.4.3)
AT = 〈Σ, Q, q0, F, δ〉 is a classical deterministic finite-state automaton such
that L(AT) = L(T)×2. L(AT) is called the input language of the transducer.

For a deterministic monoidal finite-state transducer T , the generalized tran-
sition function δ∗ is simply the generalized transition function of the un-
derlying deterministic finite-state automaton. The generalized transition
output function λ∗ : Q × Σ∗ → M of T has the same domain as δ∗. For
all q ∈ Q we define λ∗(q, ε) := e. Here e denotes the monoid unit element.
Furthermore, if q ∈ Q, t ∈ Σ∗, σ ∈ Σ and if δ∗(q, tσ) is defined we define
λ∗(q, tσ) := λ∗(q, t) ◦ λ(δ∗(q, t), σ). Here “◦” denotes the monoid operation.

Remark 5.1.3 The monoidal language L(T) recognized by a deterministic
monoidal finite-state transducer T (cf. Definition 2.1.10) can be regarded
as a function which maps words of the input language to an output monoid
element. We call this function the output function OT : L(T)×2 → M of
the transducer. Alternatively the output function can be defined as OT (t) =
λ∗(q0, t) for t ∈ L(T)×2.

We now introduce another deterministic translation device. Its special
feature is that final states come with their own output. As a simple motiva-
tion, consider the regular function R := 〈a, c〉 ∪ 〈ab, d〉. Since deterministic
monoidal finite-state transducers at each transition read and translate a sin-
gle input symbol, and since translation is compositional, no deterministic
monoidal finite-state transducer can represent R: if a is translated into c,
then the translation for ab cannot be d. Assume now we use a more general
notion of transducer where final states may produce output strings when

5.1. DETERMINISTIC TRANSDUCERS AND SUBSEQUENTIAL TRANSDUCERS85

Figure 5.1: Subsequental transducer recognizing the regular function R =
〈a, c〉 ∪ 〈ab, d〉.

reached at the end of the input string. Then we may have a final state
reached with input a with output c and another final state reached with
input ab with output d. In this way, R can be represented without sacri-
fying determinism. The transducer is shown in Figure 5.1. Equivalently,
we could add special 〈ε, w〉-transitions to new final states without outgoing
transitions. However, this would destroy the deterministic behaviour of the
transducer.

Definition 5.1.4 A monoidal subsequential transducer is a tuple

T = 〈Σ,M, Q, q0, F, δ, λ,Ψ〉

where 〈Σ,M, Q, q0, F, δ, λ〉 is a deterministic monoidal finite-state trans-
ducer and Ψ : F → M is the state output function with domain F . The
underlying automaton of T is the deterministic finite-state automaton AT =
〈Σ, Q, q0, F, δ〉 and the input language of T is the set

L(T)×2 = L(AT) = {t ∈ Σ∗ | δ∗(q0, t) ∈ F}.

A classical subsequential transducer is a monoidal subsequential transducer
where the monoidM is the free monoid Σ′∗ over a finite output alphabet Σ′.
Classical subsequential transducer are denoted also with 〈Σ,Σ′, Q, q0, F, δ, λ,Ψ〉.

When considering classical subsequential transducers where the output monoid
M is Σ∗ we use the simpler notation 〈Σ, Q, q0, F, δ, λ,Ψ〉. The subsequential
transducer reads words of the input language in a deterministic manner.
Combining the output of the transitions and the output of the final state
reached at the end, each accepted input word is mapped to a unique monoid
element. The transducer thus represents a (partial) function.

Definition 5.1.5 Let T = 〈Σ,M, Q, q0, F, δ, λ,Ψ〉 be a monoidal subse-
quential transducer. The output function OT : L(T)×2 →M of T is defined
as follows (“·” represents the monoid operation):

∀t ∈ L(T)×2 : OT (t) := λ∗(q0, t) ·Ψ(δ∗(q0, t)).

Note that final states only produce an output when reached at the end of
the input.

Definition 5.1.6 A monoidal deterministic or subsequential transducer T
is said to represent the function f : Σ∗ →M iff OT = f .

86 CHAPTER 5. DETERMINISTIC TRANSDUCERS

Definition 5.1.7 Let T = 〈Σ,M, Q, q0, F, δ, λ,Ψ〉 be a monoidal subse-
quential transducer. The output function for q ∈ Q is

OqT : Σ∗ →M; α 7→ λ∗(q, α) ·Ψ(δ∗(q, α)).

The function is defined for α ∈ Σ∗ iff δ∗(q, α) is defined and in F .

Definition 5.1.8 Let T = 〈Σ,M, Q, q0, F, δ, λ,Ψ〉 be a monoidal subse-
quential transducer. The states q1, q2 ∈ Q are equivalent iff Oq1T = Oq2T .

We write q1 ≡ q2 to indicate that two states q1 and q2 are equivalent. When
translating texts, devices are needed which produce an output for any input
text. This leads to the following notion.

Definition 5.1.9 A total monoidal subsequential transducer is a subsequen-
tial transducer

T = 〈Σ,M, Q, q0, F, δ, λ,Ψ〉

where F = Q and δ and λ are total functions over Q× Σ.

Direct composition of subsequential transducers

It is simple to give a direct construction for composition of subsequential
transducers. For the following proposition and its proof, “·” represents con-
catenation of strings, “◦” denotes functional composition, and “�” denotes
the monoid operation. An interesting point of the following construction
is the definition of the set of final states of the new subsequential trans-
ducer, which takes into account that final outputs of the first transducer are
translated by the second transducer in the composition. In the following
definition of the transducer T , the components δ, λ, F and Ψ only contain
those entries where the function values used in the descriptions are defined.

Proposition 5.1.10 Let T1 = 〈Σ,Σ′, Q1, q01, F1, δ1, λ1,Ψ1〉 be a classical
subsequential transducer and T2 = 〈Σ′,M, Q2, q02, F2, δ2, λ2,Ψ2〉 be a monoidal
subsequential transducer. Then for the transducer

T = 〈Σ,M, Q1 ×Q2, 〈q01, q02〉 , F, δ, λ,Ψ〉

where

• δ = {〈〈q1, q2〉 , σ, 〈δ1(q1, σ), δ∗2(q2, λ1(q1, σ))〉〉 | q1 ∈ Q1, q2 ∈ Q2, σ ∈
Σ},

• λ = {〈〈q1, q2〉 , σ, λ∗2(q2, λ1(q1, σ))〉 | q1 ∈ Q1, q2 ∈ Q2, σ ∈ Σ},

• F = {〈q1, q2〉 | q1 ∈ F1, δ
∗
2(q2,Ψ1(q1)) ∈ F2},

• Ψ = {〈〈q1, q2〉 , λ∗2(q2,Ψ1(q1))�Ψ2(δ∗2(q2,Ψ1(q1)))〉 | 〈q1, q2〉 ∈ F};

5.1. DETERMINISTIC TRANSDUCERS AND SUBSEQUENTIAL TRANSDUCERS87

we have OT = OT1 ◦OT2.

Proof. “⊇”: Let α ∈ dom(OT1 ◦OT2) and (OT1 ◦OT2)(α) = OT2(OT1(α)) =
m. Let

β = OT1(α) = λ∗1(q01, α) ·Ψ1(δ∗1(q01, α)),

let q1 := δ∗1(q01, α) and q2 := δ∗2(q02, λ
∗
1(q01, α)). Then

m = λ∗2(q02, β)�Ψ2(δ∗2(q02, β))

= λ∗2(q02, β)� λ∗2(Ψ1(q1))�Ψ2(δ∗2(q2,Ψ1(q1))).

Following the definition of T it is easy to see that δ∗(〈q01, q02〉 , α) = 〈q1, q2〉 ∈
F and

m = λ∗(〈q01, q02〉 , α)�Ψ(δ∗(〈q01, q02〉 , α)).

“⊆”: Let α ∈ dom(OT). Since δ∗(〈q01, q02〉 , α) = 〈δ∗1(q01, α), δ∗2(q02, λ
∗
1(q01, α))〉,

we have q1 = δ∗1(q01, α) ∈ F1 and therefore α ∈ dom(OT1). Moreover we have
δ∗2(q2,Ψ1(q1)) ∈ F2 where q2 = δ∗2(q02, λ

∗
1(q01, α)).

Therefore for β = OT1(α) = λ∗1(q01, α)·Ψ1(δ∗1(q01, α)) we have β ∈ dom(OT2)
and

OT (α) = λ∗(〈q01, q02〉 , α)�Ψ(δ∗(〈q01, q02〉 , α))

= λ∗2(q02, β)� λ∗2(Ψ1(q1))�Ψ2(δ∗2(q2,Ψ1(q1)))

= λ∗2(q02, β)�Ψ2(δ∗2(q02, β))

= (OT1 ◦OT2)(α) = OT2(OT1(α))

The bounded variation property

Remark 5.1.11 A string function f : Σ∗ → Σ′∗ is called a subsequen-
tial function (cf. [Roche and Schabes, 1997b]) if it can be represented by
a classical subsequential transducer. Choffrut [Choffrut, 1977] has shown
that it is decidable if a string function is subsequential. There exist effec-
tive determinization procedures that transfer a given classical finite-state
transducer representing a subsequential string function f into an equiva-
lent classical subsequential transducer [Roche and Schabes, 1997a, Mohri,
1996]. Below we present such a determinization construction. However,
not all regular string functions can be represented by means of classical
subsequential transducers. As an example consider the regular function
R := 〈a, a〉∗ ∪ (〈a, ε〉∗ · 〈b, b〉). Here a sequence of letters a is copied, whereas
a sequence of letters a which is followed by a single letter b is translated
into b. In order to represent this function the device has to delay the output
until the last symbol is read. Here the device has to reconstruct eventually
the number of letters a read. Since this number is not bounded, such a

88 CHAPTER 5. DETERMINISTIC TRANSDUCERS

behaviour cannot be realized using a deterministic finite-state transducer.
In the next section we show that a regular string function f : Σ∗ → Σ′∗ can
be represented by a classical subsequential transducer iff f has the so-called
“bounded variation property”, which is defined below.

Recall that u∧v denotes the longest common prefix of the two strings u and
v.

Definition 5.1.12 The sequential distance of u ∈ Σ∗ and v ∈ Σ∗ is defined
as dS(u, v) = |u|+ |v| − 2|u ∧ v|.

Definition 5.1.13 A regular string function f : Σ∗ → Σ′∗ has the bounded
variation property iff for all k ≥ 0 there exists K ≥ 0 such that for all
u, v ∈ dom(f) always dS(u, v) ≤ k implies dS(f(u), f(v)) ≤ K.

The definition roughly says that two input strings that are identical up
to small suffixes are translated into output strings that are similar up to
suffixes.

Definition 5.1.14 A functional classical transducer T has the bounded
variation property iff the regular string function represented by T has the
bounded variation property.

When looking at constructions for subsequential transducers one annoying
technical detail is often caused by the output of the empty input string. To
avoid these problems, in the following parts we only look at subsequential
transducers where the empty word does not belong to the input language.
The following lemma gives a justification. It shows how to add an arbi-
trary mapping for the empty word to the output function of a subsequential
transducer.

Lemma 5.1.15 Let T = 〈Σ,M, Q, q0, F, δ, λ,Ψ〉 be a monoidal subsequen-
tial transducer such that q0 6∈ F . Let m0 ∈ M be a monoid element. Let q′0
be a new state such that q′0 6∈ Q. Let

T ′ :=
〈
Σ,M, Q ∪ {q′0}, q′0, F ∪ {q′0}, δ′, λ′,Ψ ∪ {

〈
q′0,m0

〉
}
〉

where δ′ = δ∪{〈q′0, a, p〉 | 〈q0, a, p〉 ∈ δ} and λ′ = λ∪{〈q′0, a,m〉 | 〈q0, a,m〉 ∈
λ}. Then we have

OT ′ = OT ∪ {〈ε,m0〉}.

Proof. Clearly by cloning the initial state we do not change the output
function of the transducer. The new initial state has no incoming transitions.
Therefore setting its output to m0 will add only the mapping 〈ε,m0〉 to the
output function of T ′.

5.2. A DETERMINIZATION PROCEDURE FOR FUNCTIONAL TRANSDUCERSWITH THE BOUNDEDVARIATION PROPERTY89

5.2 A determinization procedure for functional trans-
ducers with the bounded variation property

In this part it is shown that any functional classical transducer with the
bounded variation property can be transformed into an equivalent classical
subsequential transducer. We will follow the determinization procedure de-
scribed in [Roche and Schabes, 1997b]. In Section 5.6 we later show how
the results from this and the following sections can be generalized for other
monoids.

We assume that a functional classical transducer T over Σ×Σ′∗ is given. For
simplicity we assume that ε 6∈ L(T)×2. This assumption is not significant,
cf. Lemma 5.1.15. Hence we may assume that the given input transducer

T =
〈
Σ∗ × Σ′∗, Q, I, F,∆

〉
is real-time, which implies that ∆ ⊆ Q×(Σ×Σ′∗)×Q. We may also assume
that each state q ∈ Q is on a successful path of T .

The following iterative construction can be used for any source transducer
satisfying the above conditions. However, for ensuring termination it is
necessary that T has the bounded variation property. Hence at a certain
point below we shall assume that T has the bounded variation property.
Obviously, the translation into a real-time transducer (cf. Proposition 4.4.8)
again leads to a functional transducer with the bounded variation property.

The subsequential transducer

T ′ =
〈
Σ,Σ′, Q′, q′0, F

′, δ′, λ′,Ψ′
〉

equivalent to T is built by induction. At each step we extend the current
set of states Q′, the set of final states F ′, the transition function δ′ and the
output functions λ′ and Ψ′.

The construction can be seen as a special power set construction. Each
state of Q′ keeps track of a set of states reached in the source transducer
T with the parallel input on distinct paths. In T , parallel paths for the
same input may have distinct outputs. In T ′ we only produce the maximal
common output prefix of all such parallel runs. This means that we need to
store with each state p ∈ Q belonging to a state S ∈ Q′ the delayed output.
Hence entries of states S ∈ Q′ are pairs of the form 〈p, u〉 where p ∈ Q and
u ∈ Σ′∗ represents the delayed output at p. When reaching a final state,
delayed output is finally produced as state output. We use the following
notation. If S ⊆ Σ∗ is a non-empty set of strings, by

∧
v∈S v we denote the

maximal common prefix of all strings in S (see Definition 1.3.5).

The base of the induction is:

T ′(0) =
〈
Σ,Σ′, {q′0}, q′0, ∅, ∅, ∅, ∅

〉
, where q′0 = I × {ε}.

90 CHAPTER 5. DETERMINISTIC TRANSDUCERS

This transducer only represents runs with empty input in the source trans-
ducer T , the delayed output of any state in I is ε. Let us assume that we
have constructed

T ′(n) =
〈

Σ,Σ′, Q′(n), q′0, F
′(n), δ′(n), λ′(n),Ψ′(n)

〉
.

We define T ′(n+1) = 〈Σ,Σ′, Q′(n+1), q′0, F
′(n+1), δ′(n+1), λ′(n+1),Ψ′(n+1)〉 with

the following components:

• The new transition output function λ′(n+1) extends λ′(n) with all triples
of the form 〈S, σ, w〉 for which {〈q, 〈σ, v〉 , q′〉 ∈ ∆ | 〈q, u〉 ∈ S} 6= ∅,
where S ∈ Q′(n), σ ∈ Σ and

w =
∧

〈q,u〉∈S

∧
〈q,〈σ,v〉,q′〉∈∆

u · v.

Here w represents the maximal common prefix of all strings obtained
by concatenating a delayed output u in S with the new transition
output v.

• The new transition function δ′(n+1) extends δ′(n) with all triples of the
form 〈S, σ, S′〉 where 〈S, σ, w〉 is a triple in λ′(n+1) and

S′ =
⋃

〈q,u〉∈S

⋃
〈q,〈σ,v〉,q′〉∈∆

{〈q′, w−1(u · v)〉}

Here we use the notation −1 introduced in Definition 1.3.4, the string
w−1(u · v) represents the new delayed output after the transition with
σ.

• Q′(n+1) = Q′(n) ∪ codom(δ′(n+1)),

• F ′(n+1) = {S ∈ Q′(n+1) | ∃ 〈q, β〉 ∈ S : q ∈ F},

• Ψ′(n+1) = {〈S, β〉 |S ∈ F ′(n+1),∃ 〈q, β〉 ∈ S : q ∈ F}.

At each step the transducer is extended with a finite number of states reach-
able with one symbol from the set of states of the current transducer. It is
simple to see that at each step n always λ′(n) and δ′(n) are in fact proper
functions, which means that the extension steps do not lead to multiple
values.

(†) The generalized versions of these functions are defined for all pairs
〈q′0, w〉 such that w ∈ Σ∗, |w| ≤ n and 〈i, w, q〉 ∈ ∆∗ for some i ∈ I and
q ∈ Q.

We shall see below (Lemma 5.2.4) that Ψ′(n) is always well-defined. Hence
after each step we obtain a proper classical subsequential transducer.

5.2. A DETERMINIZATION PROCEDURE FOR FUNCTIONAL TRANSDUCERSWITH THE BOUNDEDVARIATION PROPERTY91

Figure 5.2: Illustration for determinization of functional transducers, cf.
Example 5.2.1.

Example 5.2.1 The determinization construction is illustrated in Figure 5.2.
The transducer in the upper part is functional, representing the output func-
tion {〈a, cc〉, 〈ab, cccdd〉, 〈aba, cccdd〉}. In the lower part we see the states of
the determinized transducer, where states with delayed input are combined.
The state output of the three resulting final states is respectively given by
the delayed output c, d, and ε for the final states 4, 7, and 8.

With the help of the following lemmas1 we will show that OT ′ = L(T),
which means that the new transducer is equivalent to the source transducer
T .

Lemma 5.2.2 Let T be as above. Let T ′(n) = 〈Σ,Σ′, Q′, q′0, F ′, δ′, λ′,Ψ′〉
be constructed by the induction given above in n steps. Then for each word
w ∈ Σ∗ such that λ′∗(q′0, w) and δ′∗(q′0, w) are defined we have the following
properties:

λ′∗(q′0, w) =
∧

q0∈I,〈q0,〈w,u〉,q〉∈∆∗

u

δ′∗(q′0, w) = {〈q, γ〉 | ∃q0 ∈ I ∃ 〈q0, 〈w, u〉 , q〉 ∈ ∆∗ : γ = λ′∗(q′0, w)−1u}.

Proof. The proof proceeds by induction on the length of w. For |w| = 0
the above equations are obviously true since ∆∗ ∩ I × ({ε} × Σ′∗) × Q =
{〈q0, 〈ε, ε〉 , q0〉 | q0 ∈ I}. Let us assume that the above equations are true

1The lemmas can be found in a similar form in [Roche and Schabes, 1997b].

92 CHAPTER 5. DETERMINISTIC TRANSDUCERS

for w ∈ Σ∗. We show that the equations hold for w′ = wa, for all a ∈ Σ
such that δ′∗(q′0, wa) is defined:

λ′∗(q′0, wa) = λ′∗(q′0, w) λ′(δ′∗(q′0, w), a)
Def. λ′

= λ′∗(q′0, w)
∧

〈q,v〉∈δ′∗(q′0,w)

∧
〈q,〈a,v′〉,q′〉∈∆

vv′

Ind. hyp.
= λ′∗(q′0, w)

∧
q0∈I,〈q0,〈w,u〉,q〉∈∆∗

∧
〈q,〈a,v′〉,q′〉∈∆

λ′∗(q′0, w)−1uv′

=
∧

q0∈I,〈q0,〈w,u〉,q〉∈∆∗

∧
〈q,〈a,v′〉,q′〉∈∆

uv′

=
∧

q0∈I,〈q0,〈wa,u′〉,q′〉∈∆∗

u′.

This proves the first equation. Furthermore we have

δ′∗(q′0, wa) = δ′(δ′∗(q′0, w), a)

=
⋃

〈q,v〉∈δ′∗(q′0,w)

⋃
〈q,〈a,v′〉,q′〉∈∆

{
〈
q′, λ′(δ′∗(q′0, w), a)−1 vv′

〉
}

=
⋃

q0∈I,〈q0,〈w,u〉,q〉∈∆∗

⋃
〈q,〈a,v′〉,q′〉∈∆

{
〈
q′, λ′(δ′∗(q′0, w), a)−1 λ′∗(q′0, w)−1uv′

〉
}

=
⋃

q0∈I,〈q0,〈wa,u′〉,q′〉∈∆∗

{
〈
q′, λ′∗(q′0, wa)−1u′

〉
}

= {
〈
q′, v′′

〉
| ∃q0 ∈ I ∃

〈
q0,
〈
w, u′

〉
, q′
〉
∈ ∆∗ : v′′ = λ′∗(q′0, wa)−1u′}.

This concludes the proof of the second equation.

Lemma 5.2.2 is illustrated in Figure 5.3. Note that in general a state
δ′∗(q′0, w) of the new transducer can be reached with distinct input words
w′. The above equations hold for each such w′.

Lemma 5.2.3 Let T ′(n) = 〈Σ,Σ′, Q′, q′0, F ′, δ′, λ′,Ψ′〉 be constructed by the
induction given above in n steps from the transducer T = 〈Σ∗ × Σ′∗, Q, {q0}, F,∆〉.
Then for each state S ∈ Q′ and q ∈ Q we have |{v ∈ Σ′∗ | ∃ 〈q, v〉 ∈ S}| ≤ 1.

Proof. Let us assume that there exist 〈q, v1〉 , 〈q, v2〉 ∈ S. Let w ∈ Σ∗ be
any word such that S = δ′∗(q′0, w). Part 2 of the previous lemma shows that
there exist u1, u2 ∈ Σ∗ and q01, q02 ∈ I such that

〈q01, 〈w, u1〉 , q〉 ∈ ∆∗, v1 = λ′∗(q′0, w)−1u1

〈q02, 〈w, u2〉 , q〉 ∈ ∆∗, v2 = λ′∗(q′0, w)−1u2

Since the source transducer T is functional and each state q lies on a success-
ful path the left-hand side relations show that u1 = u2. Now the right-hand
side equations show that v1 = v2.

5.2. A DETERMINIZATION PROCEDURE FOR FUNCTIONAL TRANSDUCERSWITH THE BOUNDEDVARIATION PROPERTY93

Figure 5.3: Illustration for Lemma 5.2.2. Straight lines indicate three paths
of the source transducer with the same input label w respectively starting
from the three initial states q01, q02, and q03 and leading to q1, q2, and q3.
The maximal common output C = λ′∗(q′0, w) of all paths is shown as a grey
line. On the first two paths, additional outputs γ1 and γ2 are produced.
States and transitions of the target transducer are shown with bold lines.
For input w, producing output C a complex state {〈q1, γ1〉, 〈q2, γ2〉, 〈q3, ε〉}
is reached.

Lemma 5.2.4 Let T ′(n) = 〈Σ,Σ′, Q′, q′0, F ′, δ′, λ′,Ψ′〉 be constructed by the
induction given above in n steps from the transducer T = 〈Σ∗ × Σ′∗, Q, {q0}, F,∆〉.
Then for each state S ∈ Q′ and 〈q1, v1〉 , 〈q2, v2〉 ∈ S we have

q1 ∈ F & q2 ∈ F → v1 = v2.

Proof. Let us assume that 〈q1, v1〉 , 〈q2, v2〉 ∈ S. Let w ∈ Σ∗ be any
word such that S = δ′∗(q′0, w). The above lemma shows that there exist
u1, u2 ∈ Σ′∗ and q01, q02 ∈ I such that

〈q01, 〈w, u1〉 , q1〉 ∈ ∆∗, v1 = λ′∗(q′0, w)−1u1

〈q02, 〈w, u2〉 , q2〉 ∈ ∆∗, v2 = λ′∗(q′0, w)−1u2

Since the source transducer T is functional and q1, q2 ∈ F the left-hand side
relations show that u1 = u2. The right-hand side equations imply v1 = v2.

Proposition 5.2.5 Let T = 〈Σ∗ × Σ′∗, Q, I, F,∆〉 be a functional real-time
classical transducer such that the inductive construction of T ′ presented
above terminates in the sense that there exists a number k ∈ IN such that
T ′(k) = T ′(k+1) = T ′(k+2) = . . . = T ′, let T ′ = 〈Σ,Σ′, Q′, q′0, F ′, δ′, λ′,Ψ′〉.
Then OT ′ = L(T).

94 CHAPTER 5. DETERMINISTIC TRANSDUCERS

Proof. (“⊆”) Let w ∈ Σ∗, assume that OT ′(w) is defined. Then we
have OT ′(w) = λ′∗(q′0, w)Ψ′(q′), where q′ := δ′∗(q′0, w) ∈ F ′. Lemma 5.2.2
shows that

q′ = {
〈
q, v′

〉
| ∃q0 ∈ I ∃

〈
q0,
〈
w, u′

〉
, q
〉
∈ ∆∗ : v′ = λ′∗(q′0, w)−1u′},

and by definition of F ′ there exists 〈q, v〉 ∈ q′ such that q ∈ F and Ψ′(q′) = v.
Hence there exist q0 ∈ I, 〈q0, 〈w, u〉 , q〉 ∈ ∆∗ such that v = λ′∗(q′0, w)−1u. It
follows that

OT ′(w) = λ′∗(q′0, w)λ′∗(q′0, w)−1u = u.

Since q0 ∈ I and q ∈ F we also have 〈w, u〉 ∈ L(T). Hence OT ′ ⊆ L(T).
(“⊇”) Assume now that 〈q0, 〈w, u〉 , q〉 ∈ ∆∗ and q0 ∈ I, q ∈ F . Since
T ′(k) = T ′(k+1) the above observation (†) shows that δ′∗ and λ′∗ are defined
for w. The construction of T ′ implies that λ′∗(q′0, w) is a prefix of λ∗(w) = u.
Let v := λ′∗(q′0, w)−1u. Then 〈q, v〉 occurs in

δ′∗(q′0, w) = {
〈
q, v′

〉
| ∃q0 ∈ I ∃

〈
q0,
〈
w, u′

〉
, q
〉
∈ ∆∗ : v′ = λ′∗(q′0, w)−1u′}.

Since q ∈ F we have δ′∗(q′0, w) ∈ F ′ and Ψ′(δ′∗(q′0, w)) = v. Hence

OT ′(w) = λ′∗(q′0, w)v = λ′∗(q′0, w)λ′∗(q′0, w)−1u = u

and L(T) ⊆ OT ′ .

Theorem 5.2.6 Let T = 〈Σ∗ × Σ′∗, Q, I, F,∆〉 be a trimmed real-time func-
tional classical transducer with the bounded variation property. Then the
inductive construction of T ′ presented above terminates in the sense that
there exists a number k ∈ IN such that T ′(k) = T ′(k+1) = T ′(k+2) = . . . = T ′.

Proof. Let us choose for each state q ∈ Q a path

πq : q → . . .〈wq ,αq〉 → tq

with label wq ∈ Σ∗ to a final state tq ∈ F . Since T is trimmed such a
path exists for each q. Let m = max

q∈Q
|wq| be the longest input label of all

paths πq. Let D = max
q∈Q
|αq| denote the maximum length of the outputs

produced on the paths πq for q ∈ Q. Since T has the bounded variation
property, for k = 2m there exists K ∈ IN such that dS(u, v) ≤ k implies
dS(f(u), f(v)) ≤ K. Let us assume that the inductive construction does not
terminate. In this case the sequence of sets Q′(n) is strongly monotonically
growing. Since Q′(n) ⊆ 2Q×Σ′∗ and the number of subsets of states in Q is
2|Q| there exist an n ∈ IN and a set S ∈ Q′(n) containing a pair 〈q1, γ1〉 ∈ S
such that |γ1| > K + D. From the inductive construction it follows that
there exists another pair 〈q2, γ2〉 ∈ S such that γ1 ∧ γ2 = ε (∗). Let S be

5.2. A DETERMINIZATION PROCEDURE FOR FUNCTIONAL TRANSDUCERSWITH THE BOUNDEDVARIATION PROPERTY95

reachable in T ′(n) with the word u ∈ Σ∗, i.e. δ′(n)∗(q′0, u) = S. In this case
there exist two successful paths in T

π1 = q01 → . . .〈u,λ′(n)
∗
(q′0,u)γ1〉 → q1 → . . .〈wq1 ,αq1〉 → tq1

π2 = q02 → . . .〈u,λ′(n)
∗
(q′0,u)γ2〉 → q2 → . . .〈wq2 ,αq2〉 → tq2 .

Clearly dS(uwq1 , uwq2) ≤ |wq1 |+ |wq2 | ≤ 2m = k. For the images of the
two words we consider two cases.
Case 1: γ2 6= ε, In that case we obtain

dS(L(T)(uwq1), L(T)(uwq2)) = dS(λ′(n)∗(q′0, u)γ1αq1 , λ
′(n)∗(q′0, u)γ2αq2)

(∗)
= |γ1|+ |γ2|+ |αq1 |+ |αq2 | > |γ1| > K.

Case 2: γ2 = ε. In that case |γ1αq1 | > K +D and |αq2 | < D (∗∗)

dS(L(T)(uwq1), L(T)(uwq2)) = dS(λ′(n)∗(q′0, u)γ1αq1 , λ
′(n)∗(q′0, u)γ2αq2)

= dS(γ1αq1 , αq2)
(∗∗)
> (K +D)−D = K.

This contradiction shows that our assumption must be wrong and the
inductive construction terminates.

From this theorem it follows that T ′ has a finite number of states and that
δ′ and λ′ are proper finite functions.

Corollary 5.2.7 A regular string function f : Σ∗ → Σ′∗ can be represented
by a classical subsequential transducer iff f has the bounded variation prop-
erty.

Proof. Let f : Σ∗ → Σ′∗ be regular.
(“⇐”) Since f is regular it can be represented by a classical functional trans-
ducer (Theorem 4.5.5). It follows (cf. Section 2.5, Proposition 3.7.2) that
there exists a trimmed pseudo-deterministic functional classical transducer
T representing f . If f has the bounded variation property, then the induc-
tive transducer construction terminates (Theorem 5.2.6). It follows from
Lemma 5.2.4 that the construction gives a classical subsequential trans-
ducer. This transducer represents f (Proposition 5.2.5).
(“⇒”) To prove the other direction, let f be represented as a subsequen-
tial transducer T = 〈Σ,Σ′∗, Q, q0, F, δ, λ,Ψ〉. Let C = max

〈q,a,α〉∈λ
|α| and

D = max
〈q,α〉∈Ψ

|α|. Let k ≥ 0 be arbitrary. Let us choose K = Ck + 2D. Let

u, v ∈ dom(OT), w = u ∧ v and u = wu′, v = wv′, such that dS(u, v) ≤ k.
Then we have two successful paths in T

π1 = q0 → . . .〈w,λ
∗(q0,w)〉 → q′ → . . .〈u

′,λ∗(q′,u′)〉 → t1
π2 = q0 → . . .〈w,λ

∗(q0,w)〉 → q′ → . . .〈v
′,λ∗(q′,v′)〉 → t2,

96 CHAPTER 5. DETERMINISTIC TRANSDUCERS

and

OT (u) = λ∗(q0, w)λ∗(q′, u′)Ψ(t1)

OT (v) = λ∗(q0, w)λ∗(q′, v′)Ψ(t2).

We obtain

dS(OT (u), OT (v)) = dS(λ∗(q′, u′)Ψ(t1), λ∗(q0, w)λ∗(q′, v′))

≤ |λ∗(q′, u′)|+ |λ∗(q′, v′)|+ |Ψ(t1)|+ |Ψ(t2)|
≤ (|u′|+ |v′|)C + 2D = dS(u, v)C + 2D ≤ K.

5.3 Deciding the bounded variation property

In order to see if we can successfully apply the transducer determinization
procedure presented in Section 5.2 to a functional classical transducer we
need to decide if the transducer has the bounded variation property. In this
section we present a decision algorithm based on the approach in [Béal et al.,
2003].
The first lemma provides the key tools used later in the decision procedure.
We use the notation introduced in Section 4.6. In particular ω∗ denotes the
iterated advance function introduced in Definition 4.6.1.

Lemma 5.3.1 Let z, u, v ∈ Σ∗ and uv 6= ε. For n ∈ IN let 〈αn, βn〉 :=
ω∗(〈ε, z〉 , 〈u, v〉n), let X = {〈αn, βn〉 |n ∈ IN}. Assume that all advances in
X are balancible (cf. Definition 4.6.1). Then

1. X is infinite iff |u| 6= |v|,

2. if |u| 6= |v|, then there exists a number n0 ∈ IN such that for any
n > n0 we have |αn|+ |βn| ≥ (n− n0)|(|u| − |v|)|,

3. X is finite iff there exist t ∈ Σ∗ and k ∈ IN such that |t| < |u| and
z = ukt and ut = tv,

4. if X is finite, then |X| = 1.

Proof. (Claims 1., 2.) Assume that |u| = |v|. Since 〈αn+1, βn+1〉 are
balancible and 〈αn+1, βn+1〉 = ω(〈αn, βn〉 , 〈u, v〉) we have

|αn+1|+ |βn+1| =
{
|(αn · u)−1(βn · v)| if αn · u is a prefix of βn · v,
|(βn · v)−1(αn · u)| if βn · v is a prefix of αn · u.

Therefore |αn+1|+ |βn+1| = |(|αn ·u|− |βn · v|)| = |(|αn|+ |u|− |βn|− |v|)| =
|(|αn| − |βn|)|. Since |αn| = 0 or |βn| = 0 we have |αn| + |βn| = |z| for all

5.3. DECIDING THE BOUNDED VARIATION PROPERTY 97

n ∈ IN. Since the alphabet Σ is finite and all elements of X are balancible
there are at most 2|Σ||z| values in X and therefore X is finite.
Let |u| 6= |v|. We have two cases.
Case 1: |v| > |u|. In this case 〈α1, β1〉 = ω(〈ε, z〉 , 〈u, v〉) =

〈
ε, u−1zv

〉
,

because zv cannot be a prefix of u. We obtain |α1| + |β1| = |u−1zv| =
|z| + |v| − |u|. Similarly 〈α2, β2〉 = ω(

〈
ε, u−1zv

〉
, 〈u, v〉) =

〈
ε, u−2zv2

〉
and

|α2|+ |β2| = |u−2zv2| = |z|+2(|v|− |u|). Iterating, for any n ∈ IN we obtain
〈αn, βn〉 = 〈ε, u−nzvn〉 and

|αn|+ |βn| = |u−nzvn| = |z|+ n(|v| − |u|).

Therefore X is infinite and for n0 := 0 Claim 2 above is fulfilled.
Case 2: |v| < |u|. Clearly α0 = ε. Consider the values n = 0, 1, 2 As
long as αn = αn+1 = ε it follows from 〈αn+1, βn+1〉 = ω(〈αn, βn〉 , 〈u, v〉)
that βn+1 = u−1βnv. Therefore |βn+1| = |βn| − (|u| − |v|) and |βn+1| < |βn|.
Hence there exists n0 ∈ IN such that βn0 = ε. Then 〈αn0+1, βn0+1〉 =
ω(〈αn0 , ε〉 , 〈u, v〉) =

〈
v−1αn0u, ε

〉
because αn0u cannot be a prefix of v.

Clearly |αn0+1| + |βn0+1| = |αn0 | + |u| − |v|. For any m ∈ IN+ we obtain
〈αn0+m, βn0+m〉 = 〈v−mαn0u

m, ε〉 and

|αn0+m|+ |βn0+m| = |αn0 |+m(|u| − |v|).

Therefore X is infinite and Claim 2 is satisfied.

(Claim 3, “⇐”) Let z = ukt, and ut = tv. Then u is a prefix of zv = uktv =
ukut and

ω(〈ε, z〉 , 〈u, v〉) =
〈
ε, ukt

〉
= 〈ε, z〉 . ($)

Clearly in this case |X| = 1.

(Claim 3, “⇒”) Let X be finite. It follows (see 1.) that |u| = |v|. If z = ε,
then u = v, thus t := ε, k := 0 satisfy the properties described in Claim
3. Let us now assume that z 6= ε. Since uv 6= ε and |u| = |v| we have
u 6= ε. In this case 〈α1, β1〉 =

〈
ε, u−1zv

〉
, because zv cannot be a prefix of

u. Clearly |u−1zv| = |z|. At the next step we have 〈α2, β2〉 =
〈
ε, u−2zv2

〉
and |β2| = |z|. After n steps we have 〈αn, βn〉 = 〈ε, u−nzvn〉 and |βn| = |z|.
Since X is finite there exist h < l ∈ IN such that

u−hzvh = u−lzvl

ul−hzvh = zvl.

Since both sides of the equation have a common suffix vh, with m := l−h > 0
we get

umz = zvm.

From the last equation it follows that z can be represented in the form
z = ukt where t is a proper prefix of u. This is obvious if |um| ≥ |z|. For

98 CHAPTER 5. DETERMINISTIC TRANSDUCERS

Figure 5.4: Solutions of an equation umz = zvm where z, u 6= ε, m > 0
and |um| < |z|. The situation is shown in the upper part and leads to two
overlapping copies of z. The lower copy of z starts with um. Since both
copies of z are identical, the upper string (left-hand side of equation) starts
with umum. Continuing with this copy-paste mechanism shows that z has
the form ukt where t is a possibly empty proper prefix of u.

the situation |um| < |z| see Figure 5.4. From umz = zvm we obtain

um+kt = uktvm

umt = tvm.

Since t is a proper prefix of u, looking at the two prefixes of length |t|+ |u| =
|t|+ |v| of the last equation we obtain ut = tv.
Claim 4 of the lemma follows directly from Claim 3, cf. ($).

Lemma 5.3.2 Let x, y, α, β ∈ Σ∗. If ω(〈x, y〉 , 〈α, β〉) = 〈u, v〉 and x∧y = ε,
then |u|+ |v| ≥ |x|+ |y| − (|α|+ |β|).

Proof. Case 1: Let x 6= ε and y 6= ε. Then c = xα ∧ yβ = ε and therefore

|u|+ |v| = |c−1xα|+ |c−1yβ| = |x|+ |y|+ |α|+ |β| ≥ |x|+ |y| − (|α|+ |β|).

Case 2: Let x = ε. Then |c| = |α ∧ yβ| ≤ |α| and therefore

|u|+|v| = |c−1xα|+|c−1yβ| ≥ |x|+|y|+|α|+|β|−2|α| ≥ |x|+|y|−(|α|+|β|).

Case 3: Let y = ε. Then |c| = |xα ∧ β| ≤ |β| and therefore

|u|+|v| = |c−1xα|+|c−1yβ| ≥ |x|+|y|+|α|+|β|−2|β| ≥ |x|+|y|−(|α|+|β|).

Recall that Adm(q) denotes the set of all admissible advances of a state q
of a squared output transducer (cf. Definition 4.6.6).

Lemma 5.3.3 Let T be a classical real-time finite-state transducer, let q
denote a state of the squared output transducer ST of T .

1. If 〈u, v〉 ∈ Adm(q) and the corresponding path in ST is π = q0 →
. . .〈α,β〉 → q, then dS(α, β) = |u|+ |v|.

5.3. DECIDING THE BOUNDED VARIATION PROPERTY 99

2. If Adm(q) is finite and there exists 〈u, v〉 ∈ Adm(q) such that 〈u, v〉
is not balancible, then each loop 〈q, 〈α, β〉 , q〉 ∈ ∆′∗ has label 〈α, β〉 =
〈ε, ε〉.

Proof. (1.) This statement follows from the fact that 〈u, v〉 = ω(〈ε, ε〉 , 〈α, β〉)
and the definitions of the advance function and dS .
(2.) Since 〈u, v〉 is not balancible we have ω∗(〈u, v〉 , 〈α, β〉n) = 〈uαn, vβn〉
for all n ∈ IN. Hence, if 〈α, β〉 6= 〈ε, ε〉, then the set Adm(q) is infinite.

Theorem 5.3.4 Let T = 〈Σ∗I × Σ∗, Q, I, F,∆〉 be a trimmed functional
classical real-time finite-state transducer and let ST be the squared output
transducer of T . Then T has the bounded variation property iff for each
state q of ST the set of admissible advances Adm(q) is finite.

Proof. (“⇐”) Let Adm(q) be finite for each state q ∈ Q×Q. We define

L := max
q∈Q×Q,〈α,β〉∈Adm(q)

|α|+ |β|

as the length of the longest advance. Let

C := max
〈q′,〈σ,α〉,q′′〉∈∆

|α|

denote the length of the longest transition output in T . To prove the
bounded variation property let u, v ∈ dom(LT), z = u ∧ v, u = zu′, v = zv′

and dS(u, v) = |u′|+ |v′|. Consider any pair of successful paths in T :

π1 = i→ . . .〈z,α〉 → p→ . . .〈u
′,α′〉 → t

π2 = j → . . .〈z,β〉 → q → . . .〈v
′,β′〉 → s.

There exists a path in ST :

π = 〈i, j〉 → . . .〈α,β〉 → 〈p, q〉

and a corresponding admissible advance of 〈p, q〉

ω(〈ε, ε〉 , 〈α, β〉) = 〈h1, h2〉 .

Case 1: The advance h = 〈h1, h2〉 is balancible.
Proposition 4.6.3 Point 3 shows that αh2 = βh1. Since one of the strings
h1, h2 is empty and we have dS(α, β) ≤ |h1|+ |h2| we obtain

dS(LT (u), LT (v)) = dS(αα′, ββ′)

≤ dS(α, β) + |α′|+ |β′|
≤ |h1|+ |h2|+ |α′|+ |β′|
≤ L+ C(|u′|+ |v′|)
= L+ C · dS(u, v).

100 CHAPTER 5. DETERMINISTIC TRANSDUCERS

Case 2: The advance 〈h1, h2〉 is not balancible. Since 〈h1, h2〉 is not balan-
cible z can be represented as z = z1az2, where a ∈ ΣI , z1, z2 ∈ Σ∗I such that
the paths are factorized in the following way:

π1 = i→ . . .〈z1,α1〉 → p1 →〈a,x〉 p2 → . . .〈z2,α2〉 → p→ . . .〈u
′,α′〉 → t

π2 = j → . . .〈z1,β1〉 → q1 →〈a,y〉 q2 → . . .〈z2,β2〉 → q → . . .〈v
′,β′〉 → s

and

π = 〈i, j〉 → . . .〈α1,β1〉 → 〈p1, q1〉 →〈x,y〉 〈p2, q2〉 → . . .〈α2,β2〉 → 〈p, q〉

such that 〈h′1, h′2〉 = ω(〈ε, ε〉 , 〈α1, β1〉) is balancible and ω(〈ε, ε〉 , 〈α1x, β1y〉)
is not balancible. Each state on the path

π′ = 〈p2, q2〉 → . . .〈α2,β2〉 〈p, q〉

has an admissible advance that is not balancible. From Lemma 5.3.3, Point
2 it follows that if a transition of π′ is part of a loop, then the label of the
loop is 〈ε, ε〉. The number of transitions on π′ that do not belong to a loop
is bounded by |Q|2. Therefore

dS(LT (u), LT (v)) = dS(α1xα2α
′, β1yβ2β

′)

≤ |h1|+ |h2|+ |x|+ |y|+ |α2|+ |β2|+ |α′|+ |β′|
≤ L+ 2C(|Q|2 + 1) + C(|u′|+ |v′|)
= L+ 2C(|Q|2 + 1) + C · dS(u, v).

(“⇒”) Let T have the bounded variation property. Assume there exists a
state 〈p, q〉 ∈ Q × Q such that Adm(〈p, q〉) is infinite. Since T is trimmed
there exist two paths

π′1 = p→ . . .〈u
′,α′〉 → t,

π′2 = q → . . .〈v
′,β′〉 → s

such that t, s ∈ F . Let k = |u′|+ |v′|. For each admissible advance 〈x, y〉 ∈
Adm(〈p, q〉) there exist two paths

π1 = i→ . . .〈z,α〉 → p

π2 = j → . . .〈z,β〉 → q

such that 〈x, y〉 = ω(〈ε, ε〉 , 〈α, β〉). Therefore OT (zu′) = αα′ and OT (zv′) =
ββ′. We have dS(zu′, zv′) ≤ |u′|+|v′| = k. On the other hand by Lemma 5.3.3
Point 1 and Lemma 5.3.2 we obtain dS(αα′, ββ′) = ω(〈x, y〉 , 〈α′, β′〉) ≥
|x|+ |y| − (|α′|+ |β′|). The set Adm(〈p, q〉) is infinite and therefore the sum
|x| + |y| for the admissible advance 〈x, y〉 ∈ Adm(〈p, q〉) can be arbitrarily
large. The words α′ and β′ are fixed and therefore the bounded variation
property is violated. Hence the set of admissible advances is finite.

The following lemma provides us with an effective way to check whether the
set of admissible advances Adm(q) of a state q ∈ Q×Q is finite.

5.3. DECIDING THE BOUNDED VARIATION PROPERTY 101

Lemma 5.3.5 Let T = 〈Σ∗I × Σ∗, Q, I, F,∆〉 be a trimmed functional clas-
sical real-time finite-state transducer, let C := max

〈q′,〈σ,α〉,q′′〉∈∆
|α|. Let 〈u, v〉

be an admissible advance of the state 〈p, q〉 ∈ Q × Q of the squared output
transducer ST . If T has the bounded variation property, then |u| < C|Q|2
and |v| < C|Q|2.

Proof. Consider a shortest path π in ST from an initial state 〈i, j〉 ∈ I × I
to 〈p, q〉 with a label 〈α, β〉 such that ω(〈ε, ε〉 , 〈α, β〉) = 〈u, v〉. If we assume
that the path is longer than |Q|2, then we find a pair of states 〈r, s〉 twice
on the path and π has the form

π = 〈i, j〉 → . . .〈α1,β1〉

→ 〈r, s〉 → . . .〈α2,β2〉 → 〈r, s〉
→ . . .〈α3,β3〉 → 〈p, q〉 .

Let 〈u1, v1〉 = ω(〈ε, ε〉 , 〈α1, β1〉). Consider the subpath

〈r, s〉 → . . .〈α2,β2〉 → 〈r, s〉 .

If α2 = β2 = ε, then ω(〈ε, ε〉 , 〈α1α2, β1β2〉) = 〈u1, v1〉 and therefore π is not
a shortest path to 〈p, q〉 such that ω(〈ε, ε〉 , 〈α, β〉) = 〈u, v〉. Hence α2β2 6= ε.
If after k repetitions of the above subpath

〈r, s〉 → . . .〈α2,β2〉 → 〈r, s〉 → . . .〈α2,β2〉〈α2,β2〉 → 〈r, s〉

the advance ω(〈ε, ε〉 ,
〈
α1α

k
2 , β1β

k
2

〉
) is not balancible, then Adm(〈r, s〉) is in-

finite (cf. Lemma 5.3.3 Point 2), which contradicts the bounded variation
property (cf. Theorem 5.3.4). Hence X = {ω∗(〈u1, v1〉 , 〈α2, β2〉k) | k ∈ IN}
only contains balancible advances. Lemma 5.3.1 shows that in this case
ω(〈ε, ε〉 , 〈α1α2, β1β2〉) = ω(〈u1, v1〉 , 〈α2, β2〉) = 〈u1, v1〉. This is a contra-
diction since π is a shortest path. Therefore the length of π is smaller
than |Q|2. Since 〈u, v〉 = ω(〈ε, ε〉 , 〈α, β〉) we obtain |u| ≤ |α| < C|Q|2 and
|v| ≤ |β| < C|Q|2.

Procedure for deciding the bounded variation property. If the
trimmed functional classical finite-state transducer T is given we start with
building the corresponding squared output transducer with all reachable
states first and constructing the admissible advances (cf. Corollary 4.6.11)
for its states afterwards. If during the construction an admissible advance
〈u, v〉 is generated such that |u| ≥ C|Q|2 or |v| ≥ C|Q|2 we stop. In this
case T does not have the bounded variation property (Lemma 5.3.5). In the
other case the procedure will stop since the alphabet is finite and hence the
number of possible admissible advances that can be generated is bounded.
In this case according to Theorem 5.3.4 the transducer T has the bounded
variation property.

The following observations show how to include the bounded variation
test directly in the determinization procedure.

102 CHAPTER 5. DETERMINISTIC TRANSDUCERS

Proposition 5.3.6 Let U = {u1, u2, . . . , un} ⊂ Σ∗ be a non-empty set of
words and u =

∧n
k=1 uk. Then for every index i ∈ {1, . . . , n} there exists a

index j ∈ {1, . . . , n} such that u = ui ∧ uj.

Proof. Consider the word ui. If ui = u, then ui is a prefix of each uj ,
for any j we have u = ui ∧ uj . Otherwise ui has the form uσv for some
σ ∈ Σ and v ∈ Σ∗. If there exists j ∈ {1, . . . , n} such that uj = u we have
u = ui ∧ uj . Otherwise all uj are longer than u. If all uj would have a
prefix uσ, then the longest common prefix of all words would start with uσ,
a contradiction. Hence there exists j ∈ {1, . . . , n} with a prefix uσ′ where
σ 6= σ′ and we get u = ui ∧ uj .

Corollary 5.3.7 Let T = 〈Σ∗I × Σ∗, Q, I, F,∆〉 be a trimmed functional
classical real-time finite-state transducer, let ST = 〈Σ∗ × Σ∗, Q×Q, I × I, F × F,∆′〉
be the squared output transducer of T . Let T ′(n) = 〈ΣI ,Σ

∗, Q′, q′0, F
′, δ′, λ′,Ψ′〉

be constructed in n steps by the inductive determinization procedure described
in Section 5.2. Let S ∈ Q′ be a state in T ′(n). Then for each pair 〈p, u〉 ∈ S
there exists a pair 〈q, v〉 ∈ S such that 〈u, v〉 is an admissible advance of the
state 〈p, q〉 (i.e 〈u, v〉 ∈ Adm(〈p, q〉)).

Proof. Since S is a state in T ′(n) it follows from Lemma 5.2.2 that there
exists a word w ∈ Σ∗I such that

S = δ∗(q′0, w) = {〈q, γ〉 | ∃q0 ∈ I, 〈q0, 〈w,α〉 , q〉 ∈ ∆∗ : γ = z−1α},

where z =
∧
q0∈I,〈q0,〈w,α〉,q〉∈∆∗ α is the longest common prefix for the outputs

produce with input w. Since 〈p, u〉 ∈ S there exists a state q01 ∈ I and
a generalized transition 〈q01, 〈w,α〉 , p〉 ∈ ∆∗ such that u = z−1α. From
Proposition 5.3.6 it follows that there exists a state q02 ∈ I and a generalized
transition 〈q02, 〈w, β〉 , q〉 ∈ ∆∗ such that z = α ∧ β. We have 〈q, v〉 ∈ S,
where v = z−1β. But then 〈〈q01, q02〉 , 〈α, β〉 , 〈p, q〉〉 ∈ ∆′∗ and thus 〈u, v〉 ∈
Adm(〈p, q〉).

The following theorem follows from Corollary 5.3.7, Lemma 5.3.5, Theo-
rem 5.3.4 and Theorem 5.2.6.

Theorem 5.3.8 Let T = 〈Σ∗ × Σ∗, Q, I, F,∆〉 be a trimmed real-time func-
tional classical transducer, let C := max

〈q′,〈σ,α〉,q′′〉∈∆
|α|. Then the inductive

construction presented in Section 5.2 terminates iff at each step n of the
construction of the corresponding subsequential transducer

T ′(n) =
〈
ΣI ,Σ

∗, Q′, q′0, F
′, δ′, λ′,Ψ′

〉
for each state S in Q′ and each pair 〈p, u〉 ∈ S we have |u| < C|Q|2.

5.4. MINIMAL SUBSEQUENTIAL FINITE-STATE TRANSDUCERS - MYHILL-NERODE RELATION FOR SUBSEQUENTIAL TRANSDUCERS103

Remark 5.3.9 The above theorem provides us with an effective way for
testing the termination of the inductive determinization construction pre-
sented in Section 5.2. For ensuring the termination it is sufficient to test
during the construction whether the lengths of the delays in the states are
within the limit.

5.4 Minimal subsequential finite-state transduc-
ers - Myhill-Nerode relation for subsequential
transducers

When we studied minimization of deterministic automata we found that the
Myhill-Nerode relation (Definition 3.4.8) gives a direct (mathematical) way
for defining a minimal deterministic automaton. Since the language of a
deterministic automaton is a set of strings, the Myhill-Nerode relation was
introduced as an equivalence relation between strings, determined by a fixed
string language. We now show that also in the case of subsequential finite-
state transducers a new kind of Myhill-Nerode relation yields a minimal
subsequential transducer. Since subsequential transducers represent string
functions, the Myhill-Nerode relation is now determined by a fixed partial
string function f . Roughly, two strings u and v are defined to be equivalent
with respect to f if all common extensions u ·w and v ·w are “treated in the
same way” by f : either f is undefined for both extensions or f(u · w) and
f(v ·w) have identical suffixes. However, this basic idea needs to be refined.
We follow the approach in [Mohri, 2000].

Definition 5.4.1 Let f : Σ∗ → Σ′∗ be a (partial) function. Then

Rf = {〈u, v〉 ∈ Σ∗ × Σ∗ | ∃u′ ∈ Σ′∗ ∃v′ ∈ Σ′∗ ∀w ∈ Σ∗ :
(u · w ∈ dom(f)↔ v · w ∈ dom(f)) &
(u · w ∈ dom(f)→ u′ ∈ Pref (f(u · w)) & v′ ∈ Pref (f(v · w)) &

u′−1f(u · w) = v′−1f(v · w))}

is called the Myhill-Nerode relation for f .

Note that Rf acts on the full set Σ∗ × Σ∗ despite of the fact that f can be
partial.

Proposition 5.4.2 Let f : Σ∗ → Σ′∗ be a function. Then the Myhill-Nerode
relation for f is a right invariant equivalence relation.

Proof. Clearly Rf is reflexive and symmetric. We show that Rf is transi-
tive. Let u1 Rf u2 and u2 Rf u3 for strings u1, u2, u3 ∈ Σ∗. Then

u1 · w ∈ dom(f)↔ u2 · w ∈ dom(f)↔ u3 · w ∈ dom(f)

104 CHAPTER 5. DETERMINISTIC TRANSDUCERS

for all w ∈ Σ∗ and there exist strings u′1, u
′
2, u
′′
2, u
′
3 ∈ Σ∗ such that for all

w ∈ Σ∗ we have

u1 · w ∈ dom(f)→ u′−1
1 f(u1 · w) = u′−1

2 f(u2 · w)

u2 · w ∈ dom(f)→ u′′−1
2 f(u2 · w) = u′−1

3 f(u3 · w).

We have to show that there exist strings v1, v3 such that for all w ∈ Σ∗ such
that u1 ·w ∈ dom(f) we have v−1

1 f(u1 ·w) = v−1
3 f(u3 ·w). We may assume

that there exists w0 ∈ Σ∗ such that u1 · w0 ∈ dom(f). Then

u′−1
1 f(u1 · w0) = u′−1

2 f(u2 · w0)

u′′−1
2 f(u2 · w0) = u′−1

3 f(u3 · w0).

These equations imply that both u′2 and u′′2 are prefixes of f(u2 · w0). We
assume that |u′2| ≥ |u′′2| (the other case is similar). Let u′2 = u′′2u. Since
u′′2u is a prefix of f(u2 · w0) the second equation implies that f(u3 · w0) has
a prefix u′3u. Let v1 := u′1, v3 := u′3u. Let w ∈ Σ∗ be any word such that
u1 · w ∈ dom(f) and u3 · w ∈ dom(f). Then

u′−1
1 f(u1 · w) = u′−1

2 f(u2 · w)

u′′−1
2 f(u2 · w) = u′−1

3 f(u3 · w).

Since u′2 = u′′2u is a prefix of f(u2 · w) it follows that u′3u is a prefix of
f(u3 · w) and

u′−1
1 f(u1 · w) = u′−1

2 f(u2 · w) = (u′′2u)−1f(u2 · w) = (u′3u)−1f(u3 · w).

This shows that Rf is transitive and an equivalence relation. It remains to
show that Rf is right invariant. Let u Rf v and z ∈ Σ∗. In order to prove
that u · z Rf v · z we have to show that there exist u′, v′ ∈ Σ′∗ such that for
any w ∈ Σ∗ we have (a) (u · z) · w ∈ dom(f) iff (v · z) · w ∈ dom(f), and
(b) if (u · z) · w ∈ dom(f), then u′−1f((u · z) · w) = v′−1f((v · z) · w). Let
w ∈ Σ∗. Since u Rf v there exist u′, v′ ∈ Σ′∗ such that for w′ = z · w we
have (a) u · w′ = (u · z) · w ∈ dom(f) iff v · w′ = (v · z) · w ∈ dom(f), and
(b) if u · w′ = (u · z) · w ∈ dom(f), then u′−1f(u · w′) = u′−1f((u · z) · w) =
v′−1f(v · w′) = v′−1f((v · z) · w).

Definition 5.4.3 Let f : Σ∗ → Σ′∗ be a function. The longest common
output of f is the function lcof : Σ∗ → Σ′∗ defined as follows:

lcof (u) =

∧

w∈Σ∗ & u·w∈dom(f)

f(u · w) if u ∈ Pref (dom(f))

ε otherwise.

5.4. MINIMAL SUBSEQUENTIAL FINITE-STATE TRANSDUCERS - MYHILL-NERODE RELATION FOR SUBSEQUENTIAL TRANSDUCERS105

In order to simplify the construction of the Myhill-Nerode transducer for a
subsequential function we introduce a non-significant extension of the subse-
quential finite-state transducer by adding an output in front of all outputs.

Definition 5.4.4 A subsequential finite-state transducer with initial output
over the monoid M = 〈M, ◦, e〉 is a tuple T = 〈Σ,M, Q, q0, F, δ, λ, ι,Ψ〉
such that 〈Σ,M, Q, q0, F, δ, λ,Ψ〉 is a subsequential finite-state transducer
and ι ∈M . The output function of the subsequential finite-state transducer
with initial output T is defined as OT (α) = ι ◦ λ∗(q0, α) ◦Ψ(δ∗(q0, α)).

As before, two subsequential finite-state transducers with initial output are
called equivalent if the output functions of the transducers coincide. Clearly,
any subsequential finite-state transducer can be considered as a subsequen-
tial finite-state transducer with initial output ι = ε. The following proposi-
tion shows that by adding a new initial state every subsequential transducer
with initial output can be converted to an ordinary subsequential transducer.

Proposition 5.4.5 Let T = 〈Σ,M, Q, q0, F, δ, λ, ι,Ψ〉 be a subsequential
finite-state transducer with initial output. Let T ′ = 〈Σ,M, Q ∪ {q′0}, q′0, F ′, δ′, λ′,Ψ′〉
be the subsequential transducer where

• q′0 is a new starting state,

• δ′ = δ ∪ {〈q′0, σ, q〉 | 〈q0, σ, q〉 ∈ δ},

• λ′ = λ ∪ {〈q′0, σ, ι ◦ α〉 | 〈q0, σ, α〉 ∈ λ},

• F ′ = F ∪
{
{q′0} if q0 ∈ F
∅ otherwise,

• Ψ′ = Ψ ∪
{
{〈q′0, ι ◦Ψ(q0)〉} if q0 ∈ F
∅ otherwise.

Then we have OT = OT ′.

For the next proposition we assume that the transition function of a trans-
ducer is total.

Proposition 5.4.6 Let T = 〈Σ,Σ′, Q, q0, F, δ, λ, ι,Ψ〉 be a classical subse-
quential finite-state transducer with initial output representing f : Σ∗ → Σ′∗

and total transition function δ. Let

RT := {〈u, v〉 ∈ Σ∗ × Σ∗ | δ∗(q0, u) = δ∗(q0, v)}.

Then RT is a right invariant equivalence relation and RT is a refinement of
the Myhill-Nerode relation Rf .

106 CHAPTER 5. DETERMINISTIC TRANSDUCERS

Proof. The right invariance ofRT is proven similarly as in Proposition 3.4.7.
Let u RT v. Let u′ = ι·λ∗(q0, u), v′ = ι·λ∗(q0, v) and w ∈ Σ∗ be an arbitrary
word. Then

δ∗(q0, u · w) = δ∗(δ∗(q0, u), w) = δ∗(δ∗(q0, v), w) = δ∗(q0, v · w).

Hence

u · w ∈ dom(f) ⇔ δ∗(q0, u · w) ∈ F
⇔ δ∗(q0, v · w) ∈ F
⇔ v · w ∈ dom(f).

Moreover, if u ·w ∈ dom(f), then p := δ∗(q0, u ·w) = δ∗(q0, v ·w) is final and

f(u · w) = ι · λ∗(q0, u · w) ·Ψ(p) = ι · λ∗(q0, u) · λ∗(δ∗(q0, u), w) ·Ψ(p)

and

f(v · w) = ι · λ∗(q0, v · w) ·Ψ(p) = ι · λ∗(q0, v) · λ∗(δ∗(q0, v), w) ·Ψ(p)

and therefore

u′−1f(u ·w) = λ∗(δ∗(q0, u), w) ·Ψ(p) = λ∗(δ∗(q0, v), w) ·Ψ(p) = v′−1f(v ·w).

Corollary 5.4.7 Let T = 〈Σ,Σ′, Q, q0, F, δ, λ, ι,Ψ〉 be a subsequential clas-
sical finite-state transducer with initial output and total transition function
δ representing f : Σ∗ → Σ′∗. Then |Σ∗/Rf | ≤ |Σ∗/RT | = |Q|.

Proposition 5.4.8 Let f : Σ∗ → Σ′∗ be a function such that the index of
the Myhill-Nerode relation Rf is finite. Let

Tf =
〈
Σ,Σ′,Σ∗/Rf , [ε]Rf , {[s]Rf | s ∈ dom(f)}, δ, λ, ι,Ψ

〉
,

where:

• δ = {
〈
[u]Rf , a, [u · a]Rf

〉
|u ∈ Σ∗, a ∈ Σ},

• λ = {
〈
[u]Rf , a, lcof (u)−1lcof (u · a)

〉
|u ∈ Σ∗, a ∈ Σ, u·a ∈ Pref (dom(f))}∪

{
〈
[u]Rf , a, ε

〉
|u ∈ Σ∗, a ∈ Σ, u · a 6∈ Pref (dom(f))},

• ι = lcof (ε),

• Ψ = {
〈
[u]Rf , lcof (u)−1f(u)

〉
|u ∈ dom(f)}.

Then Tf is a classical subsequential finite-state transducer with initial output
and we have OTf = f and the transition function δ is total.

5.4. MINIMAL SUBSEQUENTIAL FINITE-STATE TRANSDUCERS - MYHILL-NERODE RELATION FOR SUBSEQUENTIAL TRANSDUCERS107

Proof. We have to show that the transducer Tf is well-defined. Clearly, Q
and F are finite since Rf has a finite index.

We first show that δ is well-defined, i.e., that the definition does not
depend on the choice of the member of the equivalence class. Let u Rf v.
Then, since Rf is right invariant we have u · a Rf v · a for any a ∈ Σ. Hence
δ([u]Rf , a) = [u · a]Rf = [v · a]Rf .

Clearly by definition δ is a total function with domain (Σ∗/Rf)× Σ.
To show that λ is well-defined we first have to see that if u · a ∈

Pref (dom(f)) then lcof (u · a) is a prefix of lcof (u).
Indeed, since {w ∈ Σ∗ |u · w ∈ dom(f)} ⊇ {w ∈ Σ∗ |u · a · w ∈ dom(f)} we
have that {f(u ·w) |w ∈ Σ∗, u ·w ∈ dom(f)} ⊇ {f(u ·a ·w |w ∈ Σ∗, u ·a ·w ∈
dom(f)} and therefore lcof (u ·a) =

∧
{f(u ·a ·w |w ∈ Σ∗, u ·a ·w ∈ dom(f)}

is a prefix of lcof (u) =
∧
{f(u · w) |w ∈ Σ∗, u · w ∈ dom(f)}.

We now show that the definition of λ does not depend on the choice of
the member of the equivalence class. Let v ∈ [u]Rf . Since u Rf v we have
u · a Rf v · a. If u · a 6∈ Pref (dom(f)) then by the definition of Rf we have
v · a 6∈ Pref (dom(f)) and therefore λ([u], a) = λ([v], a) = ε.

If u · a ∈ Pref (dom(f)) then there exist u′, v′ ∈ Σ′∗ such that for all
w ∈ Σ∗ with u · w ∈ dom(f) we have

u′−1f(u · w) = v′−1f(v · w).

This implies that∧
w∈Σ∗,u·w∈dom(f)

u′−1f(u · w) =
∧

w∈Σ∗,v·w∈dom(f)

v′−1f(v · w)

u′−1
∧

w∈Σ∗,u·w∈dom(f)

f(u · w) = v′−1
∧

w∈Σ∗,v·w∈dom(f)

f(v · w)

u′−1lcof (u) = v′−1lcof (v).

Similarly for all w ∈ Σ∗ such that u · a · w ∈ dom(f) we have

u′−1f(u · a · w) = v′−1f(v · a · w).

This implies that∧
w∈Σ∗,u·a·w∈dom(f)

u′−1f(u · a · w) =
∧

w∈Σ∗,v·a·w∈dom(f)

v′−1f(v · a · w)

u′−1
∧

w∈Σ∗.u·a·w∈dom(f)

f(u · a · w) = v′−1
∧

w∈Σ∗,v·a·w∈dom(f)

f(v · a · w)

u′−1lcof (u · a) = v′−1lcof (v · a).

Hence

lcof (u)−1lcof (u·a) = [u′v′−1lcof (v)]−1(u′v′−1lcof (v·a)) = lcof (v)−1lcof (v·a)

108 CHAPTER 5. DETERMINISTIC TRANSDUCERS

and therefore the definition of λ is correct.
Now we show that the definition of Ψ does not depend on the choice of

the member of the equivalence class. Let u Rf v and u ∈ dom(f). Hence
there exist u′, v′ ∈ Σ′∗ such that (for w = ε)

u′−1f(u) = v′−1f(v)

and thus

u′−1lcof (u) (lcof (u)−1f(u)) = v′−1lcof (v) (lcof (v)−1f(v)).

Since u′−1lcof (u) = v′−1lcof (v) we obtain

lcof (u)−1f(u) = lcof (v)−1f(v).

To prove thatOTf = f we first show by induction that for u ∈ Pref (dom(f))
we have ι · λ∗([ε], u) = lcof (u). First, for u = ε we have ι · λ∗([ε], ε) = ι =
lcof (ε). For the induction step assume ι · λ∗([ε], u) = lcof (u) and let a ∈ Σ.
Then

ι · λ∗([ε], u · a) = ι · λ∗([ε], u) · λ([u], a) = lcof (u) · λ([u], a)

= lcof (u)(lcof (u)−1lcof (u · a)) = lcof (u · a).

For u ∈ dom(f) we have

OTf (u) = ι·λ∗([ε], u)·Ψ([u]) = lcof (u)·Ψ([u]) = lcof (u)(lcof (u)−1f(u)) = f(u).

Definition 5.4.9 The transducer Tf in Proposition 5.4.8 is called the Myhill-
Nerode transducer for f .

Similarly as with the deterministic finite-state automata we obtained an-
other characterization of the class of functions represented by subsequential
transducers.

Theorem 5.4.10 Let f : Σ∗ → Σ′∗ be a function. Then f is the output
function of a subsequential finite-state transducer iff the index of Rf is finite.

Theorem 5.4.11 Let f : Σ∗ → Σ′∗ be a function such that the index of Rf
is finite. Then the Myhill-Nerode transducer Tf for f is minimal with respect
to number of states among all subsequential classical finite-state transducers
with initial output and total transition function representing f .

Proof. Let T be a subsequential classical finite-state transducers with
initial output and total transition function representing f . The definition
of RT (cf. Proposition 5.4.6) implies that the number of equivalence classes
of RT is bounded by the number of states |Q| of T . Corollary 5.4.7 shows
that the number of equivalence classes of the Nerode equivalence relation
Rf , which coincides with the number of states of Tf , does not exceed |Q|.

5.4. MINIMAL SUBSEQUENTIAL FINITE-STATE TRANSDUCERS - MYHILL-NERODE RELATION FOR SUBSEQUENTIAL TRANSDUCERS109

Remark 5.4.12 Note that there can be many equivalent non-isomorphic
minimal subsequential finite-state transducers. The topology of any of the
minimal transducers is isomorphic to the Myhill-Nerode transducer, but
some parts of the outputs can be moved along the paths.

The following generalises the minimality result for subsequential finite-state
transducers with arbitrary transition function.

Lemma 5.4.13 Let f : Σ∗ → Σ′∗ be a function such that the index of the
Myhill-Nerode relation Rf is finite. Then the Myhill-Nerode transducer Tf
has at most one state p such that no final state is reachable from p. All
states are reachable from the start state.

Proof. Clearly a state [u]Rf is reached from the start state with input
u. Assume that Tf has states p = [v]Rf and p′ = [v′]Rf such that no final
state can be reached from p or p′. Then v and v′ cannot be extended to
strings in the domain of f . The definition of the Myhill-Nerode relation
shows that v Rf v

′, which implies p = p′.

For the rest of this chapter we use the notation T ′f for the transducer
obtained from the Myhill-Nerode-Transducer Tf via trimming. We call T ′f
the trimmed Myhill-Nerode transducer for f . Obviously Tf and T ′f are equiv-
alent.

Theorem 5.4.14 Let f : Σ∗ → Σ′∗ be a function such that the index of the
Myhill-Nerode relation Rf is finite. Then the trimmed Myhill-Nerode trans-
ducer T ′f has the minimal number of states among all classical subsequential
transducers with initial output representing f .

Proof. First note that it does not make a difference if we refer to all
trimmed or all classical subsequential transducers with initial output and
partial transition function representing f : if a transducer is not trimmed we
can always delete a state, again obtaining a smaller transducer representing
f . Assume there exists a trimmed classical subsequential transducer T with
initial output representing f with a smaller number of states than T ′f .
Case 1: The transition function of T is total. In this case according to
Theorem 5.4.11 the number of states of T is greater or equal to the num-
ber of states of Tf which is greater or equal to the number of states of T ′f
(Lemma 5.4.13). This yields a contradiction.
Case 2: The transition function of T is not total. In this case Pref (dom(f)) 6=
Σ∗ and therefore there exist a state in Tf from which no final state can be
reached. Adding a single new state plus new transitions in the obvious way
we obtain an equivalent classical subsequential transducer T ′ with initial
output and total transition function. Let nf , n′f , n and n′ respectively de-
note the number of states of Tf , T ′f , T , and T ′. We have n′ − 1 = n and

110 CHAPTER 5. DETERMINISTIC TRANSDUCERS

nf − 1 = n′f . From the assumption we have n < n′f and therefore n′ < nf .
Since the transducer T ′ has a total transition function this contradicts The-
orem 5.4.11

5.5 Minimization of subsequential transducers

In this section we show how to minimize a given subsequential finite-state
transducer, essentially following the approach in [Mohri, 2000]. We present
the procedure for the case of classical subsequential finite-state transducers.
But essentially the same technique can be used for other target monoids
that satisfy some additional conditions [Gerdjikov and Mihov, 2017a]. In the
first theoretical part we show that in order to obtain a minimal subsequential
finite-state transducer from a given subsequential input transducer it suffices
to compute an equivalent pseudo-minimal (cf. Section 3.7) transducer in
a special “canonical form” to be defined below. Afterwards we describe
the missing details of the two algorithmic steps needed, showing (1) how
to convert the input transducer to canonical form and (2) how to apply
pseudo-minimization.

For the minimization of subsequential transducers we assume that input
transducers are always trimmed. This is motivated by the fact that some of
the following definitions only make sense for trimmed transducers.

Theoretical background

We start with the first step of the minimization procedure mentioned above.
Let us remind that the output function of a state q is defined (cf. Defini-
tion 5.1.7) as

OqT (α) := λ∗(q, α) ·Ψ(δ∗(q, α))

for α such that δ∗(q, α) is final. For a trimmed transducer the domain of
OqT is non-empty

Definition 5.5.1 Let T = 〈Σ,Σ′, Q, q0, F, δ, λ, ι,Ψ〉 be a trimmed classical
subsequential finite-state transducer with initial output. The maximal state
output msoT (q) for a state q ∈ Q is defined as

msoT (q) :=
∧

w∈Σ∗ & δ∗(q,w)∈F

OqT (w).

Note that msoT : Q→ Σ′∗ is a total function.

Definition 5.5.2 Let T = 〈Σ,Σ′, Q, q0, F, δ, λ, ι,Ψ〉 be a trimmed classical
subsequential finite-state transducer with initial output. Then the canonical
form of T is the subsequential finite-state transducer with initial output

T ′ :=
〈
Σ,Σ′, Q, q0, F, δ, λ

′, ι′,Ψ′
〉

5.5. MINIMIZATION OF SUBSEQUENTIAL TRANSDUCERS 111

where

• ι′ := ι ·msoT (q0),

• Ψ′(q) := msoT (q)−1Ψ(q) for all q ∈ F ,

• λ′(q, σ) := msoT (q)−1(λ(q, σ) · msoT (δ(q, σ))), for all q ∈ Q, σ ∈ Σ
such that δ(q, σ) is defined.

The definition ensures that the maximal state output of a state is now
already produced when reaching the state. For example, consider the third
clause where we define the output of a σ-transition leading from q to p =
δ(q, σ). We do not only produce λ(q, σ) but also the maximal state output
for p. The correcting factor msoT (q)−1, which deletes a prefix of λ(q, σ) ·
msoT (p), takes into account that when reaching q in the new transducer
msoT (q) has already been produced.

Definition 5.5.3 A trimmed classical subsequential finite-state transducer
with initial output T is in canonical form if T is isomorphic to its canonical
form T ′.

Corollary 5.5.4 A trimmed classical subsequential finite-state transducer
with initial output T = 〈Σ,Σ′, Q, q0, F, δ, λ, ι,Ψ〉 is in canonical form iff for
every state q ∈ Q we have mso(q) = ε.

Proof. Assume that for every state q ∈ Q we have mso(q) = ε. Then by
Definition 5.5.2 ι′ = ι, Ψ′ = Ψ and λ′ = λ and therefore T ′ = T .
Assume now that T ′ = T . Since ι′ = ι from Definition 5.5.2 we have
mso(q0) = ε. Since λ′ = λ by induction on the depth of q we show that
mso(q) = ε.

Example 5.5.5 See Figure 5.5 and the explanation in Example 5.5.17 for
an illustration of the canonical form.

The following proposition shows that conversion to canonical form leads to
an equivalent trimmed transducer.

Proposition 5.5.6 Let T = 〈Σ,Σ′, Q, q0, F, δ, λ, ι,Ψ〉 be a trimmed classi-
cal subsequential finite-state transducer with initial output and let

T ′ =
〈
Σ,Σ′, Q, q0, F, δ, λ

′, ι′,Ψ′
〉

be the canonical form of T . Then T ′ is trimmed and equivalent to T .

112 CHAPTER 5. DETERMINISTIC TRANSDUCERS

Proof. Clearly dom(OT) = dom(OT ′). Since we do not modify the tran-
sition function and the set of final states also T ′ is trimmed. By definition
we have ι′ := ι ·msoT (q0) and thus

ι′ · λ′(q0, σ) = ι ·msoT (q0) · (msoT (q0)−1(λ(q0, σ) ·msoT (δ(q), σ)))

= ι · λ(q0, σ) ·msoT (δ(q0, σ)).

A simple induction shows that for any u ∈ Σ∗ such that δ∗(q0, u) is defined
we have

ι′ · λ′∗(q0, u) = ι · λ∗(q0, u) ·msoT (δ∗(q0, u)).

Now let u ∈ dom(OT). Then

OT (u) = ι′ · λ′∗(q0, u) ·Ψ′(δ∗(q0, u))

= ι · λ∗(q0, u) ·msoT (δ∗(q0, u)) · (msoT (δ∗(q0, u))−1Ψ(δ∗(q0, u)))

= ι · λ∗(q0, u) ·Ψ(δ∗(q0, u))

= OT ′(u).

Corollary 5.5.7 Let T = 〈Σ,Σ′, Q, q0, F, δ, λ, ι,Ψ〉 be a trimmed classical
subsequential finite-state transducer with initial output representing the func-
tion f and let T ′ = 〈Σ,Σ′, Q, q0, F, δ, λ

′, ι′,Ψ′〉 be the canonical form of T .
Let u ∈ Σ∗ be a word such that δ∗(q0, u) is defined. Then

ι′ · λ′∗(q0, u) = lcof (u).

Proof. Let q := δ∗(q0, u). Since each state is on a successful path there
exists at least one string w ∈ Σ∗ such that u · w ∈ dom(f). Therefore

lcof (u) =
∧

w∈Σ∗ & u·w∈dom(f)

f(u · w)

=
∧

w∈Σ∗ & u·w∈dom(f)

ι · λ∗(q0, u) · λ∗(q, w) ·Ψ(δ∗(q, w))

= ι · λ∗(q0, u) ·
∧

w∈Σ∗ & u·w∈dom(f)

λ∗(q, w) ·Ψ(δ∗(q, w))

= ι · λ∗(q0, u) ·
∧

w∈Σ∗ & u·w∈dom(f)

OqT (w)

= ι · λ∗(q0, u) ·msoT (q)

= ι′ · λ′∗(q0, u).

5.5. MINIMIZATION OF SUBSEQUENTIAL TRANSDUCERS 113

Proposition 5.5.8 Let T = 〈Σ,Σ′, Q, q0, F, δ, λ, ι,Ψ〉 be a trimmed classi-
cal subsequential transducer in canonical form representing the function f .
Let q1, q2 ∈ Q be two states. Then q1 and q2 are equivalent iff

1. q1 ∈ F iff q2 ∈ F ,

2. if q1 ∈ F , then Ψ(q1) = Ψ(q2),

3. for all σ ∈ Σ: δ(q1, σ) is defined iff δ(q2, σ) is defined. If both are de-
fined, then δ(q1, σ) and δ(q2, σ) are equivalent and λ(q1, σ) = λ(q2, σ).

Proof. Obviously, if the three conditions are satisfied, then q1 and q2 are
equivalent. To prove the converse direction let q1 and q2 be equivalent. If
q1 ∈ F , then Oq1T (ε) = Ψ(q1) is defined. Since Oq1T = Oq2T it follows that
Oq2T (ε) is defined and Oq1T (ε) = Oq2T (ε) = Ψ(q2). Properties 1 and 2 follow.

Assume that δ(q1, σ) is defined. Then σ is the first letter of a string w = σw′

in the domain of Oq1T = Oq2T , which shows that δ(q2, σ) is defined.

Let u, v ∈ Σ∗ be two words such that δ∗(q0, u) = q1 and δ∗(q0, v) = q2. From
Corollary 5.5.7 we get

ι · λ∗(q0, u · σ) = lcof (u · σ)

ι · λ∗(q0, u) = lcof (u).

It follows that

λ(q1, σ) = lcof (u)−1lcof (u · σ).

In the same way we obtain

λ(q2, σ) = lcof (v)−1lcof (v · σ).

Since Oq1T = Oq2T it follows that u Rf v. As we have seen in the proof of
Proposition 5.4.8 this implies that lcof (u)−1lcof (u ·σ) = lcof (v)−1lcof (v ·σ)
and we obtain

λ(q1, σ) = lcof (u)−1lcof (u · σ) = lcof (v)−1lcof (v · σ) = λ(q2, σ).

For every w ∈ Σ∗ such that δ∗(q1, σ · w) ∈ F , using Oq1T = Oq2T we see that

Oq1T (σ · w) = λ(q1, σ) ·Oδ(q1,σ)
T (w) = λ(q2, σ) ·Oδ(q2,σ)

T (w) = Oq2T (σ · w).

Hence we obtain O
δ(q1,σ)
T = O

δ(q2,σ)
T .

The next lemma shows that for a classical subsequential finite-state trans-
ducer with initial output in canonical form, Myhill-Nerode equivalence of
two words boils down to equivalence of the states reached.

114 CHAPTER 5. DETERMINISTIC TRANSDUCERS

Lemma 5.5.9 Let T = 〈Σ,Σ′, Q, q0, F, δ, λ, ι,Ψ〉 be a trimmed classical sub-
sequential finite-state transducer with initial output in canonical form rep-
resenting the function f : Σ∗ → Σ′∗. Let u, v ∈ Σ∗, let δ∗(q0, u) = q1 and
δ∗(q0, v) = q2 be defined. Then u Rf v iff q1 is equivalent to q2.

Proof. (“⇒”) Clearly, since u Rf v we have dom(Oq1T) = dom(Oq2T). In
the proof of Proposition 5.4.8 we have seen that u′−1lcof (u) = v′−1lcof (v).
Let w ∈ Σ∗ such that u · w ∈ dom(f). Let u′ and v′ as in Definition 5.4.1.
Using Corollary 5.5.7 and the above equation we get

u′−1f(u · w) = v′−1f(v · w)

u′−1lcof (u) · (lcof (u)−1f(u · w)) = v′−1lcof (v) · (lcof (v)−1f(v · w))

lcof (u)−1f(u · w) = lcof (v)−1f(v · w)

(ι · λ∗(q0, u))−1f(u · w) = (ι · λ∗(q0, v))−1f(v · w).

We obtain

[ι · λ∗(q0, u)]−1(ι · λ∗(q0, u) · λ∗(q1, w) ·Ψ(δ∗(q1, w)))

= [ι · λ∗(q0, v)]−1(ι · λ∗(q0, v) · λ∗(q2, w) ·Ψ(δ∗(q2, w)))

and thus λ∗(q1, w) ·Ψ(δ∗(q1, w)) = λ∗(q2, w) ·Ψ(δ∗(q2, w)). Hence for every
w ∈ dom(Oq1T) we have Oq1T (w) = Oq2T (w), which shows that q1 and q2 are
equivalent.

(“ ⇐”) Let q1 be equivalent to q2. Let u′ := ι · λ∗(q0, u) and v′ :=
ι · λ∗(q0, v). Let w ∈ Σ∗ be a word such that u · w ∈ dom(f). Then

u′−1f(u · w) = [ι · λ∗(q0, u)]−1(ι · λ∗(q0, u) · λ∗(q1, w) ·Ψ(δ∗(q1, w)))

= λ∗(q1, w) ·Ψ(δ∗(q1, w))

= λ∗(q2, w) ·Ψ(δ∗(q2, w))

= [ι · λ∗(q0, v)]−1(ι · λ∗(q0, v) · λ∗(q2, w) ·Ψ(δ∗(q2, w)))

= v′−1f(v · w).

Theorem 5.5.10 A classical subsequential finite-state transducer T with
initial output in canonical form representing the string function f is minimal
(in terms of the number of states) among all classical subsequential finite-
state transducers with initial output representing f iff T is trimmed and
there are no distinct equivalent states in T .

Proof. Clearly T is trimmed since otherwise we could build an equiva-
lent transducer with a smaller number of states. Let Q and Q′f respectively
denote the set of states of T and the trimmed Myhill-Nerode transducer T ′f
for f . For each state q ∈ Q there exists a string uq ∈ Σ∗ such that q is

5.5. MINIMIZATION OF SUBSEQUENTIAL TRANSDUCERS 115

reached in T from the start state with input uq. It follows from Proposi-
tion 5.4.6 that the mapping χ : q 7→ [uq]Rf is well-defined. Since in T from
each state q a final state can be reached we have χ(q) ∈ Q′f for all q ∈ Q.
On the other hand if [u]Rf is a state in Q′f , then u is a prefix of a string in
the domain of f . It follows that also in T a state q is reached from the start
with in input u and we have χ(q) = [u]Rf . Hence χ : Q→ Q′f is a surjective
mapping.

Now assume that T is minimal in the above sense and T has distinct
states p and p′ that are equivalent, respectively reached from the start state
with input strings u and u′. Lemma 5.5.9 implies that u Rfu

′. Then [u]Rf =
[u′]Rf and the mapping χ is not injective. This would mean that the number
of states of T is greater than the number of states of T ′f , which contradicts
the minimality of T .

Conversely assume that T is trimmed and there are no distinct equivalent
states in T . Using Proposition 5.4.6 and Lemma 5.5.9 it follows that χ is a
bijection. It follows from Theorem 5.4.14 that T is minimal in terms of the
number of states among all classical subsequential finite-state transducers
with initial output representing f .

Conversion to canonical form - computing maximal state outputs

The conversion to canonical form requires finding the maximal state output
msoT for each state of the transducer. We use the following notions and
constructions.

Definition 5.5.11 Let T = 〈Σ,Σ′, Q, q0, F, δ, λ, ι,Ψ〉 be a classical sub-
sequential finite-state transducer with initial output. Then the monoidal
finite-state automaton

AT :=
〈
Σ′∗, Q ∪ {f}, {q0}, {f},∆

〉
where f 6∈ Q is a new state and

∆ = {〈q,Ψ(q), f〉 | q ∈ F} ∪ {
〈
q′, λ(q′, σ), q′′

〉
|
〈
q′, σ, q′′

〉
∈ δ}

is called the output automaton of T .

Clearly, the language of AT is equal to ι−1codom(OT) and for each state
q ∈ Q we have

LAT (q) =
⋃

w∈Σ∗ & δ∗(q,w)∈F

OqT (w).

Following Proposition 3.2.1 we compute a classical finite-state automaton
A′T with an extended set of states Q′ without ε-transitions such that for
each q ∈ Q we have LAT (q) = LA′T (q). A′T is called the expanded output
automaton of T .

116 CHAPTER 5. DETERMINISTIC TRANSDUCERS

Example 5.5.12 See Figure 5.5 and the explanation in Example 5.5.17
for an example output automaton and the corresponding expanded output
automaton.

Proposition 5.5.13 Let T = 〈Σ,Σ′, Q, q0, F, δ, λ, ι,Ψ〉 be a classical subse-
quential finite-state transducer with initial output, let

A′T =
〈
Σ′, Q ∪Q′′ ∪ {f}, q0, F

′′,∆′′
〉

be the expanded output automaton of T , let q ∈ Q. Then

LA′T (q) =
⋃

w∈Σ∗,δ∗(q,w)∈F

OqT (w)

and
msoT (q) =

∧
LA′T (q).

The following proposition facilitates the effective calculation of the longest
common prefix of an automaton language.

Proposition 5.5.14 Let A = 〈Σ′, Q, q0, F, δ〉 be a trimmed deterministic
finite-state automaton. Let

π = q0 →a1 q1 →a2 q2 . . . qk−1 →ak qk

be a path starting at q0. Then w =
∧
L(A) for w = a1a2 . . . ak iff the

following properties hold:

• qk is final or there are more than one outgoing transitions from qk.
i.e.

qk ∈ F ∨ |{σ ∈ Σ′ | !δ(qk, σ)}| > 1.

• For each i in 0, . . . , k − 1 the state qi is not final and there is exactly
one outgoing transition from qi. I.e.

∀i ∈ {0, . . . , k − 1} : qi 6∈ F & |{σ ∈ Σ′ | !δ(qi, σ)}| = 1.

If the conditions are satisfied, the path π is called the maximal unique path
of A. Now in order to calculate

∧
LA′T (q) we will proceed with determiniza-

tions for A′T , using distinct start states.

Corollary 5.5.15 Let T = 〈Σ,Σ′, Q, q0, F, δ, λ, ι,Ψ〉 be a trimmed classical
subsequential finite-state transducer with initial output and let

A′T =
〈
Σ′, Q ∪Q′′ ∪ {f}, q0, F

′′,∆′′
〉

be the expanded output automaton of T . Let Dq = 〈Σ′, Qq, {q}, Fq, δq〉 be
the deterministic finite-state automaton obtained from the determinization
of A′T

q = 〈Σ′, Q ∪Q′′ ∪ {f}, q, F ′′,∆′′〉. Then

msoT (q) =
∧
L(Dq) = wq,

where wq ∈ Σ′∗ is the label of the maximal unique path of Dq.

5.5. MINIMIZATION OF SUBSEQUENTIAL TRANSDUCERS 117

Remark 5.5.16 In order to find the longest common prefix of the language
ofA′T

q (cf. Corollary 5.5.15) we can proceed by determinizing only the initial
part of the automaton, until we reach the state qk for which the conditions in
Proposition 5.5.14 are fulfilled. Hence only a small part of the automaton has
to be determinized. The complexity of finding msoT (q) is O(|wq||Q ∪Q′′|2)
(cf. Program 8.3.5).

Example 5.5.17 All steps of the minimization of a subsequential trans-
ducer are illustrated in Figure 5.5. The first graph represents a subsequen-
tial transducer T . Below the output automaton and the expanded output
automaton for T are shown. Below maximal unique paths after determiniza-
tion with distinct start states 1, . . . , 6 are shown. From these values we ob-
tain the longest common output for each state of T . Having the longest
common outputs we can compute a transducer T ′ with initial output in
canonical form. The last step is the pseudo-determinization of T ′, we ob-
tain the minimal transducer T ′′ at the bottom.

As a resume, in order to compute the canonical subsequential transducer
for a given subsequential transducer T we first compute the maximal state
output for each state using Corollary 5.5.15. Having the maximal state
outputs we convert T to canonical form T ′ by modifying outputs following
Definition 5.5.2.

Pseudo-minimization - computing the minimal subsequential trans-
ducer

In order to construct the minimal transducer from a canonical trimmed
subsequential transducer we apply a pseudo-minimization procedure as in
Section 3.7 combined with the colouring of the final states (cf. Section 3.6)
induced by the state output function Ψ. The following proposition formalizes
this idea.

Proposition 5.5.18 Let T = 〈Σ,Σ′, Q, q0, F, δ, λ, ι,Ψ〉 be a canonical trimmed
subsequential finite-state transducer with initial output. Consider the new
alphabet

Γ := {〈c, λ(q, c)〉 | c ∈ Σ, q ∈ Q & !δ(q, c)},

and the set of transitions δA := {〈q, 〈c, λ(q, c)〉 , q′〉 | 〈q, c, q′〉 ∈ δ}. Then

AT := 〈Γ, codom(Ψ), Q, q0, F, δA,Ψ〉

is a codom(Ψ)-coloured deterministic finite-state automaton. Let

A′T =
〈
Γ, codom(Ψ), Q′, q′0, F

′, δ′A,Ψ
′〉

118 CHAPTER 5. DETERMINISTIC TRANSDUCERS

Figure 5.5: Minimization of a subsequential transducer, cf. Example 5.5.17.

5.5. MINIMIZATION OF SUBSEQUENTIAL TRANSDUCERS 119

denote the minimal codom(Ψ)-coloured deterministic finite-state automaton
equivalent to AT . Then the subsequential finite-state transducer

T ′ :=
〈
Σ,Σ′, Q′, q′0, F

′, δ′, λ′, ι,Ψ′
〉
,

where

δ′ := {
〈
q, c, q′

〉
|
〈
q, 〈c, α〉 , q′

〉
∈ δ′A}

λ′ := {〈q, c, α〉 |
〈
q, 〈c, α〉 , q′

〉
∈ δ′A}

is the minimal canonical subsequential finite-state transducer equivalent to
T .

The computation of classes of equivalent states of the coloured deterministic
finite-state automaton AT is based on the relations Ri (i ≥ 0), which were
defined in the following way (cf. Remark 3.5.8):

q R0 p ↔ (q ∈ F ↔ p ∈ F) & (q ∈ F → Ψ(q) = Ψ(p))

q Ri+1 p ↔ q Ri p & ∀ā ∈ Γ : δA(q, ā), δA(p, ā) undefined, or

δA(q, ā) Ri δA(p, ā).

Corollary 5.5.19 The equivalence relation for minimizing the canonical
subsequential finite-state transducer T coincides with the relation R =

⋂∞
0 Ri

where

1. R0 = kerQ(f)

2. Ri+1 =
⋂
a∈Γ kerQ(f

(i)
ā) ∩Ri

For a ∈ Γ and i ∈ IN the function f
(i)
ā : Q→ (Q/Ri) ∪ {⊥} is defined as

f
(i)
ā (q) :=

{
⊥ if δA(q, ā) undefined,
[δA(q, ā)]Ri otherwise.

and f : Q→ codom(Ψ) ∪ {0c} is defined as

f(q) :=

{
Ψ(q) if q ∈ F,
0c otherwise.

Remark 5.5.20 For finite word functions there exist direct methods for
constructing the minimal finite-state subsequential transducer which provide
better efficiency [Mihov and Maurel, 2001].

120 CHAPTER 5. DETERMINISTIC TRANSDUCERS

5.6 Numerical subsequential transducers

In this section we show how the results from the previous sections can be
transferred to the monoid of natural numbers.

Definition 5.6.1 Let T = 〈Σ,Σ′, Q, q0, F, δ, λ,Ψ〉 be a classical subsequen-
tial transducer. Let φ : Σ′∗ →M be a homomorphism between the monoids
Σ′∗ and M = 〈M, •, e〉. Then the monoidal subsequential transducer Tφ =
〈Σ,M, Q, q0, F, δ, λφ,Ψφ〉, where

• λφ := λ ◦ φ (i.e. λφ(q, σ) := φ(λ(q, σ))),

• Ψφ := Ψ ◦ φ (i.e. Ψφ(q) := φ(Ψ(q))),

is said to be obtained by mapping T with φ.

The following proposition can be considered as a variant of Theorem 2.1.22.

Proposition 5.6.2 Let Tφ be obtained from the subsequential transducer T
by mapping with φ, where φ : Σ′∗ → M is a homomorphism between the
monoids Σ′∗ and M. Then OTφ = OT ◦ φ.

Proposition 5.6.3 Let Σ′ = {1} and N = 〈IN,+, 0〉. Then the function
ϕ : Σ′∗ → IN defined as

ϕ(1n) := n, for any n ∈ IN

is a monoidal isomorphism between the monoids Σ′∗ and N .

The following properties are obvious:

• for any a, b ∈ Σ′∗, such that |a| ≤ |b| we have ϕ(a−1b) = ϕ(b)− ϕ(a),

• for any a, b ∈ Σ′∗, we have ϕ(a ∧ b) = min(ϕ(a), ϕ(b)),

• for any a ∈ Σ′∗, we have |a| = ϕ(a).

Proposition 5.6.4 Let T be a classical subsequential transducer and let
Σ′ = {1}. Then T can be obtained by mapping Tϕ with ϕ−1 i.e. T = Tϕϕ−1.

The above proposition shows that mapping with ϕ realizes an isomorphism
between classical subsequential transducers over output alphabets with one
symbol and monoidal subsequential transducers over the monoidN = 〈IN,+, 0〉.

5.6. NUMERICAL SUBSEQUENTIAL TRANSDUCERS 121

Corollary 5.6.5 All results for transducer determinization (Section 5.2),
deciding functionality (Section 4.6), deciding bounded variation (Section 5.3),
and transducer minimization (Section 5.4) obtained for classical subsequen-
tial transducers are transferred directly2 to monoidal subsequential transduc-
ers over the monoid N .

Remark 5.6.6 All results for transducer determinization, deciding func-
tionality, deciding bounded variation, and transducer minimization obtained
for classical subsequential transducers can be derived also for monoidal sub-
sequential transducers over the monoid R+ =

〈
IR+,+, 0

〉
[Mohri, 2004] and

other monoids [Gerdjikov and Mihov, 2017b].

2Transferring the results the notions of a longest common prefix, remainder suffix and
word length of words respectively have to be replaced by minimum, subtraction and value
of natural numbers.

122 CHAPTER 5. DETERMINISTIC TRANSDUCERS

Chapter 6

Bimachines

In the previous chapter we have seen that not all regular string functions
can be represented by deterministic or subsequential transducers. In this
chapter we look at a more powerful concept. We introduce bimachines, a
deterministic finite-state device that exactly represents the class of all reg-
ular string functions. Bimachines have been introduced in [Schützenberger,
1961] and have been treated also in [Eilenberg, 1974, Berstel, 1979, Roche
and Schabes, 1997b].

6.1 Basic definitions

Following our earlier procedure we generalize the classical concept of a bi-
machine to the more general situation where output values are in a monoid.

Definition 6.1.1 A monoidal bimachine is a tuple B = 〈M,AL,AR, ψ〉
where

• M = 〈M, ◦, e〉 is a monoid,

• AL = 〈Σ, L, sL, L, δL〉 and AR = 〈Σ, R, sR, R, δR〉 are deterministic
finite-state automata called the left and right automaton of the bima-
chine;

• ψ : (L× Σ×R)→M is a partial function called the output function.

Note that all states of AL and AR are final. IfM is a free monoid, then B is
called a classical bimachine. In this case we simply assume that the output
alphabet coincides with the alphabets of the left and right automata, Σ, and
write B = 〈AL,AR, ψ〉.

Definition 6.1.2 Let M = 〈M, ◦, e〉 be a monoid, let B = 〈M,AL,AR, ψ〉
denote a monoidal bimachine, let Σ denote the alphabet of AL and AR.

123

124 CHAPTER 6. BIMACHINES

Consider an input sequence t = σ1σ2 · · ·σn ∈ Σ∗ (n ≥ 0) with letters σi
(i = 1, . . . , n). If all the values δ∗L(σ1σ2 · · ·σi) and δ∗R(σnσn−1 · · ·σi) are
defined (1 ≤ i ≤ n) we obtain a pair of paths

πL : l0 →σ1 l1 → . . . li−1 →σi li → . . . ln−1 →σn ln
πR : r0 ←σ1 r1 ← . . . ri−1 ←σi ri ← . . . rn−1 ←σn rn

where πL is a path of the left automaton AL starting from l0 := sL and πR
is a path of the right automaton AL (arrows indicate reading order) starting
from rn := sR. If all outputs ψ(li−1, σi, ri) are defined (1 ≤ i ≤ n), then we
call (πL, πR) a pair of successful paths of B with label σ1σ2 . . . σn and output

OB(t) := ψ(l0, σ1, r1) ◦ψ(l1, σ2, r2) ◦ . . . ◦ψ(li−1, σi, ri) ◦ . . . ◦ψ(ln−1, σn, rn).

In the special case where t = ε we have OB(t) = e. The partial function OB
is called the output function of the bimachine, or the function represented
by the bimachine. If OB(t) = m we say that the bimachine B translates t
into m.

The output corresponds to the product of the outputs defined by parallel
steps in the two paths in the following way:

πL : l0 →σ1 l1 → . . . li−1 →σi li → . . . ln−1 →σn ln
πR : r0 ←σ1 r1 ← . . . ri−1 ←σi ri ← . . . rn−1 ←σn rn

ψ(l0, σ1, r1) . . . ψ(li−1, σi, ri) . . . ψ(ln−1, σn, rn)

From the definition we see immediately that bimachines enable a compu-
tation linear in the length of the input: to compute the output for an input
string t we may first read t in the reverse order and memorize the sequence
of states of πR (“back”). Afterwards we read t in the natural order (“forth”).
With each transition li−1 →σi li in the left automaton we may directly pro-
duce the output component ψ(li−1, σi, ri). As a matter of fact, instead of
using a “back-and-forth” method we can also use a “forth-and-back” strat-
egy.

Example 6.1.3 Figure 6.1 shows a classical bimachine, the left (right) au-
tomaton has three (two) states. Since in a bimachine each state is final we
do not mark final states. In the figure we see a pair of successful paths with
output aABbbaABbbbabbb for the input string aabbbaabbbbabbb. The states
of the left automaton reached after reading each input letter are shown above
the input word. The right automaton reads in the converse direction, states
reached are shown under the input word. Note that at a certain point of the
input text the right automaton is in state 5 iff a symbol a follows somewhere
on the right. The output for a particular occurrence of an input symbol σ
is determined by σ, the upper left automaton state reached before σ, and
the lower right automaton state after σ.

6.1. BASIC DEFINITIONS 125

Figure 6.1: Example for a classical bimachine, cf. Example 6.1.3. The bi-
machine translates letters a and b into uppercase letters if the left neighbour
is a and another a follows later in the text. We see a pair of successful paths
for input aabbbaabbbbabbb. Boxes show the triples used for computing the
output components.

Similarly as in the case of monoidal finite-state automata, also for bima-
chines the path-based view is not the only way to define the behaviour of
the machine. In the case of finite-state automata we have seen that the
generalized transition function (cf. Definition 2.1.14) can be used to directly
define the language of an automaton. A parallel concept in the bimachine
case is the following.

Definition 6.1.4 Let B = 〈M,AL,AR, ψ〉 denote a monoidal bimachine.
The generalized output function ψ∗ of B is inductively defined as follows:

• ψ∗(l, ε, r) = e for all l ∈ L, r ∈ R;

• ψ∗(l, tσ, r) = ψ∗(l, t, δR(r, σ)) ◦ ψ(δ∗L(l, t), σ, r) for l ∈ L, r ∈ R, t ∈
Σ∗, σ ∈ Σ.

In the definition we use our general convention that whenever we write an
expression where a partial function is applied to an argument we always
assume that the value is defined. This means that ψ∗ is a partial function.
We want to show that the partial mapping

Σ∗ →M : t 7→ ψ∗(sL, t, sR)

coincides with the output function of the bimachine. As a preparation the
following proposition shows how output values for a string t = t1 · t2 ∈ Σ∗

can be traced back to outputs for the substrings t1 and t2. Here we assume
that the traversals in the left and right automaton start at arbitrary states.
See Figure 6.2 for an illustration.

126 CHAPTER 6. BIMACHINES

Figure 6.2: Illustration for the principle described in Proposition 6.1.5. The
output of a string t under the generalized output function for input t = t1t2
starting from states l, r can be split into outputs for t1 and t2 using the
additional states l1 = δ∗L(l, t1) and r1 = δ∗R(r, ρ(t2)).

Proposition 6.1.5 Let B = 〈M,AL,AR, ψ〉 be a monoidal bimachine and
M = 〈M, ◦, e〉. Let t = t1 · t2 ∈ Σ∗. Then for all states l ∈ L and r ∈ R we
have

ψ∗(l, t, r) = ψ∗(l, t1, δ
∗
R(r, ρ(t2))) ◦ ψ∗(δ∗L(l, t1), t2, r).

Proof. The proof is by induction on |t2|. For |t2| = 0 we have t = t1,
t2 = ε and δ∗R(r, ρ(t2)) = r. The definition of ψ∗ implies that

ψ∗(l, t, r) = ψ∗(l, t, r) ◦ e
= ψ∗(l, t1, r) ◦ ψ∗(δ∗L(l, t1), ε, r)

= ψ∗(l, t1, δ
∗
R(r, ρ(t2))) ◦ ψ∗(δ∗L(l, t1), t2, r).

For the induction step let t2 = t3σ. Using the induction hypothesis for t1
and t3 and the definition of ψ∗ we obtain

ψ∗(l, t, r)

= ψ∗(l, t1t3σ, r)

= ψ∗(l, t1t3, δR(r, σ)) ◦ ψ(δ∗L(l, t1t3), σ, r)

= ψ∗(l, t1, δ
∗
R(δR(r, σ), ρ(t3))) ◦ ψ∗(δ∗L(l, t1), t3, δR(r, σ)) ◦ ψ(δ∗L(l, t1t3), σ, r)

= ψ∗(l, t1, δ
∗
R(r, ρ(t3σ))) ◦ ψ∗(δ∗L(l, t1), t3σ, r)

= ψ∗(l, t1, δ
∗
R(r, ρ(t2))) ◦ ψ∗(δ∗L(l, t1), t2, r).

Using Proposition 6.1.5 is now simple to see that the partial mapping Σ∗ →
M : t 7→ ψ∗(sL, t, sR) in fact coincides with the output function of the
bimachine. Given a text t we only need to apply the proposition in an
iterative manner until the text is split into single-letter subtexts. We then
arrive at the description of the output via pairs of successful paths. Yet
another more “local” way of looking at bimachines can be derived from the
following notion.

Definition 6.1.6 Let B = 〈M,AL,AR, ψ〉 be a monoidal bimachine. An
edge of B is a sixtupel E = 〈l, r, σ,m, l′, r′〉 such that σ ∈ Σ, l, l′ are states

6.1. BASIC DEFINITIONS 127

of AL, r, r′ are states of AR, δL(l, σ) = l′), δR(r′, σ) = r, and ψ(l, σ, r′) = m.
The left state pair of E is 〈l, r〉, the right state pair of E is 〈l′, r′〉.

Edges are written in the form

l→σ l′

r ←σ r′

m

A sequence of edges E1, . . . , En is called admissible if the right state pair of
Ei coincides with the left state pair of Ei+1 for i = 1, . . . , n− 1. Admissible
sequences of edges are also called chains. A chain E1, . . . , En is called com-
plete if the left state pair of E1 contains the start state sL of AL and the
right state pair of En contains the start state sR of AR. Clearly, each pair
of successful paths

l0 →σ1 l1 → . . . li−1 →σi li → . . . ln−1 →σn ln
r0 ←σ1 r1 ← . . . ri−1 ←σi ri ← . . . rn−1 ←σn rn
ψ(l0, σ1, r1) . . . ψ(li−1, σi, ri) . . . ψ(ln−1, σn, rn)

corresponds to a unique complete chain

l0 →σ1 l1 . . . li−1 →σi li . . . ln−1 →σn ln
r0 ←σ1 r1 . . . ri−1 ←σi ri . . . rn−1 ←σn rn
ψ(l0, σ1, r1) . . . ψ(li−1, σi, ri) . . . ψ(ln−1, σn, rn)

and vice versa.

Remark 6.1.7 Most often, bimachines are used as devices for text rewrit-
ing. In this context the above concept is too general and bimachines should
be restricted in the sense that the left and right automaton, the generalized
output function ψ∗ and the function represented by the bimachine OB are
total.

Definition 6.1.8 Let M = 〈M, ◦, e〉 be a monoid. A monoidal bimachine
B = 〈M,AL,AR, ψ〉 is total iff the transition functions of AL and AR are
total and if the output function ψ : (L× Σ×R)→M is total.

Remark 6.1.9 Clearly, for every bimachine B = 〈M,AL,AR, ψ〉 we always
have OB(ε) = e. This deficiency can be eliminated by amending the bima-
chine with additional parameters for specifying the desired mapping of ε
and a flag for specifying whether OB(ε) is defined. We will further consider
bimachines without such amendments but all results can be extended in this
obvious way to obtain a special treatment of the empty word input.

128 CHAPTER 6. BIMACHINES

Figure 6.3: Representation of subsequential transducers via bimachines. The
classical subsequential transducer in the upper part represents the function
{〈a, c〉, 〈ab, d〉}. The corresponding bimachine is shown below.

Relationship between deterministic transducers and bimachines

Remark 6.1.10 Every deterministic monoidal finite-state transducer map-
ping the empty word to e can be regarded as a monoidal bimachine with
left automaton coinciding with the underlying automaton of the transducer
and trivial right automaton consisting of one state with a loop transition
for each symbol. Since there is only one state in the right automaton the
bimachine output function coincides with the transducer output function λ.

Every monoidal subsequential transducer mapping the empty word to e
can be represented by a monoidal bimachine with left automaton coinciding
with the underlying automaton of the transducer and a right automaton
consisting of two states p and q: the initial state p has a transition for each
symbol to q, and the non-initial state q has a loop transition for each sym-
bol. The bimachine output function coincides with the transducer output
function λ if the right state is q. Otherwise the output is the concatenation
of the transducer transition output λ with the Ψ output of the transducer
destination state. As an illustration, consider the classical subsequential
transducer in the upper part of Figure 6.3 and the corresponding bimachine
and its behaviour for input strings a and ab shown below.

Example 6.1.11 In Remark 5.1.11 we argued that the regular functionR =
〈a, a〉∗∪ (〈a, ε〉∗ · 〈b, b〉) cannot be represented by a subsequential transducer.
Consider the classical bimachine B = 〈AL,AR, ψ〉 shown in Figure 6.4. For

6.2. EQUIVALENCE OF REGULAR STRING FUNCTIONS AND CLASSICAL BIMACHINES129

Figure 6.4: Bimachine representing the regular function 〈a, a〉∗ ∪ (〈a, ε〉∗ ·
〈b, b〉). The function cannot be represented by a subsequential transducer.

the text t = aab we obtain the following pair of successful paths.

l→a l→a l→b l′

r′′ ←a r′′ ←a r′′ ←b r
ε = ψ(l, a, r′′) ε = ψ(l, a, r′′) b = ψ(l, b, r)

When reading a letter a, from the back path and the state r′′ the bimachine
knows that a final letter b will follow and hence can produce the correct
output ε.

As a matter of fact, this example also shows that not all regular functions
represented by bimachines can be represented by means of deterministic or
subsequential transducers.

6.2 Equivalence of regular string functions and clas-
sical bimachines

In this section we prove the correspondence between regular string func-
tions and classical bimachines. The result is well-known and goes back to
[Schützenberger, 1961]. Our first aim is to show that classical bimachines
only accept regular string functions.

From bimachines to regular string functions. The central step for
this direction can be generalized to the monoidal case. Let B = 〈M,AL,AR, ψ〉
be a monoidal bimachine. A pair of successful paths

l0 →σ1 l1 → . . . li−1 →σi li → . . . ln−1 →σn ln
r0 ←σ1 r1 ← . . . ri−1 ←σi ri ← . . . rn−1 ←σn rn

m1 . . . mi . . . mn

130 CHAPTER 6. BIMACHINES

for t = σ1 . . . σn can be represented as a path in the Cartesian product L×R
of the form

〈l0, r0〉 →σ1
m1
〈l1, r1〉 → . . . 〈li−1, ri−1〉 →σi

mi 〈li, ri〉 → . . . 〈ln−1, rn−1〉 →σn
mn 〈ln, rn〉

This perspective leads us to the construction of a monoidal finite-state trans-
ducer equivalent to the bimachine.

Proposition 6.2.1 For each monoidal bimachine B = 〈M,AL,AR, ψ〉 there
exists a monoidal finite-state transducer A = 〈Σ∗ ×M, Q, I, F,∆〉, such that
OB = L(A).

Proof. Consider the real-time transducer

A := 〈Σ∗ ×M, L×R, {sL} ×R,L× {sR},∆〉

where ∆ contains all transitions 〈l, r〉 →σ
m 〈l′, r′〉 such that 〈l, r, σ,m, l′, r′〉 is

an edge of B. Each successful path in the transducerA corresponds to unique
complete chain of the bimachine B. The aforementioned correspondence
between complete chains and pairs of successful paths shows that the output
function of the bimachine and the transducer language coincide.

As a matter of fact, in general the transducers obtained from the above
translation of bimachines are non-deterministic. This follows from the fact
that there exist regular functions that can be represented by bimachines,
but not by means of any deterministic or subsequential transducer, as we
have seen in Example 6.1.11.

Example 6.2.2 Figure 6.5 shows the bimachine B introduced in Exam-
ple 6.1.11, which has two edges of the form 〈l, r′, a, a, l, r〉 and 〈l, r′, a, a, l, r′〉
(among other edges). Below we see the transducer resulting from the trans-
lation. It has the two transitions 〈l, r′〉 →a

a 〈l, r〉 and 〈l, r′〉 →a
a 〈l, r′〉 (among

other transitions) and is non-deterministic.

Corollary 6.2.3 For each bimachine B the function represented by B is a
regular string function.

Proof. This follows directly from the Proposition 6.2.1 (classical case) and
Theorem 4.5.5 since bimachines have a functional input-output behaviour.

Remark 6.2.4 An important property of the transducer constructed in
Proposition 6.2.1 is that for each pair 〈u,m〉 ∈ L(A) there exists exactly one
successful path inA. Transducers with this property are called unambiguous.

6.2. EQUIVALENCE OF REGULAR STRING FUNCTIONS AND CLASSICAL BIMACHINES131

Figure 6.5: A bimachine and its translation into a transducer. The resulting
transducer is non-deterministic.

132 CHAPTER 6. BIMACHINES

From regular string functions to bimachines. We now show that
conversely each regular string function can be represented as a bimachine.
We follow the approach presented in [Gerdjikov et al., 2017]. For conve-
nience we restrict attention to string functions f such that f(ε) = ε. As
our starting point we use the result that each regular string function can
be represented as a classical real-time finite-state transducer (cf. Theo-
rem 4.5.5 and Proposition 4.4.8). It remains to be shown that classical
real-time finite-state transducers can be translated into bimachines. This
step can be described in the more general monoidal setting.

Proposition 6.2.5 Let T = 〈Σ∗ ×M, Q, I, F,∆〉 be a monoidal trimmed
functional real-time transducer with output in the monoid M = 〈M, ◦, e〉
such that 〈ε, e〉 ∈ L(T). Then there exists a monoidal bimachine B =
〈M,AL,AR, ψ〉 such that L(T) = OB.

Proof. The underlying finite-state automaton (cf. Definition 4.4.3) of T
does not have ε-transitions. We may apply the determinization procedure
described in Remark 3.2.3.

The right deterministic automaton of the bimachineAR = 〈Σ, QR, sR, QR, δR〉
is defined as the result when applying the determinization procedure to the
reversed underlying automaton of T and setting all states to final. This
means that QR ⊆ 2Q, sR = F and

δR(R, a) := {q ∈ Q | ∃q′ ∈ R,m ∈M :
〈
q, 〈a,m〉 , q′

〉
∈ ∆}.

A state selector function is a partial function φ : QR → Q selecting for
a non-empty set P ∈ QR an element p = φ(P) ∈ P . A state of the left
deterministic automaton AL = 〈Σ, QL, sL, QL, δL〉 is a pair consisting of a
subset ofQ and state selector function φ. This implies thatQL ⊆ 2Q×2QR×Q

and therefore QL is finite. The following induction defines the states and
the transition function of the left automaton:

• sL := 〈I, φ0〉 where φ0(R) :=

{
any element of R ∩ I if R ∩ I 6= ∅
undefined otherwise.

• For 〈L, φ〉 ∈ QL and a ∈ Σ we define δL(〈L, φ〉 , a) := 〈L′, φ′〉 where

– L′ := {q′ | ∃q ∈ L,m ∈M : 〈q, 〈a,m〉 , q′〉 ∈ ∆}.

– φ′(R′) :=

any element of {q′ ∈ R′ | ∃m ∈M : 〈q, 〈a,m〉 , q′〉 ∈ ∆}

if q = φ(δR(R′, a)) is defined
undefined otherwise.

The definition of the transition function δR implies that if q = φ(δR(R′, a))
is defined, then the set {q′ ∈ R′ | ∃m ∈M : 〈q, 〈a,m〉 , q′〉 ∈ ∆} is non-empty
and φ′(R′) can be defined in the above way.

6.2. EQUIVALENCE OF REGULAR STRING FUNCTIONS AND CLASSICAL BIMACHINES133

It remains to define the output function ψ of the bimachine. Given a
pair of states 〈L, φ〉 and R′ of the left and right automaton and a ∈ Σ, let
〈L′, φ′〉 := δL(〈L, φ〉, a) and R := δR(R′, a). Then

ψ(〈L, φ〉 , a, R′) :=

any element of
{m | 〈φ(R), 〈a,m〉 , φ′(R′)〉 ∈ ∆} if φ(R) is defined
undefined otherwise.

If q = φ(R) is defined, then {q′ ∈ R′ | ∃m ∈ M : 〈q, 〈a,m〉 , q′〉 ∈ ∆} is non-
empty. The definition of φ′(R′) implies that {m | 〈φ(R), 〈a,m〉 , φ′(R′)〉 ∈ ∆}
is non-empty and ψ(〈L, φ〉 , a, R′) can be defined in the above way.
We show that the function defined by the bimachine B = 〈M,AL,AR, ψ〉
coincides with the language of the transducer T . Let u ∈ dom(L(T)) where
u = a1 . . . ak. Consider a successful path with label 〈a1 . . . ak,m〉 of T :

π = q0 →〈a1,m1〉 q1 →〈a2,m2〉 q2 →〈a3,m3〉 . . . →〈ak,mk〉 qk.

Claim 1: for any i ∈ {0, . . . , k − 1}, if 〈Li, φi〉 = δ∗L(sL, a1 . . . ai) and Ri =
δ∗R(sR, akak−1 . . . ai+1), then φi(Ri) is defined.

The claim is proved by induction. For i = 0, since π is a successful path
we have I∩δ∗R(sR, akak−1 . . . a1) 6= ∅ and therefore φ0(R0) is defined. For the
induction step assume that φi(Ri) is defined. Then sinceRi = δR(Ri+1, ai+1)
according the definition of δL we have that φi+1(Ri+1) is defined.
Claim 2: the path π′

π′ = q′0 →〈a1,m′1〉 q′1 →〈a2,m′2〉 q′2 →〈a3,m′3〉 . . . →〈ak,m′k〉 q′k,

where q′i = φi(Ri) and m′i = ψ(〈Li, φi〉 , ai+1, Ri+1) is a successful path in
T .

We prove Claim 2. Our definitions imply that for any 〈L, φ〉 ∈ QL, a ∈ Σ
and R′ ∈ QR such that φ(δ(R′, a)) is defined we have〈

φ(δ(R′, a)),
〈
a, ψ(φ, a,R′)

〉
, φ′(R′)

〉
∈ ∆,

where 〈L′, φ′〉 = δL(〈L, φ〉). Therefore π′ is a path of T . By definition
q0 = φ0(R0) ∈ I and qk = φk(Rk) ∈ Rk = F . Hence π′ is a successful path
in T .
It thus follows that 〈a1 . . . ak,m

′
1m
′
2 . . .m

′
k〉 ∈ L(T). Since T is functional

we have m′1m
′
2 . . .m

′
k = OB(u) = m. Summing up, we have seen that

u ∈ dom(L(T)) implies u ∈ dom(L(B)) and L(T)(u) = L(B)(u).
On the other hand, if u 6∈ dom(L(T)), then I∩R0 = I∩δ∗R(sR, akak−1 . . . a1)

is empty and φ0(I ∩R0) is undefined. It follows that u 6∈ dom(L(B)). Hence
L(T) and L(B) have the same domain and coincide.

Corollary 6.2.6 For each regular string function f that maps the empty
word to ε there exists a bimachine B representing f .

134 CHAPTER 6. BIMACHINES

Proof. This follows directly from Theorem 4.5.5 and Proposition 6.2.5.

Combining Corollary 6.2.3 and Corollary 6.2.6 we derive the following the-
orem.

Theorem 6.2.7 The class of regular string functions that map the empty
word to ε coincides with the class of functions represented by bimachines.

Remark 6.2.8 From Corollary 6.2.6 and Remark 6.2.4 it follows that for
every regular string function f that maps the empty word to ε there exists
an unambiguous transducer recognizing f .

The construction presented in Proposition 6.2.5 does not require that the
input transducer is functional. In fact it can be applied to any real-time
transducer.

Proposition 6.2.9 Let T = 〈Σ∗ ×M, Q, I, F,∆〉 be a monoidal trimmed
real-time transducer with output in the monoid M = 〈M, ◦, e〉 such that
〈ε, e〉 ∈ L(T). Then there exists a monoidal bimachine B = 〈M,AL,AR, ψ〉
such that OB ⊆ L(T) and dom(OB) = L×2(T).

Proof. We construct the monoidal bimachine B by applying the construc-
tion from the proof of Proposition 6.2.5. Claim 1 from the proof remains
valid and therefore dom(OB) = L×2(T). Considering Claim 2 the path π′

built is a path in T and therefore OB ⊆ L(T).

6.3 Pseudo-minimization of monoidal bimachines

A monoidal bimachine consists of two deterministic finite-state automata
and an output function. When we want to minimize a monoidal bimachine,
we cannot minimize the two component automata in a näıve way: since all
states of the left and right automaton are final the classical minimization
procedure would lead to automata with a single state only. In this way we
would not obtain an equivalent bimachine. This shows that the minimization
procedure has to take into account the bimachine output function as well.

Definition 6.3.1 Let B = 〈M,AL,AR, ψ〉 be a monoidal bimachine with
component automata AL = 〈Σ, L, sL, L, δL〉 and AR = 〈Σ, R, sR, R, δR〉.
The left profile function ψL : L→ 2Σ×R×Σ∗ is defined as

ψL(qL) := {〈σ, qR, ψ(qL, σ, qR)〉 |σ ∈ Σ, qR ∈ R}.

The set of left profiles of B is defined as ΓL := {ψL(qL) | qL ∈ L}.

6.3. PSEUDO-MINIMIZATION OF MONOIDAL BIMACHINES 135

For a given state qL ∈ L the set ψL(qL) is called the state profile for qL. It
gives a complete view on the way how qL contributes to the output. For
each symbol σ ∈ Σ and state qR of the right automaton AR the state profile
specifies the output ψ(qL, σ, qR). Given the left profile of each state qL we
may derive the bimachine output function: ψ(qL, σ, qR) is the unique monoid
element m such that 〈σ, qR,m〉 ∈ ψL(qL).

For minimization we cannot simply identify two states qL and q′L with
the same state profile - we need to know that with the same input sequences
we always reach from qL and q′L two states that again have the same state
profile. However, we may think of ψL(qL) as a colour of qL and consider
the coloured automaton AcL = 〈Σ,ΓL, L, sL, L, δL, ψL〉, the set of all state
profiles representing the set of colours. The minimization procedure for
coloured deterministic finite-state automata described in the second part of
Section 3.6 leads to an equivalent minimal coloured deterministic finite-state
automaton

AcL
′ =

〈
Σ,ΓL, {[q]R | q ∈ L}, [sL]R, {[q]R | q ∈ L}, δ′, col′

〉
where col′([q]R) := col(q) (see Corollary 3.6.16). We may use

AL′ :=
〈
Σ,ΓL, {[q]R | q ∈ L}, [sL]R, {[q]R | q ∈ L}, δ′

〉
instead of AL as the left automaton and the colouring col′ to define the new
output function. The equation col′([q]R) := col(q) directly ensures that the
new bimachine has the same output function as B.

In the general case of coloured deterministic finite-state automata, the
computation of classes of equivalent states is based on the relations Ri (i ≥
0), which were defined in the following way:

q R0 p ↔ (q ∈ F ↔ p ∈ F) & (q ∈ F → col(q) = col(p))

q Ri+1 p ↔ q Ri p & ∀a ∈ Σ : δ(q, a) Ri δ(p, a).

In the situation considered here, all states are final. Hence the definition
can be simplified:

q R0 p ↔ ψL(q) = ψL(p)

q Ri+1 p ↔ q Ri p & ∀a ∈ Σ : δ(q, a) Ri δ(p, a).

Corollary 6.3.2 The equivalence relation S for minimizing the left automa-
ton AL taking bimachine output into account coincides with the relation
R =

⋂∞
0 Ri where

1. R0 = kerL(ψL)

2. Ri+1 =
⋂
a∈Σ kerL(f

(i)
a) ∩Ri

136 CHAPTER 6. BIMACHINES

For a ∈ Σ and i ∈ IN the function f
(i)
a : L→ L/Ri is defined as

f (i)
a (q) := [δL(q, a)]Ri .

As mentioned above the right automaton AR of the bimachine can be min-
imized in exactly the dual way.

Definition 6.3.3 Let B = 〈M,AL,AR, ψ〉 be a monoidal bimachine. Then
the monoidal bimachine B′ = 〈M,A′L,A′R, ψ′〉 constructed by the minimiza-
tion of AL and AR (which are treated as coloured automata as described
above, with ψ′([l], σ, [r]) := ψ(l, σ, r)) is called the pseudo-minimal monoidal
bimachine equivalent to B.

Remark 6.3.4 In general the pseudo-minimal bimachine equivalent to a
given classical bimachine B is not minimal. Moving parts of the outputs
along paths may lead to a smaller pseudo-minimal bimachine [Reutenauer
and Schützenberger, 1991].

6.4 Direct composition of classical bimachines

Clearly, classical bimachines over the same alphabet Σ are closed under
composition. This follows from the closure properties of classical 2-tape
automata (Proposition 4.3.5) and the equivalence of functional 2-tape au-
tomata and bimachines presented in the previous section. From an applica-
tion point of view, composition of classical bimachines is extremely useful
when trying to achieve efficient solutions for iterated or cascaded forms of
text translation. Hence the question arises how bimachines can be directly
composed in a simple way. In this section we present a construction that
builds the resulting bimachine for the composition directly from the source
bimachines.

Idea

Let two bimachines B′ = 〈A′L,A′R, ψ′〉 and B′′ = 〈A′′L,A′′R, ψ′′〉 over the same
alphabet Σ be given, with left and right deterministic automata of the form
A′L = 〈Σ, L′, s′L, L′, δ′L〉, A′R = 〈Σ, R′, s′R, R′, δ′R〉 andA′′L = 〈Σ, L′′, s′′L, L′′, δ′′L〉,
A′′R = 〈Σ, R′′, s′′R, R′′, δ′′R〉. The composition of the two output functions over
an input t = a1a2 . . . an, ai ∈ Σ, i = 1, 2, . . . , n is illustrated below:

l′0 →a1 l′1 → . . . l′i−1 →ai l′i → . . . →an l′n
r′0 ←a1 r′1 ← . . . r′i−1 ←ai r′i ← . . . ←an r′n

v1 . . . vi . . . vn
l′′0 →v1 l′′1 → . . . l′′i−1 →vi l′′i → . . . →vn l′′n
r′′0 ←ρ(v1) r′′1 ← . . . r′′i−1 ←ρ(vi) r′′i ← . . . ←ρ(vn) r′′n

w1 . . . wi . . . wn

6.4. DIRECT COMPOSITION OF CLASSICAL BIMACHINES 137

where l′0 = s′L, r′n = s′R, l′′0 = s′′L, r′′n = s′′R, vi = ψ′(l′i−1, ai, r
′
k), wi =

ψ′′∗(l′′i−1, vi, r
′′
k) for i = 1, 2, . . . , n. The upper successful pair of paths of

the first bimachine is used to translate the input sequence a1 . . . an into the
string v1 · . . . ·vn. The lower successful pair of paths of the second bimachine
- depicted in a condensed representation - translates the latter string into
w1 · . . . · wn. We have OB′′(OB′(t)) = w1 · w2 · . . . · wn. In order to compose
the two pairs of paths into one we consider the following scheme:

〈l′0, r′0, l′′0〉 →a1 . . .
〈
l′i−1, r

′
i−1, l

′′
i−1

〉
→ai 〈l′i, r′i, l′′i 〉 . . . →an 〈l′n, r′n, l′′n〉

〈l′0, r′0, r′′0〉 ←a1 . . .
〈
l′i−1, r

′
i−1, r

′′
i−1

〉
←ai 〈l′i, r′i, r′′i 〉 . . . ←an 〈l′n, r′n, r′′n〉

w1 . . . wi . . . wn

where l′0 = s′L, r′n = s′R, l′′0 = s′′L, r′′n = s′′R, wi = ψ′′∗(l′′i−1, ψ
′(l′i−1, ai, r

′
i), r

′′
i)

for i = 1, 2, . . . , n. This simplified picture suggests that the states of the left
(resp. right) automaton of the composed bimachine are triples encoding

• two states l′, r′ respectively reached by the left and right automaton
of the first bimachine, plus

• a state l′′ (r′′) of the left (resp. right) automaton of the second bima-
chine.

We shall see that the information encoded in the new states is rich enough to
simulate the composition of the two given bimachines. However, in the form
presented above, the left and right automaton of the combined machine in
general are non-deterministic. Thus, to obtain a bimachine as a result of the
composition, the two product automata have to be replaced by deterministic
variants. We arrive at the following formal construction.

Formal construction

Let B′ = 〈A′L,A′R, ψ′〉 and B′′ = 〈A′′L,A′′R, ψ′′〉 be two bimachines over the
same alphabet Σ, let A′L, A′R, A′′L, and A′′R as above. Let

ANL :=
〈
Σ, L′ ×R′ × L′′, {s′L} ×R′ × {s′′L}, L′ ×R′ × L′′,∆L

〉
ANR :=

〈
Σ, L′ ×R′ ×R′′, L′ × {s′R} × {s′′R}, L′ ×R′ ×R′′,∆R

〉
where

1. ∆L contains all transitions of the form 〈〈l′1, r′1, l′′1〉 , a, 〈l′2, r′2, l′′2〉〉 such
that δ′L(l′1, a) = l′2, δ′R(r′2, a) = r′1, δ′′L

∗(l′′1 , ψ
′(l′1, a, r

′
2)) = l′′2 ,

2. ∆R contains all transitions of the form 〈〈l′2, r′2, r′′2〉 , a, 〈l′1, r′1, r′′1〉〉 such
that δ′L(l′1, a) = l′2, δ′R(r′2, a) = r′1, δ′′R

∗(r′′2 , ρ(ψ′(l′1, a, r
′
2))) = r′′1 .

138 CHAPTER 6. BIMACHINES

Let AL and AR be the deterministic finite state automata constructed from
ANL and ANR by the subset construction given in Theorem 3.2.2, where the
states are restricted to the ones reachable from the starting states. I.e.

AL = 〈Σ, QL, sL, QL, δL〉
AR = 〈Σ, QR, sR, QR, δR〉

where

sL = {s′L} ×R′ × {s′′L}
sR = L′ × {s′R} × {s′′R}

δ̂L(A, a) = {
〈
l′2, r

′
2, l
′′
2

〉
| ∃
〈
l′1, r

′
1, l
′′
1

〉
∈ A :

〈〈
l′1, r

′
1, l
′′
1

〉
, a,
〈
l′2, r

′
2, l
′′
2

〉〉
∈ ∆L}

δ̂R(A, a) = {
〈
l′1, r

′
1, r
′′
1

〉
| ∃
〈
l′2, r

′
2, r
′′
2

〉
∈ A :

〈〈
l′2, r

′
2, r
′′
2

〉
, a,
〈
l′1, r

′
1, r
′′
1

〉〉
∈ ∆R}

QL = {A ∈ 2L
′×R′×L′′ | ∃v ∈ Σ∗ : A = δ̂∗L(sL, v)}

QR = {A ∈ 2L
′×R′×R′′ | ∃v ∈ Σ∗ : A = δ̂∗R(sR, v)}

δL = δ̂L|QL×Σ

δR = δ̂R|QR×Σ

For states A and B of AL and AR and a ∈ Σ define

ψ(A, a,B) := w iff

there exist tuples 〈l′1, r′1, l′′1〉 ∈ A and 〈l′2, r′2, r′′2〉 ∈ B such that there exist
l′′2 ∈ L′′ and r′′1 ∈ R′′ such that〈〈

l′1, r
′
1, l
′′
1

〉
, a,
〈
l′2, r

′
2, l
′′
2

〉〉
∈ ∆L,〈〈

l′2, r
′
2, r
′′
2

〉
, a,
〈
l′1, r

′
1, r
′′
1

〉〉
∈ ∆R,

and w = ψ′′∗(l′′1 , ψ
′(l′1, a, r

′
2), r′′2).

Proposition 6.4.1 Let B′, B′′ be two bimachines over the same alphabet Σ
as above, let the bimachine B and its output function ψ be defined as above.
Then ψ is well-defined and B := 〈AL,AR, ψ〉 represents the composition of
the bimachines B′ and B′′, i.e. OB = OB′ ◦OB′′.

Proof. We first prove the following auxiliary proposition:

For every state A ∈ QL we have:

| A×2×3 | = 1

∀r ∈ R′ : | A ∩ (L′ × {r} × L′′) | ≤ 1

The proof is by induction on the length of the shortest string which is
the label of a path from sL to A in AL. If the length is 0, then the state

6.4. DIRECT COMPOSITION OF CLASSICAL BIMACHINES 139

A = sL and the proposition follows trivially.
Let us assume that the proposition holds for all states in QL, reachable with
less than n symbols. Let v2 = a1a2 . . . an ∈ Σ∗ be one of the shortest words
which is a label of a path from sL to A. Let the last transition on the path be
A′ →an A, i.e. A = δL(A′, a). By the induction hypothesis the proposition
holds for A′. Since | A′×2×3 |= 1 there exists l′ ∈ L′ such that A′×2×3 =
{l′}. From the definitions of δL and ∆L it follows that A×2×3 = {l} for
l = δ′L(l′, an) and hence | A×2×3 |= 1. Let us now assume that there exists
an r ∈ R′ such that | A∩ (L′×{r′}×L′′) |> 1. Then there exist k1, k2 ∈ L′′
such that k1 6= k2 and 〈l, r, k1〉 , 〈l, r, k2〉 ∈ A. From the definition of ∆L it
follows that there exist 〈l′, r′1, k′1〉 , 〈l′, r′2, k′2〉 ∈ A′ such that r′1 = δ′R(r, an) =
r′2 =: r′. But from the induction hypothesis for A′ it follows that for r′ ∈ R′
we have | A′ ∩ (L′ × {r′} × L′′) |≤ 1 and hence k′1 = k′2. The definition of
∆L implies that k1 = δ′′L(k′1, ψ

′(l′, an, r)) = δ′′L(k′2, ψ
′(l′, an, r)) = k2, which

is a contradiction. Hence ∀r ∈ R′ : | A ∩ (L′ × {r} × L′′) |≤ 1.
In the same way we prove the dual proposition:

For each state B ∈ QR we have:

| B×1×3 | = 1

∀l ∈ L′ : | B ∩ ({l} ×R′ ×R′′) | ≤ 1

Now we are ready to prove that ψ is well-defined. Let ψ(A, a,B) := w.
Then there exist tuples 〈l′1, r′1, l′′1〉 ∈ A and 〈l′2, r′2, r′′2〉 ∈ B and l′′2 ∈ L′ and
r′′1 ∈ R′′ such that 〈〈

l′1, r
′
1, l
′′
1

〉
, a,
〈
l′2, r

′
2, l
′′
2

〉〉
∈ ∆L,〈〈

l′2, r
′
2, r
′′
2

〉
, a,
〈
l′1, r

′
1, r
′′
1

〉〉
∈ ∆R,

and w = ψ′′∗(l′′1 , ψ
′(l′1, a, r

′
2), r′′2). From the auxiliary proposition for A it

follows that l′1 is uniquely defined and from the auxiliary proposition for B it
follows that r′2 is uniquely defined. But since 〈〈l′1, r′1, l′′1〉 , a, 〈l′2, r′2, l′′2〉〉 ∈ ∆L

it follows that r′1 and l′2 are uniquely defined. In this case from the auxiliary
proposition for A we know that l′′1 is uniquely defined and for B we know
that r′′2 is uniquely defined. Hence w = ψ′′∗(l′′1 , ψ

′(l′1, a, r
′
2), r′′2) is uniquely

defined. Furthermore, we have seen that (†) for any given triple (A, a,B)
such that ψ(A, a,B) = w is defined, we have unique tuples 〈l′1, r′1, l′′1〉 ∈ A
and 〈l′2, r′2, r′′2〉 ∈ B and l′′2 ∈ L′ and r′′1 ∈ R′′ with the aforementioned
properties.

Now we have to show that OB = OB′ ◦OB′′ .
(“⊆”) Let OB(t) = w and t = a1 · · · an. Then in B we have a pair of

successful paths

A0 →a1 A1 → . . . Ai−1 →ai Ai → . . . →an An
B0 ←a1 B1 ← . . . Bi−1 ←ai Bi ← . . . ←an Bn

w1 . . . wi . . . wn

140 CHAPTER 6. BIMACHINES

such that w = w1 · · ·wn. The property † shows that from each triple

(Ai−1, ai, Bi) we obtain unique tuples
〈
l′i−1,1, r

′
i−1,1, l

′′
i−1,1

〉
∈ Ai and

〈
l′i,2, r

′
i,2, r

′′
i,2

〉
∈

Bi and l′′i,2 ∈ L′ and r′′i−1,1 ∈ R′′ such that〈〈
l′i−1,1, r

′
i−1,1, l

′′
i−1,1

〉
, a,
〈
l′i,2, r

′
i,2, l

′′
i,2

〉〉
∈ ∆L,〈〈

l′i,2, r
′
i,2, r

′′
i,2

〉
, a,
〈
l′i−1,1, r

′
i−1,1, r

′′
i−1,1

〉〉
∈ ∆R,

and wi = ψ′′∗(l′′i−1,1, ψ
′(l′i−1,1, a, r

′
i,2), r′′i,2). The definition of δL shows that〈

l′i,2, r
′
i,2, l

′′
i,2

〉
∈ Ai. We also have

〈
l′i,1, r

′
i,1, l

′′
i,1

〉
∈ Ai. Now the first auxil-

iary proposition shows that l′i,2 = l′i,1 for i = 0, . . . n−1. The definition of δR

shows
〈
l′i−1,1, r

′
i−1,1, r

′′
i−1,1

〉
∈ Bi−1. We also have

〈
l′i−1,2, r

′
i−1,2, r

′′
i−1,2

〉
∈

Bi−1. The second auxiliary proposition shows that r′i−1,1 = r′i−1,2 for
i = 1, . . . n. Using the second statements shown in the auxiliary propo-
sitions we see that always〈

l′i,2, r
′
i,2, l

′′
i,2

〉
=
〈
l′i,1, r

′
i,1, l

′′
i,1

〉
=:

〈
l′i, r
′
i, l
′′
i

〉〈
l′i−1,1, r

′
i−1,1, r

′′
i−1,1

〉
=
〈
l′i−1,2, r

′
i−1,2, r

′′
i−1,2

〉
=:

〈
l′i−1, r

′
i−1, r

′′
i−1

〉
.

In the nondeterministic automata ANL and ANR we thus obtain a pair of paths

〈l′0, r′0, l′′0〉 →a1 . . .
〈
l′i−1, r

′
i−1, l

′′
i−1

〉
→ai 〈l′i, r′i, l′′i 〉 . . . →an 〈l′n, r′n, l′′n〉

〈l′0, r′0, r′′0〉 ←a1 . . .
〈
l′i−1, r

′
i−1, r

′′
i−1

〉
←ai 〈l′i, r′i, r′′i 〉 . . . ←an 〈l′n, r′n, r′′n〉

w1 . . . wi . . . wn

such that wi = ψ′′∗(l′′i−1, ψ
′(l′i−1, a, r

′
i), r

′′
i) for i = 1, . . . n. Obviously, from

this pair we can reconstruct two pairs of successful paths in B′ and B′′
respectively leading to output w = w1 · · ·wn in the composition of B′ and
B′′.

(“⊇”) It is simple to see that conversely each two pairs of successful
paths in B′ and B′′ where the first pair of paths in B′ provides the input
for the second pair of paths in B′′ correspond to a pair of paths in the
nondeterministic automata ANL and ANR , which in turn corresponds to a
pair of successful paths in the bimachine B.

Chapter 7

The C(M) language

In this chapter we introduce the C(M) language, a new programming lan-
guage, which will be used throughout the rest of the dissertation for im-
plementing and presenting algorithms. C(M) statements and expressions
closely resemble the notation commonly used for the presentation of formal
constructions in a Tarskian style set theoretical language. The usual set
theoretic objects such as sets, functions, relations, tuples etc. are naturally
integrated in the language. In contrast to imperative languages such as C or
Java [Pratt and Zelkowitz, 2000], C(M) is a functional declarative program-
ming language. C(M) has many similarities with Haskell [Hutton, 2007] but
makes use of the standard mathematical notation like SETL [Schwartz et al.,
1986]. When implementing the solution to a problem, instead of specifying
how to achieve it, we specify the goal itself. In practice, we just formally
describe the kind of mathematical object we want to obtain. This allows us
to focus on the high-level mathematical steps of a construction as opposed
to the low-level implementation details. The C(M) compiler translates a
well-formed C(M) program into efficient C code, which can be executed af-
ter compilation. Since it is easy to read C(M) programs, a pseudo-code
description becomes obsolete. The programs presented below are tested
and fully functional and can be compiled without modifications and run
on a computer. The compiler for the C(M) language is freely available at
http://lml.bas.bg/~stoyan/lmd/C(M).html.

In the first section we start with a simple algorithm showing the flavour
of the language. Afterwards we provide a more comprehensive overview of
the language elements.

7.1 Basics and simple examples

Perhaps the best starting point for an introduction to C(M) is a short se-
lection of simple examples.

141

http://lml.bas.bg/~stoyan/lmd/C(M).html

142 CHAPTER 7. THE C(M) LANGUAGE

Example 7.1.1 Recall that the composition of two binary relations R1 and
R2 is defined as R1 ◦R2 := {〈a, c〉 | ∃b : 〈a, b〉 ∈ R1, 〈b, c〉 ∈ R2} (Def. 1.1.3).
In C(M), the usual elements for describing sets are available - we may define
this composition directly as

compose(R1, R2) := {(a, c) | (a, b) ∈ R1, (b, c) ∈ R2};

Given the two relations R1 and R2, the above function returns the set of
pairs (a, c) where (a, b) runs over R1 (b is arbitrary) and (b, c) runs over R2.
Mathematically, the n-th order composition R〈n〉 of a binary relation R is
defined in an inductive manner:

• R1 := R,

• Ri+1 := Ri ◦R

Explicit inductive constructions are a core element of C(M). These defini-
tions start with a base step such as “step 1” where we define a base form of
the objects to be constructed. Then “step i+1” explains how to obtain vari-
ant i+ 1 of the objects from variant i. An “until” clause explains when the
construction is finished. Following this scheme, the n-th order composition
may be introduced in C(M) as the object “composen(R,n)” in the following
way:

composen(R,n) := R′, where
R′ := induction

step 1 :

R′(1) := R;
step i+ 1 :

R′(i+1) := compose(R′(i), R);
until i = n
;

;

It is shown below how to write this pretty-print version of the code. Math-
ematically, the transitive closure of a binary relation R is defined (see Defi-
nition 1.1.8) as the relation

CR :=
∞⋃
i=1

Ri.

To construct CR we may proceed inductively, defining C
(n)
R =

⋃n
i=1R

i. For

a finite relation the inductive step has to be performed until R〈n+1〉 ⊆ C(n)
R .

In C(M) we may use exactly the same procedure and construct CR using
the following induction:

7.1. BASICS AND SIMPLE EXAMPLES 143

CR := induction
step 1 :

CR
(1) := R;

step n+ 1 :

CR
(n+1) := CR

(n) ∪ composen(R,n+ 1);

until composen(R,n+ 1) ⊆ CR(n)

;

Program 7.1.2 In order to complete this C(M) program we have to specify
the type of each object. The resulting program has the following form:

1 REL is 2IN×IN;
2 compose : REL ×REL → REL;
3 compose(R1, R2) := {(a, c) | (a, b) ∈ R1, (b, c) ∈ R2};
4 composen : REL × IN→ REL;
5 composen(R,n) := R′, where
6 R′ := induction
7 step 1 :

8 R′(1) := R;
9 step i+ 1 :

10 R′(i+1) := compose(R′(i), R);
11 until i = n
12 ;
13 ;
14 transitiveClosure : REL → REL;
15 transitiveClosure(R) := CR, where
16 CR := induction
17 step 1 :

18 CR
(1) := R;

19 step n+ 1 :

20 CR
(n+1) := CR

(n) ∪ composen(R,n+ 1);

21 until composen(R,n+ 1) ⊆ CR(n)

22 ;
23 ;

In Line 1 we define the type REL as the sets of pairs of natural numbers.
Line 2 defines the type of “compose” as a function that takes two relations
and returns a relation. Line 3 is the actual definition of the function “com-
pose”. Line 4 defines the type of the N -th order composition “composeN” as
a function that takes a relation and a natural number and returns a relation.
Lines 5-13 present the definition of the function “composeN”. Line 14 de-
fines the type of “transitiveClosure” as a function from relations to relations.
Lines 15-23 present the inductive definition of the function “transitiveClo-

144 CHAPTER 7. THE C(M) LANGUAGE

sure”.

How to write, compile and use C(M) programs

From a graphical point of view, the above C(M) programs are presented
using bookstyle mathematical notion and formatted using page style. As a
matter of fact, when writing real programs one has to specify the description
in plain text first. Yet, C(M) comes with a nice feature: after writing a
C(M) program as plain text, the compiler can translate it into LaTeX for
producing the above layout. The plain text description for Program 7.1.2
looks as follows:

REL is 2^(IN*IN);

compose in REL * REL -> REL;

compose(R_1,R_2) := {(a,c) | (a,b) in R_1, (b,c) in R_2};

compose_n in REL * IN -> REL;

compose_n(R,n) := R’, where

R’ := induction

step 1 :

R’@1 := R;

step i+1 :

R’@i+1 := compose(R’@i,R);

until i=n

;

;

transitiveClosure in REL -> REL;

transitiveClosure(R) := C_R, where

C_R := induction

step 1:

C_R@1 := R;

step n+1:

C_R@n+1 := C_R@n \/ compose_n(R,n+1);

until compose_N(R,n+1) subseteq C_R@n

;

;

The C(M) compiler takes as input the plain text of the program and outputs
a C source code (or a LaTeX code). Let the above program be stored as a
file named Program 6.1.2.cm. Then the compiler is invoked by

7.1. BASICS AND SIMPLE EXAMPLES 145

cm Program 6.1.2.cm -o Program 6.1.2.c

The file Program 6.1.2.c will contain the corresponding C source code.
Afterwards the C code has to be compiled with the gcc compiler for pro-
ducing an executable. Currently the C code generated by C(M) contains
nested functions, which are supported by gcc but are not ANSI C compat-
ible. The compilation is invoked by the following command

gcc -fnested-functions -o Program 6.1.2 Program 6.1.2.c

In the newer versions (e.g 4.7) of gcc the option -fnested-functions has to
be omitted. The LaTeX layout is generated by the compiler in the following
way:

cm -L Program 6.1.2.cm -o Program 6.1.2.tex

Afterwards the Program 6.1.2.tex file has to be compiled with LaTeX.

The way HOW we describe objects in programs matters

In mathematics, a fixed object can be described in many distinct ways.
Ignoring matters of transparency, it is not important how we specify the
object. However, in a computational context the way how we describe an
object may have a strong influence on the time needed to compute it. Un-
der this perspective, the above construction of the transitive closure and
Program 7.1.2 can easily be improved. Although this program produces
the correct transitive closure when specifying a concrete finite relation R,
it has two sources of inefficiency. First, the definition of the composition
in Line 3 runs through all pairs in R1, all pairs in R2, and then it checks
whether the selected pairs are of the form (a, b) and (b, c). This can be opti-
mized by explicitly constructing a function FR mapping a given b to the set
{c | (b, c) ∈ R2}. We can then define the composition by running through
the pairs (a, b) in R1 and the elements c in FR(b). Second, in Line 20 of the
above construction we construct for each n the n+ 1-st order composition.
As a side effect we repeat the computation of the n-th, n − 1-th, . . . , 2-nd
order compositions, which have been already computed in previous steps.
Moreover, if we have a pair, (a, b), which is in Ri1 , Ri2 , . . . , then the ex-
tensions {(a, c) | ∃b : (b, c) ∈ R} will be in Ri1+1, Ri2+1, Since it is not
relevant in which step (a, b) is generated we can optimize our construction
by generating the extensions of (a, b) only once.

Program 7.1.3 The following improved construction avoids the two defi-
ciencies. First, it explicitly builds the function FR, and the composition is
performed in the optimized way. And second, the induction is performed by
considering at each step one new pair from the set CR. In this way, starting
from CR

(0) := R, in step n+ 1 we generate the composition of the n+ 1-st

element in C
(n)
R with the relation R until the set C

(n)
R is exhausted.

146 CHAPTER 7. THE C(M) LANGUAGE

The program below presents two new features of C(M), the use of a subcase
analysis in definitions (Line 9) and the use of the “functionalize”-operator
F in Line 3, cf. Definition 1.1.16.

1 transitiveClosure : 2IN×IN → 2IN×IN;
2 transitiveClosure(R) := CR, where
3 FR := F1→2(R);
4 CR := induction
5 step 0 :

6 CR
(0) := R;

7 step n+ 1 :

8 (a, b) := (CR
(n) as (IN× IN)∗)n+1;

9 CR
(n+1) :=

{
CR

(n) ∪ {(a, c) | c ∈ FR(b)} if ! FR(b)

CR
(n) otherwise;

10 until n =
∣∣∣CR(n)

∣∣∣
11 ;
12 ;

The plain text version of the above program has the following form:

transitiveClosure in 2^(IN*IN) -> 2^(IN*IN);

transitiveClosure(R) := C_R, where

F_R := Func(1,2,R);

C_R := induction

step 0:

C_R@0 := R;

step n+1:

(a,b) := (C_R@n as (IN*IN)^*)[n+1];

C_R@n+1 := ? C_R@n \/ {(a,c) | c in F_R(b)} if !F_R(b)

? C_R@n otherwise;

until n=|C_R@n|

;

;

In Line 3 the function FR is defined. The closure CR of R is defined in the
induction starting from Line 4. In Line 6 the base value C

(0)
R is defined to be

R. In step n+1 of the construction, the pair (a, b) is defined as the n+ 1-st

element of C
(n)
R (Line 8). The expression (C

(n)
R as (IN× IN)∗) means that we

treat the set of pairs C
(n)
R as a list of pairs. In this case the order of the

elements in the list is the order in which the elements have been added to the
set. In Line 9 we define the value C

(n+1)
R using a subcase analysis. If FR(b)

7.1. BASICS AND SIMPLE EXAMPLES 147

is defined, we join C
(n)
R with the composition of (a, b) with R. Otherwise,

the composition is empty and we define C
(n+1)
R = C

(n)
R . The induction ends

when the condition in Line 10 is met, i.e., when the set C
(n)
R is exhausted.

C(M) program for sorting a list of numbers

Program 7.1.4 As another illustrative example, the following program im-
plements the merge sort algorithm for sorting a list of natural numbers in
increasing order with respect to a (partial) order relation R. We first define
a function “merge” that takes

• two sorted lists L1 and L2 of natural numbers, and

• a partial ordering represented as a function of type IN× IN→ IB.

The function merges the two lists into a single sorted list L using an induc-
tion. During the induction, a natural number k1 is maintained in parallel.
This number represents the position of the first candidate of L1 to be added
to the merged result list (all earlier elements of the first list have been added
at this point to the final list already). Using k1 and the length of the current
preliminary final list the number of elements of the second list that have been
added to the final list already is found. In this way we obtain the position
k2 (Line 8) of the second list where we find the next candidate (L2)k2 of L2

to be integrated into the final list. At the beginning at induction step 0, the
merged result list is empty and the preliminary value for k1 is 1 (Line 6).
At induction step i+ 1 either (L2)k2 or (L1)k1 (i.e., the k1-th element of L1)
are added as the next element to the final list. To this end the numbers
(L1)k1 and (L2)k2 are compared with respect to the input relation R. The
value for k1 is updated accordingly.

1 merge : IN∗ × IN∗ × (IN× IN→ IB)→ IN∗;
2 merge(L1, L2, R) := L, where
3 (L, k1) ∈ IN∗ × IN;
4 (L, k1) := induction
5 step 0 :

6 (L(0), k1
(0)) := (ε, 1);

7 step i+ 1 :

8 k2 :=
∣∣L(i)

∣∣− k1
(i) + 2;

9 (L(i+1), k1
(i+1)) :=

(L(i) · 〈(L2)k2〉, k1
(i)) if (k1

(i) > |L1|)
∨ ((k2 ≤ |L2|) ∧ R((L2)k2 , (L1)k1(i)))

(L(i) · 〈(L1)k1(i)〉, k1
(i) + 1) otherwise;

10 until (k1
(i) > |L1|) ∧ (

∣∣L(i)
∣∣− k1

(i) + 2 > |L2|)
11 ;

148 CHAPTER 7. THE C(M) LANGUAGE

12 ;
13 sort : IN∗ × (IN× IN→ IB)→ IN∗;

14 sort(L,R) :=

L

if |L| ≤ 1
merge(sort((L)1,...,|L|/2, R), sort((L)|L|/2+1,...,|L|, R), R)

otherwise;

If the input list L has at most one element, then the input list itself is
returned in Line 14. Otherwise L is split into two sublists in the middle.
The two parts are first sorted and then merged using the function merge.

7.2 Types, terms, and statements in C(M)

We will now give a more thorough description of the language elements. In
this section we describe types, terms and statements.

Types

C(M) is a strongly typed language. The type of every object has to be
either explicitly stated or implicitly derived from its definition. There is no
universal type. The types in C(M) are inductively defined. Basic types in
C(M) are:

• IN natural number,

• ZZ integer number,

• IR real number, and

• IB Boolean values.

In plain text, these types are respectively written IN , IZ , IR , IB . C(M)
supports the following ways to build composite types:

• Tuples: if T1, T2, . . . , Tn are types, then T1 × T2 × . . .× Tn is the type
of n-tuples where the i-th projection is of type Ti.

• Lists: if T is any type, then T ∗ is the type of lists with elements of
type T .

• Sets: if T is any type, then 2T is the type of sets with elements of type
T .

• Functions: if T1 and T2 are types, then T1 → T2 is the type of functions
with domain T1 and range T2.

7.2. TYPES, TERMS, AND STATEMENTS IN C(M) 149

In plain text, these types are respectively written T 1 * T 2 * ... * T n ,
T^* , 2^T , T 1 -> T 2 . Parentheses can be used for type grouping. For

example (A×B)×C represents the type of pairs where the first projection is
a pair of type A×B and the second projection is of type C. Some complex
types are predefined: the type ST RING corresponds to IN∗. The type of
matrixes of real numbers is M(IR). More complex types can be named for
more convenient notation. For example we may define the type of regular
relations - which are sets of pairs of strings - as

REGREL is 2ST RING×ST RING ; REGREL is 2^(STRING * STRING); .

The type of an object is specified with an ‘in’-statement as in

A,B ∈ REGREL; A, B in REGREL; .

Any two objects of the same type can be checked for equality/inequality in
the usual way: A = B and A 6= B A ~= B . Numerical expressions can be
compared as usual: A < B, A ≤ B A <= B , A > B, A ≥ B A >= B .

Identifiers, constants, and simple terms

The most basic expressions to name objects are identifiers and constants.

Identifiers in C(M) have to start with a letter, can contain letters and
digits and can end with apostrophes. Identifiers may also have indices, which
are again identifiers. Greek letter names used in the plain text version are
displayed in the mathematical layout as the corresponding Greek symbols.
For example, possible identifiers of a more complex kind in display and
textual form are

X ′3,ΨF ′′ , Pλ0 X’ 3, Psi F’’, P lambda 0

In an induction statement the inductively defined identifiers are followed by
the index of the induction step written in parentheses, as in the expressions

A(0), A(k+1), F ′∆
(n+1)

A@0, A@k+1, F’ Delta@n+1

See also program Lines 8, 10, 18, 20 in Program 7.1.2.

Constants. In C(M) there are constants for:

Booleans true, false
Natural numbers 301, 2014
Real numbers −25.349, 2.1234E−23
Strings ”Example”, ”This is a sentence.”

Simple terms. C(M) allows the grouping of identifiers/constants into tu-
ples for supporting parallel assignments or multiple definitions. Tuples of

150 CHAPTER 7. THE C(M) LANGUAGE

identifiers/constants can be recursively grouped into subterms. Examples
are:

(a(k), b(k)) (a@k,b@k)

(a, ((1, c′, SE1), f1)) (a,((1,c’,SE1),f 1))

If T is a tuple we obtain its projections using the predefined Proj operator
(cf. Definition 1.1.9). The second projection of T is Proj2(T), written

Proj(2,T) . We can specify the pair consisting of the second and fourth

element of T as Proj(2,4)(T), written Proj((2,4),T) . Simple terms can
be used for running arguments in set builder and quantifier expressions.
The term can contain constants for element building and for constraining
running arguments. An example is the assignment

M := {(a, 0, y) | (a, 0, y) ∈ S & a > y}
M := {(a,0,y) | (a,0,y) in S & a > y}

Complex terms

Set construction. There are several operators for set construction. Sets
can be constructed by simply listing the elements as in {a, b, c} (written

{a,b,c}), or by specifying a range of numbers as in {n1, . . . , n2} {n 1..n 2} .

Similarly as in standard mathematical notation sets can be specified with
set abstraction as in

{f(x, z) | (x, y) ∈ A, z ∈ B} {f(x,z) | (x,y) in A, z in B}

Here the simple term (x, y) runs through the elements of the finite set A.
In case that e.g. y is already defined before, it will act as a constraint –
only those x will be considered for which (x, y) ∈ A. A set builder can be
augmented with an additional condition as in

{f(x, z) | (x, y) ∈ A, z ∈ B & x+ y ≤ z}
{f(x,y) | (x,y) in A, z in B & x+y <= z}

The usual set operations union A∪B, intersection A∩B, set difference A\B
are provided (written A // B , A / /B , A /B). If A is a set of sets,

then the union of its elements is
⋃

(A), written union(A) . The Cartesian

product of the sets A, B and C is A×B × C (written A * B * C).
Relations. Subsets of Cartesian products are relations. As for tuples,

if R is a relation, then we can get its projections with the Proj operator
(cf. Definition 1.1.9). The second projection of R is Proj2(R), written

Proj(2,R) . We can specify the sub-relation of the second and fourth

7.2. TYPES, TERMS, AND STATEMENTS IN C(M) 151

coordinates of R as Proj(2,4)(R). Since relations are sets of tuples they can
be constructed with the set builder construction as well.

Membership and non-membership check of an element a in a set (or list)
A can be expressed as a ∈ A a in A and a 6∈ A a ~in A . Inclusion
check of a set A in B is denoted as A ⊆ B and A 6⊆ B A subseteq B ,

A ~subseteq B .
List construction. Lists are constructed in an analogous way – by simply

listing elements as in 〈a, b, c〉 (written [a,b,c]), by specifying a range of

numbers as in 〈1, . . . , n2〉 [1..n 2] , or using list builders as in 〈f(x, z) | (x, y) ∈
A, z ∈ B〉. The latter form can again be augmented with an additional con-
dition as in

〈f(x, z) | (x, y) ∈ A, z ∈ B & x+ y ≤ z〉
[f(x,y) | (x,y) in A, z in B & x+y <= z]

Concatenation of two lists A and B is denoted A.B. If A is a list of lists,
then

⊙
(A) (written flatten(A)) is the concatenation of the elements of

A. The number of elements in a set or a list A is denoted as |A|. The ith

element of a list L is (L)i, written L[i] . The sublist from the ith to the

jth element of a list L is (L)i,...,j , written L[i..j] . By #L(a) (written

#(a,L)) we denote the index of a in L. If a is not an element of L, then 0 is
returned. If there are more than one occurrences of a in L, then one of the
corresponding indices is returned. The set of elements of a list L is set(L).
The minimal element, maximal element, and the sum and product of the
elements of a set or a list A of appropriate type are respectively denoted as
min(A), max(A),

∑
(A) sum(A) , and

∏
(A) prod(A) .

Functions. Functions in C(M) are either finite or specified with an
expression over the arguments as in

f(x, y) := x+ 2× y; f(x,y) := x+2*y;

Finite functions are sets of pairs and can be constructed with the usual set
and relation constructors. If f is a function, then as usual f(a) denotes the
image of a, and !f(a) checks whether f is defined for a.
Lifting: If f is a function of type T1 → T2 and A is a set of type 2T1 , then
f(A) is the image of the set A under f .
Currying: If f is a function of type T1×T2 → T3 and a is of type T1, then
f(a) is a function of type T2 → T3, such that f(a)(b) = f(a, b). Functions
(both finite and infinite) are treated as normal objects and can be passed
as parameters, returned by other functions, added as elements in sets etc.
Folding: If f is a function of type T × T → T and A = 〈t1, t2, . . . , tn〉 is a
list of type T ∗, then f(A) = f(f(. . . f(f(t1, t2), t3), . . . , tn−1), tn).
Functionalizing: If R is a relation of type 2T1×T2 , then we can “function-
alize” it using the Func operator. Following Definition 1.1.16, Func1→2(R)

152 CHAPTER 7. THE C(M) LANGUAGE

(written Func(1,2,R)) denotes the finite function

{(a, {b | (a, b) ∈ R}) | a ∈ Proj1(R)}.

More generally, if R is an n-ary relation and {i1, . . . , ik}, {j1, . . . , jl} are
nonempty subsets of {1, . . . , n}, then Func(i1,...,ik)→(j1,...,jl)(R) (written in tu-

ple notation Func((i 1,...,i k),(j 1,...,j l),R)) is the function with

domain Proj(i1,...,ik)(R) that maps an element (ai1 , . . . , aik) to the set

{(aj1 , . . . , ajl)|(a1, . . . an) ∈ R}.

Arithmetic expressions. The usual arithmetic expressions are provided for
the numerical types – addition a+ b, subtraction a− b, negative value −a,
absolute value |a|, multiplication a × b (written a*b), division a/b, power
ab (written a^b) and reminder a rem b.
Boolean expressions include

• negation ¬P , ~P

• conjunction P ∧Q, P / /Q

• disjunction P ∨Q, P // Q

• implication P → Q, P -> Q

• equivalence P ↔ Q, P <-> Q

In addition C(M) supports bounded quantifiers like

∀x ∈ X : (∃y ∈ Y : (x > y)) forall x in X:(exists y in Y:(x>y))

Conditional expressions can be specified as in:

f(a) :=

a− 1 if a > 5
a if (a > 0) ∧ (a ≤ 5)
0 otherwise;

f(a) := ? a-1 if a > 5

? a if (a>0) / /(a <= 5)

? 0 otherwise;

Matrix calculation. A one row matrix specified as [a, b, c], written [:a,b,c:] .

Rows and matrices can be appended downwards like [:1,2,3:] //[:4,5,6:]

to construct the matrix [
1 2 3
4 5 6

]
.

Another way to construct matrices is by using a matrix builder: [f(i, j) | i =

1, . . . , 2, j = 1, . . . , 3], written [:f(i,j) | i=1..2, j=1..3:] , where f
is an expression of type IN× IN→ IR.

7.2. TYPES, TERMS, AND STATEMENTS IN C(M) 153

If M is a matrix, then Mi,j M[i,j] is the ith row jth column element
of M . The usual matrix operations like addition, subtraction and multipli-
cation (written A+B , A-B , A*B resp.) are implemented. Transposition is
denoted as MT M^T .

Statements

Each C(M) program is a list of statements. There are four kinds of state-
ments – type definitions, declarations, assignments and supplementary ac-
tions. Every statement must end with a semicolon.

Type definitions. A type definition is used for naming a complex
type. For example in Line 1 of Program 7.1.2 we have the following type
definition:

REL is 2IN×IN; REL is 2^(IN*IN);

Declarations. Declaration statements are used for declaring the types
of identifiers and terms used. In cases where the type of an object can be
directly derived from the expression the declaration can be omitted. But
in most cases when an object is defined by induction or when a function
is defined the inference of the exact type is generally difficult and a type
declaration is needed. The statement in Line 7 of Program 7.1.2 declares
the type of the function “compose”:

compose : REL ×REL → REL; compose in REL * REL -> REL;

Assignments are the most commonly used statements in C(M). There are
four types of assignments – simple assignments, assignments with ‘where’
block, case assignments and inductive assignments.

Simple assignments. Simple assignments consist of an expression
only. They are used to define the value of a term. Line 8 of Program 7.1.3
gives an example:

(a, b) := (CR
(n) as (IN× IN)∗)n+1;

Function values can be defined refering to arguments as in Line 3 of Pro-
gram 7.1.2:

compose(R1, R2) := {(a, c) | (a, b) ∈ R1, (b, c) ∈ R2};

Assignments with ‘where’ block Assignment statements with a ‘where’-
block appear as simple assignments that are followed by a block of additional
statements after the ‘where’ keyword. The additional statements define the
objects used in the expression and may include further statements. The
statements below give an illustration:

compose2N(R,N) := compose(R′, R′), where

R′ := composeN(R,n);

;

154 CHAPTER 7. THE C(M) LANGUAGE

Note that the semicolon on the last line closes the whole statement – as
discussed above each statement has to end with a semicolon.

Case assignment The case assignment is formed of a list of pairs con-
sisting of a condition and an expression. The value of the expression of
the first pair in which the condition is evaluated to true is assigned to the
term. An “otherwise” case expression is optional and used if none of the
previous conditions holds. The case assignment differs from the conditional
expression by the option to include a ‘where’ block for each of the cases. In-
stead of using a conditional expression in Line 9 of Program 7.1.3 we could
alternatively use a case assignment:

CR
(n+1) :=

case ! FR(b) : CR
(n) ∪A′,where

A′ := {(a, c) | c ∈ FR(b)}
otherwise : CR

(n)

;

Inductive assignment The inductive assignment is used for inductive
constructions of terms. Lines 4-11 from Program 7.1.3 present an inductive
assignment.

CR := induction

step 0 :

CR
(0) := R;

step n+ 1 :

(a, b) := (CR
(n) as (IN× IN)∗)n+1;

CR
(n+1) :=

{
CR

(n) ∪ {(a, c) | c ∈ FR(b)} if ! FR(b)

CR
(n) otherwise;

until n =
∣∣∣CR(n)

∣∣∣
;

The base of the induction is defined by the statements after the step 0 clause.
The inductive step is defined by the statements after the step n+ 1 clause.
The inductive steps are repeated until the condition of the ‘until’ clause
holds.

Supplementary actions

Besides definitions, declarations and assignments, C(M) supports supple-
mentary actions for input and output operations and similar issues. In

7.2. TYPES, TERMS, AND STATEMENTS IN C(M) 155

contrast to all other statements, these actions can have side effects. For
example we can dump out the relation resulting by the transitive closure of
{(1, 2), (2, 3), (3, 5), (5, 10)} with the following statement:

dump ← transitiveClosure({(1, 2), (2, 3), (3, 5), (5, 10)});

dump <- transitiveClosure({(1,2),(2,3),(3,5),(5,10)});
Some of the implemented supplementary actions are

• dump ← E; : dumps the expression E to the standard output;

• print ← E; : the expression E (which must be a STRING) is printed
on the standard output;

• store ← (F,E); : the expression E will be stored in the file with
name F (must be a STRING);

• saveText ← (F, T); : the text T (must be STRING) will be stored
in UTF-8 format in the text file with name F (must be a STRING);

• import ← F ; : the file named with the expression F (which must be
a STRING) is imported in the program;

• assert ← E; : if the expression E of type IB does not hold, the
program halts.

156 CHAPTER 7. THE C(M) LANGUAGE

Chapter 8

C(M) implementation of
finite-state devices

In this chapter we present C(M) implementations of the main automata con-
structions. Our aim is to provide full, clear and easy to follow descriptions
of the implementations. In some cases the simplicity of the implementa-
tion is achieved at the expense of some inefficiency. Other implementations
of automata and transducer constructions include XFST [Karttunen et al.,
1997b], SFST [Schmid, 2006] and openFST [Allauzen et al., 2007].

8.1 C(M) implementations for automata algorithms

This section describes the C(M) implementation of the constructions pre-
sented in Chapter 2. Only algorithms for automata over the free monoid
are presented.
General assumption. In our constructions we always assume that the set
of states of an automaton has the form {1, 2, . . . , n}. All automata resulting
from the constructions presented below will again have this property. If pro-
cedures are called with input automata that do not satisfy this assumptions,
errors may result.
Below all programs will be presented using the more readable “pretty-print”
presentation of the code. Note that typed and executable versions of all
programs are available.

C(M) programs for basic algorithms

Program 8.1.1 We start with the basic definitions and algorithms for
finite-state automata. In our formalization, an automaton has a set of initial
states, and transition labels are arbitrary words over the input alphabet.

1 import ← ”Program 7.1.3.cm”;
2 SYMBOL is IN;

157

158CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

3 ALPHABET is 2SYMBOL;
4 WORD is SYMBOL∗;
5 ST AT E is IN;
6 AT RANSIT ION is ST AT E ×WORD × ST AT E ;
7 FSA is ALPHABET × 2ST AT E × 2ST AT E × 2ST AT E × 2AT RANSIT ION ;
8 newState : 2ST AT E → ST AT E ;
9 newState(Q) := |Q|+ 1;

10 kNewStates : IN× 2ST AT E → ST AT E∗;
11 kNewStates(k,Q) := 〈|Q|+ 1, . . . , |Q|+ k〉;
12 remapFSA : FSA× 2ST AT E → FSA;
13 remapFSA((Σ, Q, I, F,∆), Q′) := (Σ,map(Q),map(I),map(F),∆′), where
14 S := kNewStates(|Q| , Q′);
15 map : ST AT E → ST AT E ;
16 map(q) := (S)q;
17 ∆′ := {(map(q), c,map(r)) | (q, c, r) ∈ ∆};
18 ;
19 FSAWORD :WORD → FSA;
20 FSAWORD(a) := (set(a), {1, 2}, {1}, {2}, {(1, a, 2)});

In Line 1 we import Program 7.1.3, which will be used later in the section.
In Lines 2-7 appropriate types are defined. Symbols are encoded as natural
numbers, anALPHABET as a set of symbols, aWORD as a list of symbols,
and a ST AT E is a natural number. For automaton transitions we introduce
the type AT RANSIT ION , each transition is a triple of source state, word
and destination state. The type FSA for automata over the free monoid is
defined to be a quintuple consisting of an alphabet, a set of states, a set of
initial states, a set of final states, and a set of transitions.
The function newState defined in Lines 8-9 takes a set of states (i.e., natural
numbers) Q and returns the next new state outside Q. As we mentioned
above we assume that Q = {1, . . . , |Q|}. Hence the new state can be simply
defined as the number |Q|+1. The function kNewStates defined in Lines 10-
11 returns the list of the next k new states 〈|Q| + 1, . . . , |Q| + k〉 outside a
given set Q.
The function remapFSA defined in Lines 12-18 takes as arguments an au-
tomaton (Σ, Q, I, F,∆) and a set of states Q′. The function remaps all
states in the automaton to states outside Q′. In Line 14 we define S as the
list with |Q| new states outside Q′. In Lines 15-16 we define the function
map, which maps the state q (in Q) to the q-th state of the list S. Here
again we assume that Q = {1, . . . , |Q|}. In Line 17 the set of transitions ∆′

is defined as variant of ∆ where states have been renamed outside Q. Then
in Line 13 the resulting automaton is defined as the quintuple consisting of
the alphabet Σ, the images of Q, I, F and the new set of transitions ∆′.
The function FSAWORD constructs for a given word a the automaton rec-
ognizing {a} as defined in Part 2 of Proposition 2.4.1.

8.1. C(M) IMPLEMENTATIONS FOR AUTOMATA ALGORITHMS159

Program 8.1.2 The following constructions present the regular operations
union, concatenation, and Kleene star for finite-state automata.

21 unionFSA : FSA× FSA → FSA;
22 unionFSA((Σ1, Q1, I1, F1,∆1), A2) :=

(Σ1 ∪ Σ2, Q1 ∪Q2, I1 ∪ I2, F1 ∪ F2,∆1 ∪∆2), where
23 (Σ2, Q2, I2, F2,∆2) := remapFSA(A2, Q1);
24 ;
25 concatFSA : FSA× FSA → FSA;
26 concatFSA((Σ1, Q1, I1, F1,∆1), A2) :=

(Σ1 ∪ Σ2, Q1 ∪Q2, I1, F2, (∆1 ∪∆2) ∪ F1 × {ε} × I2), where
27 (Σ2, Q2, I2, F2,∆2) := remapFSA(A2, Q1);
28 ;
29 starFSA : FSA → FSA;
30 starFSA(Σ, Q1, I1, F1,∆1) := (Σ, Q1 ∪ {q0}, {q0}, F1 ∪ {q0},∆), where
31 q0 := newState(Q1);
32 ∆ := (∆1 ∪ {(q0, ε, q1) | q1 ∈ I1}) ∪ {(q2, ε, q0) | q2 ∈ F1};
33 ;

Lines 21-24 describe the union of finite-state automata. In Line 23 we first
remap the states of the second automaton in order to avoid common states.
In Line 22 the union of two finite-state automata is defined exactly as in
Part 1 of Proposition 2.2.1. In a similar way the concatenation of two
automata is defined in Lines 25-28, exactly following the description in Part 2
of Proposition 2.2.1. The Kleene star of an automaton is defined in Lines 29-
33 in accordance with Part 3 of Proposition 2.2.1.

Program 8.1.3 The next “supplementary constructions” are given for con-
venience. They can be expressed by our basis functions but help to keep the
description of complex automata constructions transparent. We introduce
the Kleene plus of a given automaton, optionality (adding the empty
word) for an automaton, the automaton recognizing a given set of sym-
bols, and the automaton recognizing all words over a given alphabet.

34 plusFSA : FSA → FSA;
35 plusFSA(Σ, Q1, I1, F1,∆1) := (Σ, Q1 ∪ {q0}, {q0}, F1,∆), where
36 q0 := newState(Q1);
37 ∆ := (∆1 ∪ {(q0, ε, q1) | q1 ∈ I1}) ∪ {(q2, ε, q0) | q2 ∈ F1};
38 ;
39 optionFSA : FSA → FSA;
40 optionFSA(Σ, Q, I, F,∆) := (Σ, Q ∪ {q0}, I ∪ {q0}, F ∪ {q0},∆), where
41 q0 := newState(Q);
42 ;
43 symbolSet2FSA : 2SYMBOL → FSA;
44 symbolSet2FSA(S) := (S, {1, 2}, {1}, {2}, {(1, 〈c〉, 2) | c ∈ S});

160CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

45 all : ALPHABET → FSA;
46 all(Σ) := starFSA(symbolSet2FSA(Σ));

Lines 34-38 define the positive Kleene closure in a similar way like the Kleene
star. The only difference is that the new starting state q0 is not final.
Lines 39-42 realize optionality by adding a new initial and final state q0 to a
given automaton in order to add the empty word to its language. Lines 43-
44 define the function symbolSet2FSA, which takes a set of symbols S and
builds an automaton with two states recognizing S. If the set S is empty,
the function symbolSet2FSA returns the automaton for the empty language.
Lines 45-46 present the function all(Σ), which returns an automaton recog-
nizing all words over a given alphabet.

C(M) programs for ε-removal and further constructions

Program 8.1.4 The C(M) program for ε-removal follows Proposition 2.5.4.

47 removeEpsilonFSA : FSA → FSA;
48 removeEpsilonFSA(Σ, Q, I, F,∆) := (Σ, Q,

⋃
(Cε(I)), F,∆′), where

49 C := transitiveClosure({(q, r) | (q, a, r) ∈ ∆ & a = ε}) ∪ {(q, q) | q ∈ Q};
50 Cε := F1→2(C);
51 ∆′ := {(q1, a, q2) | (q1, a, q

′) ∈ ∆ & a 6= ε, q2 ∈ Cε(q
′)};

52 ;

In Line 49, using Program 7.1.3, we define the transitive closure C of the
ε-transitions in ∆. Then in Line 50 we construct the ε-closure by func-
tionalizing the relation C (cf. Definition 1.1.16). The resulting function Cε
maps each state q ∈ Q to the set of all states that can be reached from q
with a series of ε-transitions and corresponds to the forward ε-closure Cfε as
defined in Definition 2.5.3. In Line 51 and 48 the new set of transitions ∆′,
the extended set of initial states, and the resulting automaton are defined
in accordance with the construction in Proposition 2.5.4.

Program 8.1.5 The C(M) program for ε-removal preserving state lan-
guages closely follows Proposition 2.5.6.

53 removeEpsilonPreservingFSA : FSA → FSA;
54 removeEpsilonPreservingFSA(Σ, Q, I, F,∆) := (Σ, Q, I,

⋃
(C′ε(F)),∆′),

where
55 C :=

transitiveClosure({(q, r) | (q, a, r) ∈ ∆ & a = ε}) ∪ {(q, q) | q ∈ Q};
56 Cε := F1→2(C);
57 C ′ε := F2→1(C);
58 ∆′ := {(q′1, α, q′2) | (q1, α, q2) ∈ ∆ & α 6= ε, q′1 ∈ C′ε(q1), q′2 ∈ Cε(q2)};
59 ;

8.1. C(M) IMPLEMENTATIONS FOR AUTOMATA ALGORITHMS161

In Line 55 we define the transitive closure C of the ε-transitions in ∆.
Then in Lines 56 and 57 we respectively construct the forward ε-closure Cε
and the backward ε-closure C ′ε as defined in Definition 2.5.3. In Lines 58
and 54 the new transition relation ∆′, the extended set of final states, and
the resulting automaton are defined in accordance with the construction in
Proposition 2.5.6.

Program 8.1.6 The following program for trimming an automaton re-
moves all states that are not reachable from any initial state and all states
from which no final state can be reached (cf. Definition 2.5.1).

60 trimFSA : FSA → FSA;
61 trimFSA(Σ, Q, I, F,∆) :=

(Σ,map(Q′),map(I ∩Q′),map(F ∩Q′),∆′), where
62 R := transitiveClosure(Proj(1,3)(∆));

63 Q′ := (I ∪ {r | (i, r) ∈ R & i ∈ I})∩ (F ∪ {r | (r, f) ∈ R & f ∈
F});

64 map : ST AT E → ST AT E ;
65 map(q) := #Q′ as ST AT E∗(q);
66 ∆′ := {(map(q), c,map(r)) | (q, c, r) ∈ ∆ & (q ∈ Q′)∧(r ∈ Q′)};
67 ;

In Line 62 we define the set R consisting of all pairs of states that are
connected by a path of length ≥ 1. Here again we make use of Program 7.1.3.
In Line 63 we define the set Q′ of all states which are reachable from an
initial state and from which at the same time a final state can be reached.
In Lines 64-65 the mapping of the states in Q′ to {1, . . . , |Q′|} is defined.
Each state q ∈ Q′ is mapped to the index of q in Q′, the latter set is here
treated as a list of states (Line 65). In Line 66 the new set of transitions ∆′

is defined as the renamed variant of all transitions in ∆ between states in
Q′. In Line 61 we define the resulting automaton. The set of (resp. initial,
final) states is the renamed variant of Q′ (resp. I ∩Q′, F ∩Q′) and the set
of transitions ∆′.

Program 8.1.7 Given an arbitrary finite-state automaton, our next pro-
gram constructs a classical finite-state automaton, i.e., an automaton where
each transition label is a word of length ≤ 1. Following Proposition 2.5.8 we
expand each transition of the form 〈q, a1a2 . . . al, r〉 with a transition label of
length l > 1 into a sequence of l transitions 〈q′ = t1, a1, t2〉 〈t2, a2, t3〉 . . . 〈tl, al, tl+1 = r〉
by introducing l − 1 new intermediate states t2, t3, . . . , tl.

68 expandFSA : FSA → FSA;
69 expandFSA(Σ, Q, I, F,∆) := (Σ, Q′, I, F,∆′), where
70 L := 〈(q′, a′, r′) | (q′, a′, r′) ∈ ∆ & |a′| > 1〉;
71 (Q′,∆′) := induction

162CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

72 step 0 :

73 (Q′(0),∆′(0)) := (Q,∆);
74 step n+ 1 :
75 (q, a, r) := (L)n+1;
76 l := |a| ;
77 t := 〈q〉 · kNewStates(l − 1, Q′(n)) · 〈r〉;
78 Q′(n+1) := Q′(n) ∪ set(t);

79 ∆′(n+1) := ∆′(n) \ {(q, a, r)} ∪ {((t)i, 〈(a)i〉, (t)i+1) | i ∈ {1, . . . , l}};
80 until n = |L|
81 ;
82 ;

The algorithm builds the resulting automaton by inductively defining the
new set of states Q′ and the new set of transitions ∆′. At each step we
eliminate one transition (q, a, r) ∈ ∆ such that |a| > 1. First, in Line 70
we extract from ∆ the list L of such transitions. The induction starts with
the original set of states and transitions in Line 73. In the inductive step in
Line 75 we select the next transition (q, a, r) from the list L. In Line 77 we
define t as the sequence of states with first element q, followed by l− 1 new
states and ending with r. In Line 78 the set Q′(n+1) is defined as the union
of Q′(n) with the states in t. In the transition set ∆′ we replace (q, a, r) by
the transitions (ti, ai, ti+1) for i = 1, . . . , l (Line 79). The induction ends
when the list L is exhausted. The resulting automaton is then defined as
the automaton with set of states Q′ and set of transitions ∆′. Initial and
final states are as in the source automaton (Line 69).

C(M) programs for determinization, intersection and differ-
ence of automata

In our description, the type of deterministic finite-state automata is distinct
from the type of general finite-state automata: deterministic finite-state
automata have a single initial state (as opposed to a set of initial states) and
a transition function (as opposed to a relation). We now introduce the new
types needed and a variant of the trimming construction for deterministic
finite-state automata.

Program 8.1.8 As in the general case (cf. Program 8.1.6), trimming a
deterministic automaton means to remove all states that are not reachable
from the initial states and all states from which no final state can be reached
(Definition 2.5.1).

83 DT RANSIT IONS is ST AT E × SYMBOL → ST AT E ;
84 DFSA is ALPHABET × 2ST AT E × ST AT E × 2ST AT E ×

DT RANSIT IONS;

8.1. C(M) IMPLEMENTATIONS FOR AUTOMATA ALGORITHMS163

85 trimDFSA : DFSA → DFSA;
86 trimDFSA(Σ, Q, q0, F,∆) :={

(Σ,map(Q′),map(q0),map(F ∩Q′),∆′) if Q′ 6= ∅
(Σ, {1}, 1, ∅, ∅) otherwise

, where

87 R := transitiveClosure({(s, d) | ((s, a), d) ∈ ∆});
88 Q′ := ({q0}∪{r | (q0, r) ∈ R})∩ (F ∪{r | (r, f) ∈ R & f ∈ F});
89 map : ST AT E → ST AT E ;
90 map(q) := #Q′ as ST AT E∗(q);
91 ∆′ := {((map(q), c),map(r)) | ((q, c), r) ∈ ∆ & (q ∈ Q′) ∧ (r ∈

Q′)};
92 ;

In Line 83 the type DT RANSIT IONS for the transition function of a
deterministic finite-state automaton is defined. Then in Line 84 a DFSA
is defined as a quintuple consisting of an alphabet, a set of states, an initial
state, a set of final states, and a transition function. The trim function
trimDFSA defined in Lines 85-92 is almost identical to the corresponding
function for non-deterministic automata (Program 8.1.6). The only differ-
ence is in Line 86, where we now return a deterministic automaton with one
start state instead of an empty automaton.

Program 8.1.9 In Theorem 3.2.2 we presented a simple determinization
construction for finite-state automata. This construction always builds an
automaton with 2|Q| states, not taking into account that many of the states
may not be reachable from the resulting new initial state. Below we present
a more efficient determinization construction. Following Remark 3.2.3
it builds a deterministic automaton where all states are reachable from the
new initial state. As a first preparation step it computes a non-deterministic
automaton where all transition labels have length 1. Then the deterministic
automaton is built inductively, starting from the set of initial states (acting
as the new initial state). While the construction proceeds, a list of new
states introduced is maintained. Each new state is a set of old states. At
each induction step we treat the next element in the list and compute, for
each symbol σ of the input alphabet, the sets of states which are reachable
from the current set with letter σ. Each new set of states obtained in this
way is added as a new state to the tail of the list of new states. The induction
ends when all sets in the list have been treated.

93 determFSA : FSA → DFSA;
94 determFSA(A) := trimDFSA(Σ, {1, . . . , |P |}, 1, F ′, δ′), where
95 (Σ, Q, I, F,∆) := expandFSA(removeEpsilonFSA(A));
96 ∆′ := F1→(2,3)({(q, (α)1, r) | (q, α, r) ∈ ∆});
97 (P, δ′) ∈ (2ST AT E)∗ ×DT RANSIT IONS;
98 (P, δ′) := induction
99 step 0 :

164CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

100 P (0) := 〈I〉;
101 δ′(0) := ∅;
102 step n+ 1 :

103 N :=
⋃

(∆′((P (n))n+1));
104 N ′ := F1→2(N);

105 P (n+1) := P (n) · 〈q | q ∈ Proj2(N ′) & q 6∈ P (n)〉;
106 δ′(n+1) := δ′(n) ∪ {((n+ 1, c),#P (n+1)(q)) | (c, q) ∈ N ′};
107 until n =

∣∣P (n)
∣∣

108 ;
109 F ′ := {q | q ∈ {1, . . . , |P |} & F ∩ (P)q 6= ∅};
110 ;

The preliminary first step is described in Line 95: ε-transitions are removed
using Program 8.1.4, and transitions labels of length ≥ 2 are replaced by
sequences of transitions with labels of length 1 using Program 8.1.7. Then
the main step starts. In Line 96 we define ∆′ as the functionalization 1 →
(2, 3) of ∆ (cf. Definition 1.1.16). ∆′ maps a state q ∈ Q to the set of
pairs (a, r), such that (q, a, r) ∈ ∆. Only the source states of transitions
appear in the domain of ∆′, hence images are always non-empty sets. The
use of ∆′ helps to avoid yet another induction that runs over the symbols
of the alphabet. In Lines 97-108 the states of the deterministic automaton
are constructed by induction. Each new state is a set of states of the source
automaton (in the final version, each new state is translated into a natural
number, see below). New states to be introduced are maintained in the list
P . In parallel the transition function δ′ is constructed. In Lines 100-101 the
base of the induction is defined. P (0) contains only the set I (new initial
state) and δ′(0) is the empty function. In the inductive step in Line 103 we
first take the next (n + 1-st) element (P (n))n+1 from the current list P (n).
N is defined as the set of all pairs (c, q) found in the images of elements of
(P (n))n+1 under ∆′. At this point, if (P (n))n+1 is empty or ∆′ is undefined
for all elements of (P (n))n+1 we obtain the empty set. In Line 104 N ′ is
defined as the function which maps a label c to the set of states which are
reached with a c-transition from states in (P (n))n+1. In Line 105 we add
to the current list of new states P (n) all state sets in the range of N ′ that
yet do not occur in P (n). In Line 106 the function δ′ is extended with the
transitions from the current set of states to the corresponding sets defined
with N ′. At this point each set of states (new state) is mapped to its index
in the list P . In this way, new states are now numbers. The induction ends
when the list P is exhausted (Line 107). In Line 109 the set of final states
F ′ is defined as the set of the indices of sets with non empty intersection
with F . Finally in Line 94 the resulting automaton is defined. The set of
states in the translated representation is the set of indices {1, . . . , |P |}, the
initial state is 1. The automaton is trimmed using Program 8.1.8. In this

8.1. C(M) IMPLEMENTATIONS FOR AUTOMATA ALGORITHMS165

way, states are eliminated from which we cannot reach any final state.

The constructions for intersection and difference of automata proceed by
building the Cartesian product automaton (cf. Proposition 3.3.2). We again
optimize the process by inductively constructing only those (pairs of) states
which can be reached from the new initial state. For both constructions
we start from the pair of the two initial states of the input automata (new
initial state) and then proceed by extending the automaton with the states
and transitions which are directly reachable from states already obtained.
The following auxiliary construction is used.

Program 8.1.10 The following algorithm (product∆) constructs the tran-
sition function of an automaton which is the Cartesian product of two input
automata. We assume that the source automata are deterministic. The ar-
guments are the initial states and the transition functions of the two input
automata. The result is the list of pairs of states and the transition function
of the resulting automata. Here again the states of the resulting automaton
are finally represented using the indices of the pairs of states in the list.

111 product∆ : (ST AT E × DT RANSIT IONS)× (ST AT E ×
DT RANSIT IONS)→ (ST AT E×ST AT E)∗×DT RANSIT IONS;

112 product∆((s1, δ1), (s2, δ2)) := (P, δ), where
113 ∆′1 := F1→(2,3)(δ1 as 2ST AT E×SYMBOL×ST AT E);

114 (P, δ) ∈ (ST AT E × ST AT E)∗ ×DT RANSIT IONS;
115 (P, δ) := induction
116 step 0 :

117 P (0) := 〈(s1, s2)〉;
118 δ(0) := ∅;
119 step n+ 1 :

120 (p1, p2) := (P (n))n+1;
121 N :={

{(c, (q1, δ2(p2, c))) | (c, q1) ∈ ∆′1(p1) & ! δ2(p2, c)} if ! ∆′1(p1)
∅ otherwise;

122 P (n+1) := P (n) · 〈p | p ∈ Proj2(N) & p 6∈ P (n)〉;
123 δ(n+1) := δ(n) ∪ {((n+ 1, c),#P (n+1)(q)) | (c, q) ∈ N};
124 until n =

∣∣P (n)
∣∣

125 ;
126 ;

In Line 113 of the construction we define ∆′1 as the function that maps a
state from the first source automaton to a set of pairs of label symbol and
destination state in the transition function δ1. (As above the use of ∆′ helps
to avoid another induction that runs over the symbols of the alphabet.)
Then, the list of pairs of states P and the resulting transition function δ are

166CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

constructed by induction. In the base step in Lines 117-128, P is set to the
list with the only pair (s1, s2), and δ is empty. Then, in the inductive step
we consider (p1, p2) – the n+ 1-st element of the list P . The set N defined
in Line 121 describes the set of all transitions departing from the source
(product-) state (p1, p2) as a set of pairs. Each pair consists of a transition
label and a target (product-) state. If ∆′1(p1) is defined, then N is the set of
pairs (c, (q1, q2)) such that (c, q1) in ∆′1(p1) (which means that q1 = δ1(p1, c))
and δ2(p2, c) = q2 is defined. Otherwise N is empty. In Line 122 we add
to the list P the pairs of states in the second projection of N that are not
found in the current set P (n). In Line 123 the function δ is extended with the
transitions from the current pair of states to the corresponding target pairs
defined in N . Here the pairs of states are mapped to their corresponding
indices in the list P . The induction ends when the list P is exhausted
(Line 124).

The above function represents the essential part of the programs for inter-
section and difference to be described now.

Program 8.1.11 The following C(M) program implements intersection
of deterministic classical finite-state automata as described in Part 1 of
Proposition 3.3.2. Another program for intersecting arbitrary classical finite-
state automata is derived and added.

127 intersectDFSA : DFSA×DFSA → DFSA;
128 intersectDFSA((Σ1, Q1, s1, F1, δ1), (Σ2, Q2, s2, F2, δ2)) :=

trimDFSA(Σ1 ∪ Σ2, Q, 1, F, δ), where
129 (P, δ) := product∆((s1, δ1), (s2, δ2));
130 Q := {1, . . . , |P |};
131 F := {q | q ∈ Q & (Proj1((P)q) ∈ F1) ∧ (Proj2((P)q) ∈ F2)};
132 ;
133 FSADFSA : DFSA → FSA;
134 FSADFSA(Σ, Q, q0, F, δ) := (Σ, Q, {q0}, F, {(q, 〈a〉, r) | ((q, a), r) ∈ δ});
135 intersectFSA : FSA× FSA → FSA;
136 intersectFSA(A1, A2) :=

FSADFSA(intersectDFSA(determFSA(A1),determFSA(A2)));

The function intersectDFSA constructs the intersection of two input au-
tomata. In Line 129 the Cartesian product of the two automata, (P, δ),
is constructed using Program 8.1.10. Then in Line 130 the states of the
automaton are defined as the set {1, . . . , |P |}. In Line 131 the final states
are defined as the indices of the state pairs for which both states are final in
their corresponding automata. After trimming in Line 128 the automaton
is returned.

The remaining code represents the intersection program for non-deterministic

8.1. C(M) IMPLEMENTATIONS FOR AUTOMATA ALGORITHMS167

automata. In Lines 133-134 we define the function FSADFSA, which converts
a deterministic finite-state automaton to an arbitrary finite-state automa-
ton. In Lines 135-136 the function intersectFSA is defined. This function
intersects two non-deterministic automata by first determinizing the input
automata (Program 8.1.9) and then constructing the intersection using the
above function for deterministic automata. The resulting deterministic au-
tomaton is finally converted to a non-deterministic automaton.

Program 8.1.12 The next C(M) program implements difference of finite-
state automata as described in Part 2 of Proposition 3.3.2.

137 diffDFSA : DFSA×DFSA → DFSA;
138 diffDFSA((Σ1, Q1, s1, F1, δ1), (Σ2, Q2, s2, F2, δ2)) :=

trimDFSA(Σ1 ∪ Σ2, Q, 1, F, δ), where
139 δ′2 ∈ DT RANSIT IONS;

140 δ′2(q, c) :=

{
δ2(q, c) if ! δ2(q, c)
0 otherwise;

141 (P, δ) := product∆((s1, δ1), (s2, δ
′
2));

142 Q := {1, . . . , |P |};
143 F := {q | q ∈ Q & (Proj1((P)q) ∈ F1) ∧ (Proj2((P)q) 6∈ F2)};
144 ;
145 diffFSA : FSA× FSA → FSA;
146 diffFSA(A1, A2) := FSADFSA(diffDFSA(determFSA(A1),determFSA(A2)));

The first function diffDFSA constructs the difference of two deterministic au-
tomata. Since the second automaton has to be total (see Proposition 3.3.2),
we extend in Line 140 the transition function δ2 by complementing it with
transitions to a fail state (0). Then in Line 141 the Cartesian product of the
two automata (P, δ) is constructed using again Program 8.1.10. In Line 142
the set of states of the automaton is defined as {1, . . . , |P |}. In Line 143 the
final states are defined to be the indices of those pairs of states for which the
state of the first automaton is final and the state in the second automaton
is not final. After trimming in Line 138 the automaton is returned as result.
In Lines 145-146 the function diffFSA is defined. This function computes the
difference of two non-deterministic automata by first determinizing the au-
tomata (Program 8.1.9) and then constructing the difference using the above
function for deterministic automata. The resulting deterministic automaton
is converted to a non-deterministic one at the end.

Program 8.1.13 The following C(M) program implements reversal of
finite-state automata as described in Proposition 3.3.4.

147 ρ :WORD →WORD;
148 ρ(s) := 〈(s)|s|−i+1 | i ∈ {1, . . . , |s|}〉;
149 reverseFSA : FSA → FSA;

168CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

150 reverseFSA(Σ, Q, I, F,∆) := (Σ, Q, F, I,∆′), where
151 ∆′ := {(q2, ρ(w), q1) | (q1, w, q2) ∈ ∆};
152 ;

First in Lines 147-148 the function ρ for reversing a word is given. Then the
construction of the reverse automaton in Lines 149-152 closely follows the
description given in Proposition 3.3.4

C(M) programs for minimizing deterministic automata

In this subsection we present an algorithm which - given a deterministic
finite-state automaton - constructs the equivalent minimal deterministic au-
tomaton as characterized in Section 3.4. The presented algorithm is designed
for deterministic automata with partial transition function as discussed in
Remarks 3.4.19 and 3.5.8

Program 8.1.14 The algorithm implements a minimization procedure
for deterministic finite-state automata based on the inductive construction
presented in Corollary 3.5.4, using the functions defined in Proposition 3.5.6.

153 EQREL is ST AT E → ST AT E ;
154 ker : 2ST AT E × (ST AT E → IN)→ EQREL;
155 ker(Q, g) := {(q,#I as IN∗(g(q))) | q ∈ Q}, where
156 I := {g(q) | q ∈ Q};
157 ;
158 intersectEQREL : 2ST AT E × EQREL × EQREL → EQREL;
159 intersectEQREL(Q,R1, R2) := {(q,#I as (ST AT E×ST AT E)∗((R1(q),R2(q)))) | q ∈ Q}, where

160 I := {(R1(q),R2(q)) | q ∈ Q};
161 ;
162 minimalDFSA : DFSA → DFSA;
163 minimalDFSA(Σ, Q, q0, F, δ) := trimDFSA(Σ,R(Q),R(q0),R(F), δ′), where
164 R ∈ EQREL;
165 k ∈ IN;
166 (R, k) := induction
167 step 0 :
168 f : ST AT E → IN;

169 f(q) :=

{
1 if q ∈ F
0 otherwise;

170 k(0) := 0;

171 R(0) := ker(Q, f);
172 step n+ 1 :
173 f : SYMBOL× ST AT E → IN;

174 f(c, q) :=

{
R(n)(δ(q, c)) if ! δ(q, c)
0 otherwise;

175 k(n+1) :=
∣∣Proj2(R(n))

∣∣ ;

8.1. C(M) IMPLEMENTATIONS FOR AUTOMATA ALGORITHMS169

176 R(n+1) := intersectEQREL(Q,R(n),
(intersectEQREL(Q))(〈ker(Q, f(c)) | c ∈ Σ〉));

177 until k(n) =
∣∣Proj2(R(n))

∣∣
178 ;
179 δ′ ∈ DT RANSIT IONS;
180 δ′ := {((R(q), σ),R(r)) | ((q, σ), r) ∈ δ};
181 ;

In Line 153 we define the type of an equivalence relation as a function
mapping a state to (the number of) its equivalence class. We assume
that the equivalence classes are numbered sequentially starting from 1. In
Lines 154-157 we construct the kernel equivalence relation for a function
on the automaton states. In Lines 158-159 we construct the intersection
of two equivalence relations. The equivalence class of the intersection for
a given state q is defined as the index of the pair of the two equivalence
classes of q with respect to the two source relations in the list I of all pairs
of classes. Afterwards in Lines 163-181 we present the minimization algo-
rithm. We construct the equivalence relation R by induction. In k(n+1) we
store the number of equivalence classes of the relation in the previous step
– R(n). The base of the induction is defined in Lines 168-171 in accordance
with Proposition 3.5.6, Point 1. For the inductive step in Lines 173-176
we use the definition given in Proposition 3.5.6, Point 2. Note that in
Line 176 the function (intersectEQREL(Q)) is obtained by Currying, it has
type EQREL × EQREL → EQREL. This function is applied to the list
of letter-specific equivalence relations 〈ker(Q, f(c)) | c ∈ Σ〉. The result is
obtained by folding (see Section 7.2). The resulting equivalence relation is
intersected with the R(n), which yields R(n+1). The induction ends when the
number of classes of R(n) is equal to k(n), which is the number of classes of
R(n−1) (Line 177). In Line 179-180 we map the states of the transitions to
the numbers of their equivalence classes with respect to R and in Line 163
the automaton states, the start state and the final states are mapped to the
numbers of their equivalence classes. The algorithm returns the resulting
automaton after trimming.

C(M) programs for traversing deterministic finite-state au-
tomata

Program 8.1.15 Below we implement two basic functions on determinis-
tic finite-state automata. The first function ‘Cδ’ implements the transitive
closure of the transition function δ∗. The second function ‘stateseq’ returns
the sequence of states on the automaton path starting from the given input
state that is labeled with the given word.

182 Cδ : DT RANSIT IONS × ST AT E ×WORD → ST AT E ;

170CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

183 Cδ(δ, q, α) := q′, where
184 q′ := induction
185 step 0 :

186 q′(0) := q;
187 step n+ 1 :

188 q′(n+1) := δ(q′
(n), (α)n+1);

189 until n = |α|
190 ;
191 ;
192 stateseq : DT RANSIT IONS × ST AT E ×WORD → ST AT E∗;
193 stateseq(δ, q, α) := π, where
194 π := induction
195 step 0 :

196 π(0) := 〈q〉;
197 step n+ 1 :

198 π(n+1) := π(n) · 〈δ((π(n))n+1, (α)n+1)〉;
199 until (n = |α|) ∨ ¬(! δ((π(n))n+1, (α)n+1))
200 ;
201 ;

Both algorithm proceed by a simple inductive construction. Starting from
the given first state q as a base (Line 186/196) we proceed to the next state
by making the transition with the following symbol of the input word α
(Line 188/198). The induction ends if all the symbols from α are consumed
(Line 189/199) or in stateseq if the transition with the following symbol is
not defined (Line 199). Note that ‘Cδ’ is not defined if for some state on
the path the transition function with the following symbol from α is not
defined. In contrast, ‘stateseq’ is always defined and returns the states on
the longest path from q with a prefix from α.

The above program can be used for testing whether a word is accepted
by the language of an deterministic automaton. If A = (Σ, Q, q0, F, δ) is a
total deterministic automaton and α is a word in Σ∗, then α is recognized
by A iff Cδ(δ, q0, α) ∈ F .

Example 8.1.16 In order to illustrate the use of the algorithms presented
in this section we provide a program for constructing a deterministic finite-
state automaton that recognizes all valid dates of the Gregorian calendar
formated as expressions of the form

AUGUST 11, 1996

We loosely follow the approach in [Karttunen et al., 1997a]. Date expressions
like “FEBRUARY 30, 2015” or “APRIL 31, 1921” are easily described as in-
correct. More challenging is the case with leap days. “FEBRUARY 29, 2000”

8.1. C(M) IMPLEMENTATIONS FOR AUTOMATA ALGORITHMS171

and “FEBRUARY 29, 2016” are valid dates but “FEBRUARY 29, 2017” and
“FEBRUARY 29, 1900” do not exist. Recall that in the Gregorian calendar,
not every year divisible by four is a leap year. Exceptions (non leap years)
are all numbers that are divisible by 100 but not by 400, such as e.g. 1700,
1800, 1900, 2100.

1 import ← ”Section 8.1.cm”;
2 Alphabet := {′A′, . . . ,′ Z ′} ∪ {′0′, . . . ,′ 9′} ∪ {′ ′,′ ,′ };
3 OneToNine := symbolSet2FSA({′1′, . . . ,′ 9′});
4 Even := symbolSet2FSA({′0′,′ 2′,′ 4′,′ 6′,′ 8′});
5 Odd := symbolSet2FSA({′1′,′ 3′,′ 5′,′ 7′,′ 9′});
6 ZeroToNine := unionFSA(Even,Odd);
7 Month29 := FSAWORD(”FEBRUARY”);
8 Month30 := unionFSA(〈FSAWORD(”APRIL”),FSAWORD(”JUNE”),

FSAWORD(”SEPTEMBER”),FSAWORD(”NOVEMBER”)〉);
9 Month31 :=

unionFSA(〈FSAWORD(”JANUARY”),FSAWORD(”MARCH”),
FSAWORD(”MAY”),FSAWORD(”JULY”),FSAWORD(”AUGUST”),
FSAWORD(”OCTOBER”),FSAWORD(”DECEMBER”)〉);

10 Month := unionFSA(〈Month29,Month30,Month31〉);
11 Date := unionFSA(〈OneToNine,

concatFSA(symbolSet2FSA({′1′,′ 2′}), ZeroToNine),
concatFSA(symbolSet2FSA({′3′}), symbolSet2FSA({′0′,′ 1′}))〉);

12 Y ear := concatFSA(OneToNine, starFSA(ZeroToNine));
13 DateExpression :=

concatFSA(〈Month,FSAWORD(” ”), Date,FSAWORD(”, ”),
Y ear〉);

14 MaxDays30 := diffFSA(all(Alphabet), concatFSA(〈all(Alphabet),
Month29,FSAWORD(” 30”), all(Alphabet)〉));

15 MaxDays31 := diffFSA(all(Alphabet), concatFSA(〈all(Alphabet),
unionFSA(Month29,Month30),FSAWORD(” 31”), all(Alphabet)〉));

16 MaxDaysInMonth := intersectFSA(MaxDays30,MaxDays31);
17 Div4 := unionFSA(symbolSet2FSA({′4′,′ 8′}),

concatFSA(starFSA(ZeroToNine),
unionFSA(concatFSA(Even, symbolSet2FSA({′0′,′ 4′,′ 8′})),
concatFSA(Odd, symbolSet2FSA({′2′,′ 6′})))));

18 LeapY ear := diffFSA(Div4, concatFSA(diffFSA(plusFSA(ZeroToNine),
Div4),FSAWORD(”00”)));

19 LeapDates := diffFSA(all(Alphabet), concatFSA(
FSAWORD(”FEBRUARY 29, ”), diffFSA(Y ear, LeapY ear)));

20 V alidDates :=
intersectFSA(〈DateExpression,MaxDaysInMonth, LeapDates〉);

21 V alidDatesDFSA := minimalDFSA(determFSA(V alidDates));
22 NonV alidDates := diffFSA(DateExpression, V alidDates);

172CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

23 NonV alidDatesDFSA := minimalDFSA(determFSA(NonV alidDates));

We start with importing all programs from Section 8.1 in Line 1. Line 2
defines the alphabet. In Lines 3-7 the finite-state automata for the digits
from one to nine, for the even and odd single digit numbers and for all single
digit numbers are constructed. Then in Lines 7-9 automata for three sets
of month names are constructed, distinguishing months with 29, 30, and
31 days. Line 10 builds the automaton for all month names. In Lines 11
and 12 we respectively define the automata for representing all numbers
from 1 to 31 and all positive numbers without leading zeros. Afterwards,
in Line 13 we define the automaton DateExpression for all date expressions
in the correct grammatical format including the non-valid ones. It remains
to find a way to exclude invalid dates. This will be reached by intersecting
DateExpression with two other automata (Line 20).

Lines 14-16 define the automaton MaxDaysInMonth which recognizes
all strings except the ones which contain a month name followed by an
inappropriate number of days.

The following program steps are devoted to the problem of recognizing
leap years and taking into account that in leap years month February has
29 days. All numbers that are divisible by four are represented by the
automaton constructed in Line 17. Line 18 defines the automaton for all
leap years, i.e., the set of numbers divisible by 4 subtracting centuries that
are not multiples of 400. Afterwards (Line 19) the automaton LeapDates
recognizes all strings except the ones that start with “FEBRUARY 29” and
end by a non-leap year.

Having these automata at our disposal, the automaton for the valid
dates is constructed by intersecting DateExpression with MaxDaysInMonth
and LeapDates (Line 20). The non-valid dates are defined in Line 22 by
removing the valid dates from all date expressions. The corresponding min-
imal deterministic finite-state automata are constructed in Lines 21 and 23.
The resulting automaton V alidDatesDFSA has 72 states and 218 transi-
tions whereas the automaton NonV alidDatesDFSA has 46 states and 140
transitions.

In Information Extraction there are many important groups of phrases
that can be successfully recognized with automaton-techniques similar to
those presented above. Our example of valid dates is special in the sense
that here only a small lexicon (names of months) is needed. Frequent tasks
where larger lexica are used are recognition of address data (lexica of street
names, cities,...), full person names (lexica of first names, family names,
academic titles,...), diseases etc. Automata compiled for these applications
may have millions of states. Still, also automata of this size can be built
with the above operations and used without difficulties.

8.2. C(M) PROGRAMS FOR CLASSICAL FINITE-STATE TRANSDUCERS173

8.2 C(M) programs for classical finite-state trans-
ducers

In this section we present C(M) implementations for the main algorithms
for n-tape automata as described in Secton 4.1. We only look at 2-tape
automata over the free monoid, i.e., classical finite-state transducers. We
assume that all auxiliary functions defined in Section 8.1 are imported and
available.

Program 8.2.1 As a first step the types used for finite-state transducers
over the free monoid are introduced, and the function for renaming the
states of a classical finite-state transducer is defined. We then introduce a
transducer for translating a given word into a second word.

1 import ← ”Section 8.1.cm”;
2 T T RANSIT ION is ST AT E × (WORD ×WORD)×
ST AT E ;

3 FST is ALPHABET × 2ST AT E × 2ST AT E × 2ST AT E ×
2T T RANSIT ION ;

4 remapFST : FST × 2ST AT E → FST ;
5 remapFST((Σ, Q, I, F,∆), Q′) :=

(Σ,map(Q),map(I),map(F),∆′), where
6 S := kNewStates(|Q| , Q′);
7 map : ST AT E → ST AT E ;
8 map(q) := (S)q;
9 ∆′ := {(map(q), c,map(r)) | (q, c, r) ∈ ∆};

10 ;
11 FST2WORD :WORD ×WORD → FST ;
12 FST2WORD(a) :=

(set(Proj1(a)) ∪ set(Proj2(a)), {1, 2}, {1}, {2}, {(1, a, 2)});

In Line 1 all programs from Section 8.1 are imported. For 2-tape automata,
transition labels are pairs of words (Lines 2, 3). The function remapFST

defined in Lines 4-10 is analogous to the function remapFSA given in Pro-
gram 8.1.1. In Lines 11-12,the symbol a denotes a pair of words. The
function FST2WORD defined in Lines 11-12 takes a pair of words a and con-
structs a transducer with two states and a single transition with the given
pair of words as label.

Program 8.2.2 The next program describes union, concatenation, Kleene
star, Kleene plus, optionality, and 〈ε, ε〉-removal for finite-state trans-
ducers. When ignoring type differences the constructions for these oper-
ations are essentially identical to the ones for 1-tape automata, cf. Pro-
grams 8.1.2, 8.1.3, 8.1.4 and 8.1.6.

174CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

13 unionFST : FST × FST → FST ;
14 unionFST((Σ1, Q1, I1, F1,∆1), A2) :=

(Σ1 ∪ Σ2, Q1 ∪Q2, I1 ∪ I2, F1 ∪ F2,∆1 ∪∆2), where
15 (Σ2, Q2, I2, F2,∆2) := remapFST(A2, Q1);
16 ;
17 concatFST : FST × FST → FST ;
18 concatFST((Σ1, Q1, I1, F1,∆1), A2) :=

(Σ1 ∪Σ2, Q1 ∪Q2, I1, F2, (∆1 ∪∆2) ∪ F1 × {(ε, ε)} × I2), where
19 (Σ2, Q2, I2, F2,∆2) := remapFST(A2, Q1);
20 ;
21 starFST : FST → FST ;
22 starFST(Σ, Q1, I1, F1,∆1) :=

(Σ, Q1 ∪ {q0}, {q0}, F1 ∪ {q0},∆), where
23 q0 := newState(Q1);
24 ∆ := (∆1∪{(q0, (ε, ε), q1) | q1 ∈ I1})∪{(q2, (ε, ε), q0) | q2 ∈ F1};
25 ;
26 plusFST : FST → FST ;
27 plusFST(Σ, Q1, I1, F1,∆1) := (Σ, Q1 ∪ {q0}, {q0}, F1,∆), where
28 q0 := newState(Q1);
29 ∆ := (∆1∪{(q0, (ε, ε), q1) | q1 ∈ I1})∪{(q2, (ε, ε), q0) | q2 ∈ F1};
30 ;
31 optionFST : FST → FST ;
32 optionFST(Σ, Q, I, F,∆) :=

(Σ, Q ∪ {q0}, I ∪ {q0}, F ∪ {q0},∆), where
33 q0 := newState(Q);
34 ;
35 removeEpsilonFST : FST → FST ;
36 removeEpsilonFST(Σ, Q, I, F,∆) :=

(Σ, Q,
⋃

(Cε(I)), F,∆′), where
37 C := transitiveClosure({(q, r) | (q, (a1, a2), r) ∈ ∆ & (a1 =

ε) ∧ (a2 = ε)});
38 Cε := F1→2(C ∪ {(q, q) | q ∈ Q});
39 ∆′ := {(q1, (a1, a2), q2) | (q1, (a1, a2), q′) ∈ ∆ & (a1 6=

ε) ∨ (a2 6= ε), q2 ∈ Cε(q
′)};

40 ;
41 trimFST : FST → FST ;
42 trimFST(Σ, Q, I, F,∆) :=

(Σ,map(Q′),map(I ∩Q′),map(F ∩Q′),∆′), where
43 R := transitiveClosure(Proj(1,3)(∆));

44 Q′ := (I ∪ {r | (i, r) ∈ R & i ∈ I})∩ (F ∪ {r | (r, f) ∈ R & f ∈
F});

45 map : ST AT E → ST AT E ;
46 map(q) := #Q′ as ST AT E∗(q);

8.2. C(M) PROGRAMS FOR CLASSICAL FINITE-STATE TRANSDUCERS175

47 ∆′ := {(map(q), c,map(r)) | (q, c, r) ∈ ∆ & (q ∈ Q′)∧(r ∈ Q′)};
48 ;

Program 8.2.3 The program below takes two 1-tape automata as input
and computes a transducer representing the Cartesian product of the
two input automaton languages as in Proposition 4.2.1, Part 1. The simple
construction presented in Proposition 4.2.1 is refined, the transducer is built
in an inductive way such that all states can be reached from the initial
state. The construction resembles Program 8.1.10, where we computed a
product-based transition function for two given deterministic finite-state
automata. The latter transition function was used to compute intersection
and difference of the automaton languages. Here we build a new, two-
component language.

49 productFSA : FSA× FSA → FST ;
50 productFSA((Σ1, Q1, I1, F1,∆1), (Σ2, Q2, I2, F2,∆2)) :=

trimFST(removeEpsilonFST(Σ1 ∪
Σ2, {1, . . . , |P |}, I, F,∆)), where

51 E∆1 := ∆1 ∪ {(q, ε, q) | q ∈ Q1};
52 E∆2 := ∆2 ∪ {(q, ε, q) | q ∈ Q2};
53 ∆′1 := F1→(2,3)(E∆1);

54 ∆′2 := F1→(2,3)(E∆2);

55 (P,∆) ∈ (ST AT E × ST AT E)∗ × 2T T RANSIT ION ;
56 (P,∆) := induction
57 step 0 :

58 P (0) := I1 × I2 as (ST AT E × ST AT E)∗;

59 ∆(0) := ∅;
60 step n+ 1 :

61 (p1, p2) := (P (n))n+1;
62 D1 := ∆′1(p1);
63 D2 := ∆′2(p2);
64 N := {((a, b), (q1, q2)) | (a, q1) ∈ D1, (b, q2) ∈ D2};
65 P (n+1) :=

P (n) · 〈(q1, q2) | (q1, q2) ∈ Proj2(N) & (q1, q2) 6∈
P (n)〉;

66 ∆(n+1) :=

∆(n)∪{(n+ 1, (a, b),#P (n+1)((q1, q2))) | ((a, b), (q1, q2)) ∈
N};

67 until n =
∣∣P (n)

∣∣
68 ;
69 F :=

{q | q ∈ {1, . . . , |P |} & (Proj1((P)q) ∈ F1) ∧ (Proj2((P)q) ∈
F2)};

176CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

70 I := {q | q ∈ {1, . . . , |P |} & (Proj1((P)q) ∈
I1) ∧ (Proj2((P)q) ∈ I2)};

71 ;

First, in Lines 51, 52 we define the extended transition relations E(∆1)
and E(∆2) (cf. Section 4.2). In Lines 53, 54 the functions ∆′1 and ∆′2 are
defined that map a state of a source automaton to a set of pairs of label
and destination state. The use of these functions helps to avoid a special
treatment of each letter of the alphabet Σ. Then, the list of pairs of states
P and the resulting transition relation ∆ are constructed by induction. In
the base step in Lines 58-59, P is set to the list consisting of the pairs in
I1 × I2, and ∆ is empty. In the inductive step we consider (p1, p2) – the
n + 1-st element of the list P . Similarly as in Program 8.1.10, the set N
defined in Line 62-64 describes the set of all transitions departing from the
source (product-) state (p1, p2) in a particular way. Here the elements of
N are pairs of pairs of the form ((a, b), (q1, q2)), entries a, b are labels and
q1, q2 are the destinations of the corresponding transitions from p1 and p2.
In Line 65 we add to P those pairs of destination states in N that are yet
not found in P . In Line 66 the function ∆ is extended with the transitions
from the current pair of states to the corresponding pairs defined with N .
For defining ∆ all pairs of states are mapped to their corresponding indices
in the list P . The induction ends when the list P is exhausted (Line 67).
The final states of the product transducer are the indices of all pairs of final
states (Line 69), and the initial states of the product transducer are the
indices of pairs of initial states (Line 70). The final automaton is obtained
after removing 〈ε, ε〉-transitions and trimming (Line 50).

Program 8.2.4 Following Proposition 4.2.1 the following program presents
constructions for projections of a 2-tape automaton on the first and second
tape, inverse relation and the identity relation for a given automaton
language.

72 domainFST, rangeFST : FST → FSA;
73 domainFST(Σ, Q, I, F,∆) := (Σ, Q, I, F, {(q, a, r) | (q, (a, b), r) ∈ ∆});
74 rangeFST(Σ, Q, I, F,∆) := (Σ, Q, I, F, {(q, b, r) | (q, (a, b), r) ∈ ∆});
75 inverseFST : FST → FST ;
76 inverseFST(Σ, Q, I, F,∆) := (Σ, Q, I, F, {(q, (b, a), r) | (q, (a, b), r) ∈ ∆});
77 identityFSA : FSA → FST ;
78 identityFSA(Σ, Q, I, F,∆) := (Σ, Q, I, F, {(q, (a, a), r) | (q, a, r) ∈ ∆});

The functions domainFST and rangeFST (Lines 72-74) respectively construct
the first and second projection of the given finite-state transducer in accor-
dance with Part 2 of Proposition 4.2.1. The function inverseFST (Lines 75-
76) builds the inverse of a relation (Proposition 4.2.1, Part 3) represented

8.2. C(M) PROGRAMS FOR CLASSICAL FINITE-STATE TRANSDUCERS177

by a finite-state transducer, and the function identityFSA (Lines 77-78) con-
structs the identity relation (Proposition 4.2.1, Part 4) over the language of
a finite-state automaton.

Program 8.2.5 The next algorithm, given a finite-state transducer, con-
structs an equivalent classical 2-tape letter automaton, which means that
all transition labels are in Σε × Σε. Following Proposition 4.3.3 we expand
the transitions containing labels with words with more than one symbol by
introducing new intermediate states.

79 expandFST : FST → FST ;
80 expandFST(Σ, Q, I, F,∆) := (Σ, Q′, I, F,∆′), where
81 L := 〈(q′, (a′1, a′2), r′) | (q′, (a′1, a

′
2), r′) ∈ ∆ & (|a′1| > 1) ∨ (|a′2| > 1)〉;

82 (Q′,∆′) := induction
83 step 0 :

84 (Q′(0),∆′(0)) := (Q,∆);
85 step n+ 1 :
86 (q, (a1, a2), r) := (L)n+1;
87 l := max({|a1| , |a2|});
88 m := 〈q〉 · kNewStates(l − 1, Q′(n)) · 〈r〉;
89 Q′(n+1) := Q′(n) ∪ set(m);

90 ∆′(n+1) := ∆′(n) \ {(q, (a1, a2), r)} ∪
{((m)i, (σ(a1, i), σ(a2, i)), (m)i+1) | i ∈ {1, . . . , l}}, where

91 σ :WORD × IN→WORD;

92 σ(α, i) :=

{
〈(α)i〉 if i ≤ |α|
ε otherwise;

93 ;
94 until n = |L|
95 ;
96 ;

This algorithm closely resembles Program 8.1.7. Here we check if any of
the two words in the label of a transition has length > 1 in Line 81. The
number of new transitions is determined by the longest label component, l
is its length (Line 87). In the new transitions, label components on one side
(shorter component of input label) can be empty (Lines 91-92).

We now present the algorithm for composition.

Program 8.2.6 The following algorithm constructs the finite-state trans-
ducer that represents the composition of two finite-state transducers ac-
cording to Proposition 4.3.5. Note that in Proposition 4.3.5 we assumed
that the two input automata are letter automata. Here we ensure this as-
sumption by an explicit conversion to letter automata. In the inductive

178CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

construction below only states of the target transducer are built that can be
reached from an initial state.

97 composeFST : FST × FST → FST ;
98 composeFST(A1, A2) := trimFST(removeEpsilonFST(Σ1 ∪

Σ2, {1, . . . , |P |}, I, F,∆)), where
99 (Σ1, Q1, I1, F1,∆1) := expandFST(A1);

100 (Σ2, Q2, I2, F2,∆2) := expandFST(A2);
101 E∆1 := ∆1 ∪ {(q, (ε, ε), q) | q ∈ Q1};
102 E∆2 := ∆2 ∪ {(q, (ε, ε), q) | q ∈ Q2};
103 ∆′1 := F1→(2,3)(E∆1);

104 ∆′2 := F1→(2,3)(E∆2);

105 (P,∆) ∈ (ST AT E × ST AT E)∗ × 2T T RANSIT ION ;
106 (P,∆) := induction
107 step 0 :

108 P (0) := I1 × I2 as (ST AT E × ST AT E)∗;

109 ∆(0) := ∅;
110 step n+ 1 :

111 (p1, p2) := (P (n))n+1;
112 D1 := ∆′1(p1);
113 D2 := ∆′2(p2);
114 N := {((a1, b2), (q1, q2)) | ((a1, c), q1) ∈ D1, ((c, b2), q2) ∈

D2};
115 P (n+1) := P (n) · 〈p | p ∈ Proj2(N) & p 6∈ P (n)〉;
116 ∆(n+1) :=

∆(n)∪{(n+ 1, (a1, b2),#P (n+1)(q)) | ((a1, b2), q) ∈ N};
117 until n =

∣∣P (n)
∣∣

118 ;
119 F :=

{q | q ∈ {1, . . . , |P |} & (Proj1((P)q) ∈ F1) ∧ (Proj2((P)q) ∈
F2)};

120 I := {q | q ∈ {1, . . . , |P |} & (Proj1((P)q) ∈
I1) ∧ (Proj2((P)q) ∈ I2)};

121 ;

The construction is similar to Program 8.2.3. Again we apply the product
construction. But first we ensure that the labels in the source transducers
are in Σε × Σε by applying the above expandFST function (Lines 99-100).
Afterwards we proceed as in Program 8.2.3. As in our earlier product con-
structions the set N gives a description of all transitions departing from the
source pair (p1, p2). In the present case N is defined as the set of pairs of
the form ((a1, b2), (q1, q2)) for which there exists a string c ∈ Σε such that
(p1, (a1, c), q1) ∈ E(∆1) and (p2, (c, b2), q2) ∈ E(∆2). Hence (a1, b2) is the
label of the new transition and (q1, q2) is the target pair of states.

8.2. C(M) PROGRAMS FOR CLASSICAL FINITE-STATE TRANSDUCERS179

Program 8.2.7 The next algorithm constructs the finite-state transducer
that represents the reversal of a finite-state transducer according to Propo-
sition 4.3.6.

122 reverseFST : FST → FST ;
123 reverseFST(Σ, Q, I, F,∆) := (Σ, Q, F, I,∆′), where
124 ∆′ := {(p, (ρ(a), ρ(b)), q) | (q, (a, b), p) ∈ ∆};
125 ;

The above construction directly follows the description given in Proposi-
tion 4.3.6.

Real-time translation and pseudo-determinization of trans-
ducers

Our next programs describe translation to real-time transducers and pseudo-
determinization of transducers.

Program 8.2.8 The following algorithms implement the removal of trans-
ducer transitions with label ε on the upper tape as described in the proof
of Proposition 4.4.8, and the conversion of a transducer to a real-time
transducer.

126 CεFST : 2ST AT E×ST AT E×WORD → 2ST AT E×ST AT E×WORD × IB;
127 CεFST(A) := (T, inf), where
128 A′ := F1→(2,3)(A);

129 (T, inf) := induction
130 step 0 :

131 T (0) := A;

132 inf (0) := false;
133 step n+ 1 :

134 (a, b, u) := (T (n) as (ST AT E × ST AT E ×WORD)∗)n+1;

135 inf (n+1) := (a = b) ∧ (u 6= ε);

136 T (n+1) :=

{
T (n) ∪ {(a, c, u · v) | (c, v) ∈ A′(b)} if ! A′(b)

T (n) otherwise;

137 until (n =
∣∣T (n)

∣∣) ∨ inf (n)

138 ;
139 ;
140 removeUpperEpsilonFST : FST → FST × 2WORD × IB;
141 removeUpperEpsilonFST(Σ, Q, I, F,∆) := ((Σ, Q, I, F ′,∆′),W, inf),

where
142 (C0, inf) := CεFST({(q, r, s) | (q, (a, s), r) ∈ ∆ & a = ε});
143 C := C0 ∪ {(q, q, ε) | q ∈ Q};
144 W := {w | (q, r, w) ∈ C & (q ∈ I) ∧ (r ∈ F)};
145 F ′ := F ∪ {q | (q, r, w) ∈ C & (q ∈ I) ∧ (r ∈ F)};

180CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

146 Cε := F1→(2,3)(C);

147 C ′ε := F2→(1,3)(C);

148 ∆′ := {(q1, (a, u · v · w), q2) | (q′, (a, v), q′′) ∈ ∆ & a 6= ε,
(q1, u) ∈ C′ε(q

′), (q2, w) ∈ Cε(q
′′)};

149 ;
150 realTimeFST : FST → FST × 2WORD × IB;
151 realTimeFST(A) :=

removeUpperEpsilonFST(expandFST(removeEpsilonFST(trimFST(A))));

The function CεFST (Lines 126-139) is similar to the function transitiveClo-
sure defined in Program 7.1.3. It computes the transitive closure of the
ε-transitions. Here we also concatenate the corresponding outputs on the
ε-path in the third projection of T (Line 136). A second distinction to Pro-
gram 7.1.3 is that the current program in addition tests for an ε-loop with
non-empty output (Line 135). The program is used for a trimmed input
transducer - if such a loop occurs, then the transducer is infinitely ambigu-
ous (cf. Proposition 4.5.7). In this case the induction terminates (Line 137),
which is indicated by the resulting flag inf .
The function removeUpperEpsilonFST (Lines 140-149) then first constructs
the reflexive-transitive ε-closure in Line 142. In Line 144 we define W as
the set of all possible outputs for input ε. For functional transducers the
set W will have not more than one element. To the final states we add
the initial states from which final states are ε-reachable (Line 145). In
Lines 146-147 the ε-closure and its inverse relation are functionalized (cf.
Definition 1.1.16). Finally in Line 148 ∆′ is defined as in Proposition 4.4.8.
The function returns the resulting transducer together with the set W of
outputs for ε.
The function realTimeFST (Lines 150-151) first trims the input transducer
and removes the 〈ε, ε〉 transitions, then expands the transitions with labels
having more than one symbol (cf. Program 8.2.5) and finally removes the
transitions with label ε on the upper tape.

Program 8.2.9 The next algorithm constructs a pseudo-deterministic
transducer equivalent to a given input transducer using the steps described
in the proof of Proposition 3.7.2.

152 pseudoDetermFST : FST → FST ;
153 pseudoDetermFST(Σ, Q, I, F,∆) :=

trimFST(Σ, {1, . . . , |P |}, {1}, F ′, δ′), where
154 ∆′ := F1→(2,3)(∆);

155 (P, δ′) ∈ (2ST AT E)∗ × 2T T RANSIT ION ;
156 (P, δ′) := induction
157 step 0 :

158 P (0) := 〈I〉;

8.2. C(M) PROGRAMS FOR CLASSICAL FINITE-STATE TRANSDUCERS181

159 δ′(0) := ∅;
160 step n+ 1 :

161 N :=
⋃

(∆′((P (n))n+1));
162 N ′ := F1→2(N);

163 P (n+1) := P (n) · 〈q | q ∈ Proj2(N ′) & q 6∈ P (n)〉;
164 δ′(n+1) := δ′(n) ∪ {(n+ 1, c,#P (n+1)(q)) | (c, q) ∈ N ′};
165 until n =

∣∣P (n)
∣∣

166 ;
167 F ′ := {q | q ∈ {1, . . . , |P |} & F ∩ (P)q 6= ∅};
168 ;

The algorithm can be considered as a variant or extension of the determiniza-
tion Program 8.1.9. We proceed with the determinization in the same way as
in Program 8.1.9. For Line 154, recall that ∆ is a ternary relation. We treat
the transition labels, which are pairs of words as individual symbols. Finally,
the function returns the pseudo-deterministic transducer after trimming.

Pseudo-minimization of transducers

Program 8.2.10 The following algorithm constructs a pseudo-minimal
transducer following Proposition 3.7.4.

169 pseudoMinimalFST : FST → FST ;
170 pseudoMinimalFST(A) := trimFST(Σ,R(Q),R(I),R(F), δ′), where
171 (Σ, Q, I, F,∆) := pseudoDetermFST(A);
172 Σ′ := Proj2(∆);
173 δ : ST AT E × (WORD ×WORD)→ ST AT E ;
174 δ := {((q, (a, b)), r) | (q, (a, b), r) ∈ ∆};
175 R ∈ EQREL;
176 k ∈ IN;
177 (R, k) := induction
178 step 0 :
179 f : ST AT E → IN;

180 f(q) :=

{
1 if q ∈ F
0 otherwise;

181 k(0) := 0;

182 R(0) := ker(Q, f);
183 step n+ 1 :
184 f : (WORD ×WORD)× ST AT E → IN;

185 f(c, q) :=

{
R(n)(δ(q, c)) if ! δ(q, c)
0 otherwise;

186 k(n+1) :=
∣∣Proj2(R(n))

∣∣ ;
187 R(n+1) :=

intersectEQREL(Q,R(n), (intersectEQREL(Q))(〈ker(Q, f(c)) | c ∈ Σ′〉));

182CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

188 until (Σ′ = ∅) ∨ (k(n) =
∣∣Proj2(R(n))

∣∣)
189 ;
190 δ′ := {(R(q), σ,R(r)) | (q, σ, r) ∈ ∆};
191 ;

In Line 171 we first construct the pseudo-deterministic transducer for the
given input transducer. Afterwards, the algorithm proceeds with the mini-
mization exactly as in Program 8.1.14. Note that the minimization is per-
formed over the alphabet Σ′ consisting of the transition labels (Line 172).

Deciding functionality of transducers

Program 8.2.11 The next program constructs the squared output trans-
ducer for a real-time transducer in accordance with Definition 4.6.4.

192 squaredOutputTransducerFST : FST → FST ;
193 squaredOutputTransducerFST(Σ, Q, I, F,∆) :=

(Σ, {1, . . . , |P |}, I ′, F ′,∆′), where
194 ∆0 := F1→(2,3)(∆);

195 (P,∆′) ∈ (ST AT E × ST AT E)∗ × 2T T RANSIT ION ;
196 (P,∆′) := induction
197 step 0 :

198 P (0) := I × I as (ST AT E × ST AT E)∗;

199 ∆′(0) := ∅;
200 step n+ 1 :

201 (p1, p2) := (P (n))n+1;

202 D1 :=

{
∆0(p1) if ! ∆0(p1)
∅ otherwise;

203 D2 :=

{
∆0(p2) if ! ∆0(p2)
∅ otherwise;

204 N :=
{((α1, α2), (q1, q2)) | ((a, α1), q1) ∈ D1, ((a, α2), q2) ∈ D2};

205 P (n+1) := P (n) · 〈p | p ∈ Proj2(N) & p 6∈ P (n)〉;
206 ∆′(n+1) :=

∆′(n) ∪ {(n+ 1, (a1, b2),#P (n+1)(q)) | ((a1, b2), q) ∈ N};
207 until n =

∣∣P (n)
∣∣

208 ;
209 F ′ :=

{q | q ∈ {1, . . . , |P |} & (Proj1((P)q) ∈ F) ∧ (Proj2((P)q) ∈ F)};
210 I ′ := {q | q ∈ {1, . . . , |P |} & (Proj1((P)q) ∈ I) ∧ (Proj2((P)q) ∈ I)};
211 ;

The program proceeds in a similar way as Programs 8.2.3 (Cartesian prod-
uct) and 8.2.6 (composition). Here we create the product of the transducer

8.2. C(M) PROGRAMS FOR CLASSICAL FINITE-STATE TRANSDUCERS183

with itself. Transition labels are defined as in Definition 4.6.4 (Line 204).

Program 8.2.12 This program decides the functionality of a transducer
following Corollary 4.6.7, Proposition 4.6.8 and Corollary 4.6.11.

212 commonPrefix, remainderSuffix :WORD ×WORD →WORD;
213 commonPrefix(s′, s′′) := (s′)1,...,l, where
214 l := min

l′∈{0,...,|s′|} & (l′+1>|s′|)∨(l′+1>|s′′|)∨((s′)l′+1 6=(s′′)l′+1)
l′;

215 ;
216 remainderSuffix(w, s) := (s)|w|+1,...,|s|;

217 ω : (WORD ×WORD)× (WORD ×WORD)→WORD ×WORD;
218 ω((u, v), (α, β)) := (remainderSuffix(c, u · α), remainderSuffix(c, v · β)),

where
219 c := commonPrefix(u · α, v · β);
220 ;
221 balancible :WORD ×WORD → IB;
222 balancible(u, v) := (u = ε) ∨ (v = ε);
223 testFunctionalityFST : FST → IB;
224 testFunctionalityFST(T) := ¬inf ∧ (|W | ≤ 1) ∧ functional, where
225 (T ′,W, inf) := realTimeFST(T);
226 (Σ, Q, I, F,∆) := trimFST(squaredOutputTransducerFST(T ′));
227 ∆0 := F1→(2,3)(∆);

228 Adm : ST AT E → WORD ×WORD;
229 functional ∈ IB;
230 (Adm, functional) := induction
231 step 0 :

232 Adm(0) := I × {(ε, ε)};
233 functional(0) := true;
234 step i+ 1 :

235 (q, h) := (Adm(i) as (ST AT E × (WORD ×WORD))∗)i+1;

236 Dq :=

{
{(q′, ω(h, U)) | (U, q′) ∈ ∆0(q)} if ! ∆0(q)
∅ otherwise;

237 functional(i+1) := ∀(q′, h′) ∈ Dq : (balancible(h′) ∧
((q′ ∈ F)→ (h′ = (ε, ε))) ∧ (! Adm(i)(q′)→ (h′ = Adm(i)(q′))));

238 Adm(i+1) :={
Adm(i) if ¬functional(i+1)

Adm(i) ∪ {(q′, h′) | (q′, h′) ∈ Dq} otherwise;

239 until ¬functional(i) ∨ (i =
∣∣∣Adm(i)

∣∣∣)
240 ;
241 ;

The program starts with the definition of the functions commonPrefix (s′ ∧
s′′) in Lines 212-215, remainderSuffix (w−1s) in Line 216, advance func-

184CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

tion ω in Lines 217-220, and the function balancible, which checks whether
an advance is balancible in Lines 221-222. After this preparation the main
function testFunctionalityFST is introduced. First we construct the trimmed
squared output transducer of the corresponding real-time transducer in
Lines 225-226. Then we compute the admissible sets for the states of
the trimmed squared output transducer using an induction following Corol-
lary 4.6.11 (Lines 230-240). Since the admissible sets of a functional trans-
ducer are singletons we define Adm as a function (Line 228). The flag
functional is defined during the induction for constructing Adm. The flag
is returned as a result and shows whether the transducer is functional. In
Lines 232-233 we set the base of the induction – the advances of the initial
states to 〈ε, ε〉 and the flag functional to true. Then the induction pro-
ceeds with the elements of the function Adm regarded as a list (Line 235).
The successors of the considered state are computed in Line 236. Line 237
checks whether the advance h′ is balancible for each successor of the con-
sidered state, whether h′ is equal to 〈ε, ε〉 for the final states, and whether
the definition is consistent with the advances of the states defined so far.
Line 238 adds the new advances to Adm. The induction terminates when
the flag is false or when the elements in Adm are exhausted.

Spell checking as an application

We finish this section with an example demonstrating how to make use of
the presented programs for realizing interesting applications.

Example 8.2.13 The following program realizes the functionality of a fully-
fledged spell checker. Similar implementations are used e.g. in [Ringlstetter
et al., 2007]. It implements a function testing for an input word w if w is
in a given background dictionary, also retrieving the set of dictionary words
that are “close” to the given word. This set represents the correction can-
didates for the given word. Closeness is defined in terms of the Levenshtein
distance. We recall that the Levenshtein distance between two words is the
minimal number of symbol substitutions, deletions and insertions required
for transforming the first word into the second one. Two short words (up
to 5 letters) are considered to be close if their distance is one. Two medium
words (between 6 and 10 symbols) are close if their distance is less or equal
to two. Two long words (11 or more symbols) are close if their distance is
less or equal to three. Below the code is presented. This code can be applied
on any suitable word list1.

1 import ← ”Section 8.2.cm”;
2 readWordList :WORD → FSA;
3 readWordList(FileName) := D, where

1Spell checker oriented word lists can be obtained from http://wordlist.aspell.net

http://wordlist.aspell.net

8.2. C(M) PROGRAMS FOR CLASSICAL FINITE-STATE TRANSDUCERS185

4 F := loadText(FileName);
5 p ∈ IN;
6 (D, p) := induction
7 step 0 :

8 (D(0), p(0)) := ((∅, ∅, ∅, ∅, ∅), 0);
9 step k + 1 :

10 p′ ∈ IN;
11 p′ := induction
12 step 0 :

13 p′(0) := p(k) + 1;
14 step l + 1 :

15 p′(l+1) := p′(l) + 1;

16 until (p′(l) > |F |) ∨ ((F)p′(l) =′ \n′)
17 ;

18 D(k+1) := unionFSA(D(k),FSAWORD((F)p(k)+1,...,p′−1));

19 p(k+1) := p′;

20 until p(k) ≥ |F |
21 ;
22 ;

We start with an auxiliary function for reading a word list from a file and
constructing a finite-state automaton representing the set of words in the
word list. We assume that the word list contains one word per line. After
importing the programs from the previous section (Line 1) we define the
function readWordList, which has as parameter the file name of the word
list and returns the constructed automaton (Lines 2-3). In Line 4 the content
of the file is read in the text F using the build-in function loadText (Line 4).
Afterwards, in the induction in Lines 6-21 we run through the text F and
add each word to the resulting automaton D. In p we maintain the position
of the ending of the last processed word in F . The induction is initialized in
Line 8 with the empty automaton and the zero index. In the inductive step
we first find the index p′ of the end of the next word by the sub-induction
in Lines 11-17. We simply test each consecutive symbol in F for new line
or end of file (Line 16). Then in Line 18 we add to the automaton D the
next word, which appears in the text between positions p(k) + 1 and p′ − 1.
Finally the position p(k) is updated in Line 19. The induction ends when
the text F is exhausted (Line 20).

23 LA : DFSA → 2WORD;
24 LA(Σ, Q, q0, F, δ) := L, where
25 P ∈ 2ST AT E×WORD;
26 (P,L) := induction
27 step 0 :

28 P (0) := {(q0, ε)};

186CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

29 L(0) :=

{
{ε} if q0 ∈ F
∅ otherwise

;

30 step i+ 1 :

31 P (i+1) := {(δ(q, a), w · 〈a〉) | (q, w) ∈ P (i), a ∈ Σ & ! δ(q, a)};
32 L(i+1) := L(i) ∪ {w | (q, w) ∈ P (i+1) & q ∈ F};
33 until

∣∣P (i)
∣∣ = 0

34 ;
35 ;

The function LA presented in Lines 23-35 returns the language of an acyclic
deterministic finite-state automaton. We obtain the language L proceeding
by a simple induction. At the i-th step we maintain in P (i) the set of pairs
consisting of a state reachable with a word of length i and the corresponding
word. In the initialisation step we initialize P (0) with the initial state q0 and
the empty word in Line 28. L(0) is the singleton set with the empty word if
q0 ∈ F , otherwise it is empty. Then in the inductive step we obtain P (i+1)

from P (i) in Line 31 and extend L in Line 32. The induction ends when P (i)

gets empty (Line 33).

36 Dic := readWordList(”en US.dic”);
37 DicDFSA := minimalDFSA(determFSA(Dic));
38 Symbol := symbolSet2FSA(Proj1(DicDFSA));
39 ID := starFST(identityFSA(Symbol));
40 Del := productFSA(Symbol,FSAWORD(””));
41 Ins := productFSA(FSAWORD(””), Symbol);
42 Sub := productFSA(Symbol, Symbol);
43 Lev1 := concatFST(〈ID, optionFST(unionFST(〈Del, Ins, Sub〉)), ID〉);
44 Lev2 := concatFST(Lev1, Lev1);
45 Lev3 := concatFST(Lev2, Lev1);
46 spellCheck :WORD → IB× 2WORD;
47 spellCheck(w) := (inDic, Corrections), where
48 (ΣD, QD, q0, FD, δD) := DicDFSA;
49 π := stateseq(δD, q0, w);
50 inDic := (|π| = |w|+ 1) ∧ ((π)|π| ∈ FD);

51 Lev :=

Lev1 if |w| < 6
Lev2 if |w| < 11
Lev3 otherwise

;

52 LevensteinAutomaton :=
determFSA(rangeFST(composeFST(identityFSA(FSAWORD(w)), Lev)));

53 Corrections :=
LA(intersectDFSA(DicDFSA, LevensteinAutomaton));

54 ;

After the preparation we proceed with the implementation of the spell

8.2. C(M) PROGRAMS FOR CLASSICAL FINITE-STATE TRANSDUCERS187

checker. First, we construct the minimal deterministic finite-state automa-
ton for the dictionary in Lines 36-37. In Lines 38-42 we respectively con-
struct the transducers representing single symbol deletions, insertions, and
substitutions. Line 43 constructs the transducer that represents the relation
mapping a word to any word in distance up to 1. By simple concatenation
the corresponding transducers representing distance up to 2 and 3 are built
in Lines 44-45. The function spellCheck defined in Lines 46-54 returns for
the given word w a flag inDic for the presence of w in the dictionary and the
set of correction candidates Corrections. In Line 49 the states on the path
with input w in the dictionary automaton is obtained. If the list has |w|+ 1
states and the last state on the path is final, then w is in the dictionary
(Line 50). Afterwards an appropriate Levenshtein filter depending on the
length of w is chosen in Line 51. The Levenshtein automaton for the word w
is defined as the deterministic finite-state automaton representing all words
that are close to w (Line 52). The correction candidates are obtained by in-
tersecting the Levenshtein automaton for w with the dictionary automaton
in Line 53.

We applied the above program using a standard English word list con-
taining 48.000 entries. The dictionary automaton has approximately 28.500
states and 60.000 transitions.

Remark 8.2.14 The above functions can be applied for large dictionaries
and provide a practical solution to spell checking and other similarity based
computations. Nevertheless some steps can be substantially improved.

1. The minimal deterministic finite-state automaton for the dictionary
can be constructed in a much more efficient way [Daciuk et al., 2000].

2. The deterministic Levenshtein automaton can be constructed directly
using the method in [Schulz and Mihov, 2002]. A more sophisticated
approach presented in [Mihov and Schulz, 2004] constructs the univer-
sal deterministic Levenshtein automaton which does not depend on the
input word. A comprehensive study of universal Levenshtein finite-
state automata and transducers is given in [Mitankin et al., 2011].

3. The words in the intersection of the dictionary automaton and the
Levenshtein automaton can be obtain more efficiently with a paral-
lel traversal procedure, avoiding the construction of the intersection
automaton.

Remark 8.2.15 Another method for retrieving the set of correction candi-
dates is the following. We can directly construct the transducer for mapping
each dictionary word w to the words that are close to w. By inverting this
relation we obtain a transducer which maps each word w to the dictionary

188CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

words close to w. We can retrieve correction candidates by traversing this
transducer. The drawback of this method is the size of the transducer. For
the English word list it has more than 30 million transitions.

8.3 C(M) programs for deterministic transducers

In this section we present the algorithms for construction and minimiza-
tion of deterministic transducers. We assume that all functions defined in
Sections 8.1 and 8.2 are available.

Program 8.3.1 The following algorithm constructs a subsequential finite-
state transducer from a finite-state transducer with the bounded varia-
tion property, closely following the inductive construction presented in Sec-
tion 5.2. We generalize the construction at one minor point, tolerating
situations where the empty input is translated to a single non-empty word
(Lines 36-40).

1 import ← ”Section 8.2.cm”;
2 T RANSIT IONOUT is ST AT E × SYMBOL →WORD;
3 ST AT EOUT is ST AT E → WORD;
4 SSFST is ALPHABET × 2ST AT E × ST AT E × 2ST AT E ×
DT RANSIT IONS × T RANSIT IONOUT × ST AT EOUT ;

5 ssfstFST : FST → SSFST × IB;
6 ssfstFST(A) := (T, boundedVariation), where
7 ((Σ, Q, I, F,∆),W, inf) := realTimeFST(A);
8 C := max

(p,(a,α),q)∈∆
|α| ;

9 Z := C × |Q|2 ;
10 ∆′ := F1→(2,3)(∆);

11 P ∈ 22ST AT E×WORD ;
12 δ′ ∈ DT RANSIT IONS;
13 λ′ ∈ T RANSIT IONOUT ;
14 Ψ′ ∈ ST AT EOUT ;
15 (P, δ′, λ′,boundedVariation) := induction
16 step 0 :

17 P (0) := {I × {ε}};
18 δ′(0) := ∅;
19 λ′(0) := ∅;
20 boundedVariation(0) := true;
21 step n+ 1 :

22 S := (P (n) as (2ST AT E×WORD)∗)n+1;
23 N := {(σ, u, v, q′) | (q, u) ∈ S & ! ∆′(q), ((σ, v), q′) ∈ ∆′(q)};
24 N ′ := F1→(2,3,4)(N);

25 N ′′ := {(σ,w, S′) | (σ,X) ∈ N ′,

8.3. C(M) PROGRAMS FOR DETERMINISTIC TRANSDUCERS 189

w = commonPrefix(〈u · v | (u, v, q′) ∈ X〉),
S′ = {(q′, remainderSuffix(w, u · v)) | (u, v, q′) ∈ X}};

26 boundedVariation(n+1) := ∀(σ,w, S′) ∈ N ′′, (q, u) ∈ S′ : (|u| <
Z);

27 P (n+1) := P (n) ∪ {S′ | (σ,w, S′) ∈ N ′′};
28 δ′(n+1) :=

δ′(n)∪{((n+1, (σ)1),#P (n+1) as (2ST AT E×WORD)∗(S
′)) | (σ,w, S′) ∈ N ′′};

29 λ′(n+1) := λ′(n) ∪ {((n+ 1, (σ)1), w) | (σ,w, S′) ∈ N ′′};
30 until ¬boundedVariation(n) ∨ (n =

∣∣P (n)
∣∣)

31 ;
32 F ′ :=

{s | s ∈ {1, . . . , |P |}, S = (P as (2ST AT E×WORD)∗)s & ∃(q, β) ∈ S :
(q ∈ F)};

33 Ψ′ := {(s, β) | s ∈ {1, . . . , |P |}, S = (P as (2ST AT E×WORD)∗)s &
∃(q′, β′) ∈ S : (q′ ∈ F), β = elementOf({β′ | (q′, β′) ∈ S & q′ ∈

F})};
34 T :=
35 case (W = ∅) ∨ (W = {ε}) : (Σ, {1, . . . , |P |}, 1, F ′, δ′, λ′,Ψ′)
36 otherwise : (Σ, {1, . . . , |P |+ 1}, q′0, F ′ ∪ {q′0}, δ′′, λ′′,Ψ′ ∪

{(q′0, elementOf(W))}), where
37 q′0 := |P |+ 1;
38 δ′′ := δ′ ∪ {((q′0, σ), δ′(1, σ)) | σ ∈ Σ & ! δ′(1, σ)};
39 λ′′ := λ′ ∪ {((q′0, σ), λ′(1, σ)) | σ ∈ Σ & ! δ′(1, σ)};
40 ;
41 ;

After importing the programs from the previous sections in Line 1 in Lines 2-
4 we define the types needed for subsequential transducers. In Line 7 we
first construct a real-time finite-state transducer equivalent to the input
transducer A. Afterwards we proceed with the determinization in a similar
way as in Program 8.1.9. The states P , the transition function δ′, the
transition output function λ′, and the state output function Ψ′ are defined
exactly as described in the inductive construction given in Section 5.2. The
notation (σ)1 shows the extraction of the first (and only) letter from the
string σ. During the induction we test for violation of the bounded variation
property in accordance with Remark 5.3.9 in Line 26. The induction is
completed when violation of the bounded variation property is encountered
or when all states are processed (Line 30). The ‘elementOf’-operator returns
an element of the set used as argument. Finally, if there is no output for
the empty input, or if the output for the empty input is the empty word
(Line 35), then we are done. Otherwise we clone the starting state and add a
new starting state with the desired output for the empty input (Lines 36-40).

190CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

Deciding bounded variation of transducers

Program 8.3.2 The next program tests the bounded variation poperty
for a transducer in accordance with Theorem 5.3.4 and Lemma 5.3.5.

42 testBoundedVariationFST : FST → IB;
43 testBoundedVariationFST(T) := boundedVariation, where
44 ((Σ′, Q′, I ′, F ′,∆′),W, inf) := realTimeFST(T);
45 C := max

(p,(a,α),q)∈∆′
|α| ;

46 Z := C × |Q′|2 ;
47 (Σ, Q, I, F,∆) := squaredOutputTransducerFST(Σ′, Q′, I ′, F ′,∆′);
48 ∆0 := F1→(2,3)(∆);

49 Adm ∈ 2ST AT E×(WORD×WORD);
50 boundedVariation ∈ IB;
51 (Adm,boundedVariation) := induction
52 step 0 :

53 Adm(0) := I × {(ε, ε)};
54 boundedVariation(0) := true;
55 step i+ 1 :

56 (q, h) := (Adm(i) as (ST AT E × (WORD ×WORD))∗)i+1;

57 Dq :=

{
{(q′, ω(h, U)) | (U, q′) ∈ ∆0(q)} if ! ∆0(q)
∅ otherwise;

58 boundedVariation(i+1) :=
∀(q′, (u′, v′)) ∈ Dq : ((|u′| < Z) ∧ (|v′| < Z));

59 Adm(i+1) :=

{
Adm(i) if ¬boundedVariation(i+1)

Adm(i) ∪Dq otherwise;

60 until ¬boundedVariation(i) ∨ (i =
∣∣∣Adm(i)

∣∣∣)
61 ;
62 ;

The above program proceeds similarly as Program 8.2.12. In Lines 45-46
the upper limit derived in Lemma 5.3.5 is calculated. Then we proceed
by first obtaining the (non-trimmed) squared output transducer (Line 47),
and inductively calculating the admissible advances of its states afterwards
(Lines 48-60). In contrast to Program 8.2.12, the admissible advances are a
relation (Line 49) and the flag boundedVariation checks whether the induc-
tion leads to an infinite number of states by testing the sizes of the words
in the advances (Lemma 5.3.5) in Line 58. The flag boundedVariation is
returned as result.

8.3. C(M) PROGRAMS FOR DETERMINISTIC TRANSDUCERS 191

Minimization of subsequential transducers

The algorithms for the minimization of subsequential finite-state transducers
are presented below.

Program 8.3.3 The program below defines the type for subsequential
finite-state transducers with initial output and the conversion proce-
dure from and to ordinary subsequential finite-state transducer according to
Definition 5.4.4 and Proposition 5.4.5.

63 SSFST I is ALPHABET × 2ST AT E × ST AT E × 2ST AT E ×
DT RANSIT IONS × T RANSIT IONOUT ×WORD ×
ST AT EOUT ;

64 SSFSTISSFST : SSFST → SSFST I;
65 SSFSTISSFST(Σ, Q, q0, F, δ, λ,Ψ) := (Σ, Q, q0, F, δ, λ, ε,Ψ);
66 SSFSTSSFSTI : SSFST I → SSFST ;
67 SSFSTSSFSTI(Σ, Q, q0, F, δ, λ, ι,Ψ) :=
68 case ι = ε : (Σ, Q, q0, F, δ, λ,Ψ)
69 case ∃((q′, σ), q′′) ∈ δ : (q′′ = q0) :

(Σ, Q ∪ {q′0}, q′0, F ′, δ′, λ′,Ψ′), where
70 q′0 := |Q|+ 1;

71 F ′ := F ∪
{
{q′0} if q0 ∈ F
∅ otherwise;

72 Ψ′ := Ψ ∪
{
{(q′0, ι ·Ψ(q0))} if q0 ∈ F
∅ otherwise;

73 δ′ := δ ∪ {((q′0, σ), δ(q0, σ)) | σ ∈ Σ & ! δ(q0, σ)};
74 λ′ := λ ∪ {((q′0, σ), ι · λ(q0, σ)) | σ ∈ Σ & ! δ(q0, σ)};
75 otherwise : (Σ, Q, q0, F, δ, λ

′,Ψ′), where
76 Ψ′ :=
77 case q0 ∈ F : Ψ \ {(q0, o0)} ∪ {(q0, ι · o0)}, where
78 o0 := Ψ(q0);
79 otherwise : Ψ
80 ;
81 λ0 ∈ T RANSIT IONOUT ;
82 λ0 := {((q0, σ), λ(q0, σ)) | σ ∈ Σ & ! δ(q0, σ)};
83 λ′ := λ \ λ0 ∪ {((q′0, σ), ι · l0) | ((q′0, σ), l0) ∈ λ0};
84 ;

Line 63 defines the type for subsequential finite-state transducer with initial
output. Lines 64-65 present the conversion from ordinary subsequential
finite-state transducers to subsequential finite-state transducers with initial
output by setting ι to the empty word. For the reverse conversion three cases
are distinguished. If ι = ε, we just abandon the initial output ι (Line 68).
If the starting state is reachable, then we introduce a new starting state q′0
and follow the procedure from Proposition 5.4.5 (Lines 69-74). In the third

192CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

case we just add the initial output ι in front of all outputs from the starting
state (Lines 75-83).

Program 8.3.4 This algorithm returns the expanded output automa-
ton for a given subsequential transducer as defined in Definition 5.5.11.
Functions from Program 8.1.5 and Program 8.1.7 are used.

85 expandedOutputAutomaton : SSFST I → FSA;
86 expandedOutputAutomaton(T) :=

expandFSA(removeEpsilonPreservingFSA(AT)), where
87 AT := (Σ, Q ∪ {f}, {q0}, {f},∆), where
88 (Σ, Q, q0, F, δ, λ, ι,Ψ) := T ;
89 f := |Q|+ 1;
90 ∆ := {(q,Ψ(q), f) | q ∈ F} ∪ {(q′, λ(q′, σ), q′′) | ((q′, σ), q′′) ∈ δ};
91 ;
92 ;

Program 8.3.5 The function below calculates the maximal state output
function mso for a given transducer T according to Corollary 5.5.15.

93 msoSSFSTI : SSFST I → ST AT E → WORD;
94 msoSSFSTI(T) := mso, where
95 QT := Proj2(T);
96 (Σ, Q, I, F,∆) := expandedOutputAutomaton(T);
97 ∆′ := F1→(2,3)({(q, (α)1, r) | (q, α, r) ∈ ∆});
98 R ∈ (2ST AT E)∗;
99 δ′ : ST AT E → SYMBOL× ST AT E ;

100 (R, δ′) := induction
101 step 0 :

102 R(0) := 〈{q} | q ∈ QT 〉;
103 δ′(0) := ∅;
104 step n+ 1 :

105 N :=
⋃

(∆′((R(n))n+1));
106 N ′ := F1→2(N);

107 (R(n+1), δ′(n+1)) :=

108 case ((R(n))n+1 ∩ F 6= ∅) ∨ (|N ′| 6= 1) : (R(n), δ′(n))
109 otherwise :

(R′, δ′(n) ∪ {(n+ 1, (c,#R′(q))) | (c, q) ∈ N ′}), where

110 R′ := R(n) · 〈q | q ∈ Proj2(N ′) & q 6∈ R(n)〉;
111 ;

112 until n =
∣∣R(n)

∣∣
113 ;
114 LCPq : ST AT E → WORD;
115 LCPq(q) := w, where

8.3. C(M) PROGRAMS FOR DETERMINISTIC TRANSDUCERS 193

116 q′ ∈ ST AT E ;
117 (q′, w) := induction
118 step 0 :

119 w(0) := ε;

120 q′(0) := q;
121 step i+ 1 :

122 (c, q′(i+1)) := δ′(q′(i));

123 w(i+1) := w(i) · 〈c〉;
124 until ¬(! δ′(q′(i)))
125 ;
126 ;
127 mso := {(q,LCPq(q)) | q ∈ QT };
128 ;

The set of transducer states QT is defined in Line 95, and the expanded
output automaton for T is obtained in Line 96. Afterwards a special partial
determinization procedure is applied (cf. Remark 5.5.16). It differs from
the standard determinization procedure in two aspects: (i) it starts from
any singleton subset with an original transducer state (Line 102), and (ii)
determinization is performed until either a final state is reached or there
are more than one outgoing transitions from the state (Line 108). In the
program, R describes the sequence of new states obtained, each new state is
a set of “old” transducer states. At the beginning the sequence R contains all
singleton sets (Line 102). When treating a new state (R(n))n+1 we build the
set N of all pairs (σ, q′) such that (q, σ, q′) ∈ ∆ for some q in (R(n))n+1. The
function N ′ maps each relevant transition symbol σ to the new state (sets
of old states) reached with σ from (R(n))n+1. If N ′ contains more than one
pair, then there are transitions with two distinct symbols from (R(n))n+1. In
that case we stop (Line 108). We also stop if (R(n))n+1 contains a final state.
Since in the resulting automaton for each state there will be not more than
one outgoing transition, we can encode the transitions as a (partial) function
δ′ that maps a state to a pair of label and destination state (Lines 99, 109).
Except these differences the order of determinization steps in Lines 105, 110-
113 proceeds similarly as in Program 8.1.9. After the determinization the
function LCPq (Lines 114-126) follows the path from a given state q and
returns the corresponding label. The resulting function mso is defined in
Line 127.

Program 8.3.6 The following program converts a subsequential transducer
into canonical form as defined in Definition 5.5.2.

129 canonicalSSFSTI : SSFST I → SSFST I;
130 canonicalSSFSTI(Σ, Q, q0, F, δ, λ, ι,Ψ) :=

(Σ, Q, q0, F, δ, λ
′, ι′,Ψ′), where

194CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

131 mso := msoSSFSTI(Σ, Q, q0, F, δ, λ, ι,Ψ);
132 ι′ := ι ·mso(q0);
133 Ψ′ := {(q, remainderSuffix(mso(q),Ψ(q))) | q ∈ F};
134 λ′ :=

{((q, σ), remainderSuffix(mso(q), l ·mso(δ(q, σ)))) | ((q, σ), l) ∈ λ};
135 ;

Program 8.3.7 The next program presents the pseudo-minimization
and minimization procedures for subsequential transducers.

136 pseudoMinimalSSFSTI : SSFST I → SSFST I;
137 pseudoMinimalSSFSTI(Σ, Q, q0, F, δ, λ, ι,Ψ) :=

(Σ,R(Q),R(q0),R(F), δ′, λ′, ι,Ψ′), where
138 Σ′ := {(σ, λ(q, σ)) | ((q, σ), r) ∈ δ};
139 ∆ : ST AT E × (SYMBOL×WORD)→ ST AT E ;
140 ∆ := {((q, (σ, λ(q, σ))), r) | ((q, σ), r) ∈ δ};
141 R ∈ EQREL;
142 k ∈ IN;
143 (R, k) := induction
144 step 0 :
145 X := Proj2(Ψ) as WORD∗;
146 f : ST AT E → IN;

147 f(q) :=

{
#X(Ψ(q)) if q ∈ F
0 otherwise;

148 k(0) := 0;

149 R(0) := ker(Q, f);
150 step n+ 1 :
151 f : (SYMBOL×WORD)× ST AT E → IN;

152 f(c, q) :=

{
R(n)(∆(q, c)) if ! ∆(q, c)
0 otherwise;

153 k(n+1) :=
∣∣Proj2(R(n))

∣∣ ;
154 R(n+1) :=

intersectEQREL(Q,R(n), (intersectEQREL(Q))(〈ker(Q, f(c)) | c ∈ Σ′〉));
155 until (Σ′ = ∅) ∨ (k(n) =

∣∣Proj2(R(n))
∣∣)

156 ;
157 δ′ := {((R(q), σ),R(r)) | ((q, (σ, l)), r) ∈ ∆};
158 λ′ := {((R(q), σ), l) | ((q, (σ, l)), r) ∈ ∆};
159 Ψ′ := {(R(q), P) | (q, P) ∈ Ψ};
160 ;
161 minimalSSFSTI : SSFST I → SSFST I;
162 minimalSSFSTI(T) := pseudoMinimalSSFSTI(canonicalSSFSTI(T));

Recall that for pseudo-minimization pairs (σ, λ(q, σ)) are considered as “ar-
tificial letters” of a new alphabet Σ′ (Line 138). These “letters” have type

8.3. C(M) PROGRAMS FOR DETERMINISTIC TRANSDUCERS 195

SYMBOL × WORD. Following Proposition 5.5.18 and Corollary 5.5.19
the pseudo-minimization algorithm proceeds with the minimization exactly
as in Program 8.1.14, with the following differences: first, “artifical letters”
are used to define equivalence relations (Lines 151, 152). Second, the initial
partitioning is based on the state outputs Ψ (Lines 145-147). The mini-
mization algorithm first converts the transducer in canonical form and then
applies pseudo-minimization afterwards (Lines 161-162).

C(M) program for traversing a subsequential transducer

Program 8.3.8 The following function Cλ realizes the generalized transi-
tion output function λ∗ of a subsequential transducer, given the transition
function δ and the transition output function λ.

163 Cλ : (T RANSIT IONOUT × DT RANSIT IONS)×
ST AT E ×WORD →WORD;

164 Cλ((λ, δ), p, α) := β, where
165 q ∈ ST AT E ;
166 (β, q) := induction
167 step 0 :

168 (β(0), q(0)) := (ε, p);
169 step i+ 1 :

170 β(i+1) := β(i) · λ(q(i), (α)i+1);

171 q(i+1) := δ(q(i), (α)i+1);
172 until i = |α|
173 ;
174 ;

The algorithm uses a simple inductive construction similarly as in Pro-
gram 8.1.15. Starting from the given first state p and the empty word as a
base (Line 168) we concatenate to the current output the output through
λ for the current state with the next symbol from α (Line 170). Then we
proceed to the next state by making the transition with the following sym-
bol of the input word α (Line 171). The induction ends when all symbols
from α are consumed (Line 172). Note that Cλ is not defined if for some
state on the path the transition function with the following symbol of α is
not defined. In this case the execution of the program will cause an error
message.

The above program can be used for obtaining the output of the transducer
for a given input word. If T = (Σ, Q, q0, F, δ, λ,Ψ) and α is a word in L×2(T),
then OT (α) = Cλ((λ, δ), q0, α) · Ψ(Cδ(δ, q0, α)). See Program 8.1.15 for the
function Cδ.

196CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

C(M) program for composing subsequential transducers

Program 8.3.9 The following algorithm constructs a subsequential trans-
ducer that represents the composition of two subsequential transducers
following Proposition 5.1.10.

175 composeSSFST : SSFST × SSFST → SSFST ;
176 composeSSFST((Σ1, Q1, q01, F1, δ1, λ1,Ψ1), (Σ2, Q2, q02, F2, δ2, λ2,Ψ2)) :=

T, where
177 P ∈ (ST AT E × ST AT E)∗;
178 (T, P) := induction
179 step 0 :

180 T (0) := (Σ1, ∅, 1, ∅, ∅, ∅, ∅);
181 P (0) := 〈(q01, q02)〉;
182 step n+ 1 :

183 (q1, q2) := (P (n))n+1;
184 N := {((σ, o), (p1, p2)) | σ ∈ Σ1 & ! δ1(q1, σ), p1 = δ1(q1, σ),

l = λ1(q1, σ) & |stateseq(δ2, q2, l)| = |l|+ 1,
p2 = Cδ(δ2, q2, l), o = Cλ((λ2, δ2), q2, l)};

185 P (n+1) := P (n) · 〈p | p ∈ Proj2(N) & p 6∈ P (n)〉;
186 T (n+1) := (Σ, Q, q0, F

′, δ′, λ′,Ψ′), where

187 (Σ, Q, q0, F, δ, λ,Ψ) := T (n);
188 δ′ := δ ∪ {((n+ 1, σ),#P (n+1)(q)) | ((σ, o), q) ∈ N};
189 λ′ := λ ∪ {((n+ 1, σ), o) | ((σ, o), q) ∈ N};
190 (F ′,Ψ′) :=
191 case (q1 ∈ F1)

∧(|stateseq(δ2, q2,Ψ1(q1))| = |Ψ1(q1)|+ 1)
∧ (Cδ(δ2, q2,Ψ1(q1)) ∈ F2) :
(F ∪ {n+ 1},Ψ ∪ {(n+ 1, o′)}), where

192 l := Ψ1(q1);
193 q′2 := Cδ(δ2, q2, l);
194 o′ := Cλ((λ2, δ2), q2, l) ·Ψ2(q′2);
195 otherwise : (F,Ψ)
196 ;
197 ;

198 until n =
∣∣P (n)

∣∣
199 ;
200 ;

The construction is similar to Program 8.2.6. We apply the product con-
struction. The differences are the definition of N in Line 184 and the defi-
nition of F and Ψ in Lines 190-196. As in earlier product constructions, the
set N yields a description of all transitions departing from the source state
pair (q1, q2). Here each transition is described as a pair with label (σ, o) and

8.3. C(M) PROGRAMS FOR DETERMINISTIC TRANSDUCERS 197

target state pair (p1, p2). Label and target state pair are defined following
the definitions of δ and λ in Proposition 5.1.10.

Phonetization of numbers as an application

In order to demonstrate the use of the above constructions we present a
program for constructing a minimal subsequential transducer that maps a
number written as a sequence of digits to its phonetization. This kind of
functionality is needed, e.g., for speech synthesis.

Example 8.3.10 For the current implementation we use the phoneme set
of the Carnegie Mellon University pronouncing dictionary2. In our example
we limit the input range to numbers between 1 and 999999. As a matter of
fact this segment could be easily extended.

1 import ← ”Section 8.3.cm”;
2 zero := FST2WORD(”0”, ””);
3 zerozero := FST2WORD(”00”, ””);
4 from1to9 := unionFST(〈FST2WORD(”1”, ”W AH1 N ”),

FST2WORD(”2”, ”T UW1 ”),
FST2WORD(”3”, ”TH R IY1 ”),
FST2WORD(”4”, ”F AO1 R ”),
FST2WORD(”5”, ”F AY1 V ”),
FST2WORD(”6”, ”S IH1 K S ”),
FST2WORD(”7”, ”S EH1 V AH0 N ”),
FST2WORD(”8”, ”EY1 T ”),
FST2WORD(”9”, ”N AY1 N ”)〉);

5 teens := unionFST(〈FST2WORD(”10”, ”T EH1 N ”),
FST2WORD(”11”, ”IH0 L EH1 V AH0 N ”),
FST2WORD(”12”, ”T W EH1 L V ”),
FST2WORD(”13”, ”TH ER1 T IY1 N ”),
FST2WORD(”14”, ”F AO1 R T IY1 N ”),
FST2WORD(”15”, ”F IH0 F T IY1 N ”),
FST2WORD(”16”, ”S IH0 K S T IY1 N ”),
FST2WORD(”17”, ”S EH1 V AH0 N T IY1 N ”),
FST2WORD(”18”, ”EY0 T IY1 N ”),
FST2WORD(”19”, ”N AY1 N T IY1 N ”)〉);

6 tens := unionFST(〈FST2WORD(”2”, ”T W EH1 N T IY0 ”),
FST2WORD(”3”, ”TH ER1 D IY0 ”),
FST2WORD(”4”, ”F AO1 R T IY0 ”),
FST2WORD(”5”, ”F IH1 F T IY0 ”),
FST2WORD(”6”, ”S IH1 K S T IY0 ”),
FST2WORD(”7”, ”S EH1 V AH0 N T IY0 ”),

2http://www.speech.cs.cmu.edu/cgi-bin/cmudict

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

198CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

FST2WORD(”8”, ”EY1 T IY0 ”),
FST2WORD(”9”, ”N AY1 N T IY0 ”)〉);

7 hundred := FST2WORD(””, ”HH AH1 N D R AH0 D ”);
8 thousand := FST2WORD(””, ”TH AW1 Z AH0 N D ”);
9 from10to99 := unionFST(teens, concatFST(tens, from1to9));

10 from1to99 :=
unionFST(〈from1to9, teens, concatFST(tens, from1to9)〉);

11 from00to99 :=
unionFST(〈zerozero, concatFST(zero, from1to9), from10to99〉);

12 from100to999 := concatFST(〈from1to9, hundred, from00to99〉);
13 from1to999 := unionFST(from1to99, from100to999);
14 from000to999 :=

unionFST(concatFST(zero, from00to99), from100to999);
15 from1000to999999 :=

concatFST(〈from1to999, thousand, from000to999〉);
16 from1to999999 := unionFST(from1to999, from1000to999999);
17 (NSSFST , BV) := ssfstFST(from1to999999);
18 Numbers := minimalSSFSTI(SSFSTISSFST(NSSFST));

After importing the programs from the current section in Line 1 we de-
fine in Line 2 and 3 the mapping of one and two zeros to the empty word.
Afterwards, in Lines 4,5 and 6 we define the phonetization of single digit
numbers, the numbers between 10 and 19, and the mappings of the tens
(20, 30, . . . , 90) to their corresponding pronunciations. In Lines 7,8 the map-
ping of the empty word to the pronunciation of hundred and thousand is
defined. Then in the following Lines 9-16 we define the mappings of the
numbers from 10 to 99, from 1 to 99, from 00 to 99, from 100 to 999, from 1
to 999, from 000 to 999, from 1.000 to 999.999, and finally from 1 to 999.999.
In Line 17 we construct the subsequential transducer for the numbers from
1 to 999.999. At the end we obtain the minimal subsequential transducer in
Line 18. The resulting subsequential transducer has approximately 52.000
states and 480.000 transitions.

Remark 8.3.11 As noted before, the presented programs are not optimized
and therefore the above construction can run out of memory when executed
on a personal computer. The minimal subsequential transducer for a finite
function can be constructed much more efficiently applying the algorithm
presented in [Mihov and Maurel, 2001].

Remark 8.3.12 Subsequential transducers for defining the mappings be-
tween phoneme sequences, English words and the corresponding language
probabilities are widely used for implementing probabilistic language mod-
els, e.g., in speech recognition applications [Mohri et al., 2008].

8.4. C(M) PROGRAMS FOR BIMACHINES 199

8.4 C(M) programs for bimachines

In this section we present the algorithms for construction, composition and
normalization of bimachines. We assume that all functions defined in Sec-
tions 8.1, 8.2 and 8.3 are available.

Translating functional transducers into bimachines

In Section 6.2 we have seen how to translate functional transducers into
bimachines. We now give an an implementation.

Program 8.4.1 The following algorithm converts a functional transducer
into a bimachine following the construction given in the proof of Propo-
sition 6.2.5.

1 import ← ”Section 8.3.cm”;
2 BMOUT PUT is ST AT E × SYMBOL× ST AT E → WORD;
3 BM is DFSA×DFSA× BMOUT PUT ;
4 bmFST : FST → BM;
5 bmFST(A) := ((Σ, {1, . . . , |PL|}, 1, {1, . . . , |PL|}, δL), (Σ, {1, . . . , |PR|},

1, {1, . . . , |PR|}, δR), ψ), where
6 ((Σ, Q, I, F,∆),W, inf) := realTimeFST(A);
7 ∆′′ := F4→(2,1)({(q, (u)1, v, p) | (q, (u, v), p) ∈ ∆});
8 (PR, δR) ∈ (2ST AT E)∗ ×DT RANSIT IONS;
9 (PR, δR) := induction

10 step 0 :

11 PR
(0) := 〈F 〉;

12 δR
(0) := ∅;

13 step n+ 1 :

14 N :=
⋃

(∆′′((PR
(n))n+1));

15 N ′ := F1→2(N);

16 PR
(n+1) := PR

(n) · 〈q | q ∈ Proj2(N ′) & q 6∈ PR(n)〉;
17 δR

(n+1) := δR
(n) ∪ {((n+ 1, c),#PR

(n+1)(q)) | (c, q) ∈ N ′};
18 until n =

∣∣∣PR(n)
∣∣∣

19 ;
20 δ′R := F3→(1,2)(δR as 2ST AT E×SYMBOL×ST AT E);

21 LSYST EM is 2ST AT E × (ST AT E → ST AT E);
22 ∆′ := F(2,1)→(4,3)({(q, (u)1, v, q

′) | (q, (u, v), q′) ∈ ∆});
23 (PL, δL) ∈ LSYST EM∗ ×DT RANSIT IONS;
24 (PL, δL, ψ) := induction
25 step 0 :

26 δL
(0) := ∅;

27 ψ(0) := ∅;
28 φ0 : ST AT E → ST AT E ;

200CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

29 φ0 := {(R, elementOf({q | q ∈ I & q ∈ (PR)R})) | R ∈
{1, . . . , |PR|} & (PR)R ∩ I 6= ∅};

30 PL
(0) := 〈(I, φ0)〉;

31 step k + 1 :

32 (L, φ) := (PL
(k))k+1;

33 N := {(a, (L′, φ′(a))) | a ∈ Σ, L′ = Proj1(
⋃

((∆′(a))(L)))},
where

34 φ′ : SYMBOL → (ST AT E → ST AT E);
35 φ′(a) := {(R′, q′) | (R, q) ∈ φ & ! δ′R(R), (R′, a) ∈ δ′R(R),

(q′, v) = elementOf({(q′, v) | (q′, v) ∈ ∆′(a, q) & q′ ∈ (PR)R′})};
36 ;

37 ψ(k+1) := ψ(k) ∪ {((k + 1, a, R′), v) | (a, (L′, φ′)) ∈ N,
(R′, q′) ∈ φ′, q = φ(δR(R′, a)), (q′, v) ∈ ∆′(a, q)};

38 PL
(k+1) :=

PL
(k) · 〈(L′, φ′) | (L′, φ′) ∈ Proj2(N) & (L′, φ′) 6∈ PL(k)〉;

39 δL
(k+1) :=

δL
(k) ∪ {((k + 1, a),#PL

(k+1)((L′, φ′))) | (a, (L′, φ′)) ∈ N};
40 until k =

∣∣∣PL(k)
∣∣∣

41 ;
42 ;

After importing in Line 1 the programs from the previous section, in Line 2
the type of the bimachine output function is defined. It maps a state of the
left automaton, a symbol and a state of the right automaton to an output
word. In Line 3 the type of the bimachine is defined as a triple consisting of
the left deterministic finite-state automaton, the right deterministic finite-
state automaton, and the bimachine output function. Starting from Line 4
the function bmFST is defined. It takes as input a finite-state transducer.
Then it produces the corresponding real-time transducer in Line 6. In Line 7
we define the function ∆′′ to map a destination state p of the transducer to
the set of pairs consisting of transition input label and source state for tran-
sitions to p in the input transducer. Using ∆′′ we perform a determinization
of the reversed underlying automaton (Lines 8-19) in a similar way as in
Program 8.1.9. According to Proposition 6.2.5 this automaton corresponds
to the right automaton of the bimachine. In Line 20 the reverse of the tran-
sition function of the right bimachine automaton is constructed in order to
map a destination state (a set of transducer states R) to the set of pairs
consisting of the source state (a set R′ of a-successors of states in R in the
transducer) and label a in the right automaton. In Line 21 we define the
type of the states for the left automaton of the bimachine. Recall that each
state of the left deterministic automaton is given by a set of states and a
state selector function (cf. proof of Proposition 6.2.5). Then in Line 22 we
define the function ∆′ that maps an input label and a source state of the

8.4. C(M) PROGRAMS FOR BIMACHINES 201

transducer to the set of pairs consisting of destination state and transition
output in the transducer. Using ∆′ we apply a special determinization to
the underlying automaton of the transducer in Lines 23-41, which yields the
left deterministic automaton of the bimachine and the bimachine output
function. The determinization proceeds similarly as in Program 8.1.9 with
a specialised procedure for deriving the successor states and the addition of

the construction of the bimachine output function. The initial state P
(0)
L of

the left deterministic automaton has the form (I, φ0) (Line 30). I is the set
of initial states of the transducer and the state selector function φ0 selects
any member of I ∩ R for a state R of the right deterministic automaton
whenever this set is non-empty. (Line 29, the complex notation (PR)R is
due to the fact that states of the right deterministic automaton are formally
represented as numbers). At this point, the output function is empty (Line
27). At the induction step we consider a state (L, φ) of the left determin-
istic automaton. The set N describes all transitions departing from (L, φ)
in terms of the label a and the target state (L′, φ′(a)). The definition of
the a-successor state (L′, φ′(a)) in Lines 33-36 and the construction of the
bimachine output function for (L, φ) in Line 37 follow the construction in
the proof of Proposition 6.2.5. Finally, the resulting automaton and output
function correspond to the left automaton and the output function of the
bimachine.

Pseudo-minimization of bimachines

Program 8.4.2 The next algorithm constructs a pseudo-minimal bima-
chine in accordance with Definition 6.3.3 by minimizing the left and the
right automaton of the bimachine (considered as coloured automata using
state profiles as colours) following the procedure described in Section 6.3.

43 pseudoMinimalBM : BM→ BM;
44 pseudoMinimalBM((ΣL, L, sL, FL, δL), (ΣR, R, sR, FR, δR), ψ) :=

((ΣL,RL(L),RL(sL), ∅, δ′L), (ΣR,RR(R),RR(sR), ∅, δ′R), ψ′), where
45 RL ∈ EQREL;
46 kL ∈ IN;
47 (RL, kL) := induction
48 step 0 :
49 ΨL : ST AT E → 2SYMBOL×ST AT E×WORD;
50 ΨL := F1→(2,3,4)(ψ as 2ST AT E×SYMBOL×ST AT E×WORD);

51 f : ST AT E → IN;
52 X := Proj2(ΨL) as (2SYMBOL×ST AT E×WORD)∗;

53 f(q) :=

{
#X(ΨL(q)) if ! ΨL(q)
0 otherwise;

54 kL
(0) := 0;

55 RL
(0) := ker(L, f);

202CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

56 step n+ 1 :
57 f : SYMBOL× ST AT E → IN;

58 f(c, q) :=

{
RL

(n)(δL(q, c)) if ! δL(q, c)
0 otherwise;

59 kL
(n+1) :=

∣∣∣Proj2(RL
(n))
∣∣∣ ;

60 RL
(n+1) :=

intersectEQREL(L, (intersectEQREL(L))(〈ker(L, f(c)) | c ∈
ΣL〉), RL(n));

61 until kL
(n) =

∣∣∣Proj2(RL
(n))
∣∣∣

62 ;
63 RR ∈ EQREL;
64 kR ∈ IN;
65 (RR, kR) := induction
66 step 0 :
67 ΨR : ST AT E → 2SYMBOL×ST AT E×WORD;
68 ΨR := F3→(2,1,4)(ψ as 2ST AT E×SYMBOL×ST AT E×WORD);

69 f : ST AT E → IN;
70 X := Proj2(ΨR) as (2SYMBOL×ST AT E×WORD)∗;

71 f(q) :=

{
#X(ΨR(q)) if ! ΨR(q)
0 otherwise;

72 kR
(0) := 0;

73 RR
(0) := ker(R, f);

74 step n+ 1 :
75 f : SYMBOL× ST AT E → IN;

76 f(c, q) :=

{
RR

(n)(δR(q, c)) if ! δR(q, c)
0 otherwise;

77 kR
(n+1) :=

∣∣∣Proj2(RR
(n))
∣∣∣ ;

78 RR
(n+1) :=

intersectEQREL(R, (intersectEQREL(R))(〈ker(R, f(c)) | c ∈ ΣR〉), RR(n));

79 until kR
(n) =

∣∣∣Proj2(RR
(n))
∣∣∣

80 ;
81 δ′L := {((RL(q), σ),RL(r)) | ((q, σ), r) ∈ δL};
82 δ′R := {((RR(q), σ),RR(r)) | ((q, σ), r) ∈ δR};
83 ψ′ := {((RL(l), a,RR(r)), s) | ((l, a, r), s) ∈ ψ};
84 ;

The algorithm proceeds by first finding the Myhill-Nerode relation RL for
the left coloured automaton according to Corollary 6.3.2 (Lines 45-62). In

Lines 49-55 the induction is initialized with R
(0)
L := kerL(ψL). Afterwards

(Lines 56-62) we proceed exactly as in Program 8.1.14. The Myhill-Nerode
relation RR for the right coloured automaton is constructed in the cor-
responding dual way in Lines 63-80. Afterwards we define the transition

8.4. C(M) PROGRAMS FOR BIMACHINES 203

functions of the minimized left and right automata (Lines 81, 82). At the
end we define the bimachine output function in Line 83.

Direct composition of bimachines

As a last point in this chapter we consider the composition of two bimachines.
We assume that the alphabets of the two machines are identical.

Program 8.4.3 The algorithm computes the composition of two bima-
chines following the construction presented in Section 6.4.

85 CΨ : (BMOUT PUT × DT RANSIT IONS ×
DT RANSIT IONS)× ST AT E ×WORD × ST AT E → WORD;

86 CΨ((Ψ, δL, δR), l, α, r) := β, where
87 πL := stateseq(δL, l, α);
88 πR := stateseq(δR, r, ρ(α));
89 β :=

⊙
(〈Ψ((πL)i, (α)i, (πR)|α|+1−i) | i ∈ {1, . . . , |α|}〉);

90 ;
91 composeBM : BM×BM→ BM;
92 composeBM(((Σ′L, L

′, s′L, F
′
L, δ
′
L), (Σ′R, R

′, s′R, F
′
R, δ

′
R), ψ′),

((Σ′′L, L
′′, s′′L, F

′′
L, δ
′′
L), (Σ′′R, R

′′, s′′R, F
′′
R, δ

′′
R), ψ′′)) :=

((Σ, {1, . . . , |PL|}, 1, {1}, δL), (Σ, {1, . . . , |PR|}, 1, {1}, δR), ψ), where
93 Σ := Σ′L ∩ Σ′R ∩ Σ′′L ∩ Σ′′R;
94 δ′R0

:= F(2,3)→1(δ′R as 2ST AT E×SYMBOL×ST AT E);

95 δ′L0
:= F(2,3)→1(δ′L as 2ST AT E×SYMBOL×ST AT E);

96 succL, succR : SYMBOL× (ST AT E × ST AT E × ST AT E)→
2ST AT E×ST AT E×ST AT E ;

97 succL(a, (l′1, r
′
1, l
′′
1)) :={

{(δ′L(l′1, a), r′2, (Cδ(δ
′′
L))(l′′1 , ψ

′(l′1, a, r
′
2))) | r′2 ∈ δ′R0

(a, r′1)} if ! δ′R0
(a, r′1)

∅ otherwise;
98 succR(a, (l′2, r

′
2, r
′′
2)) :={

{(l′1, δ′R(r′2, a), (Cδ(δ
′′
R))(r′′2 , ρ(ψ′(l′1, a, r

′
2)))) | l′1 ∈ δ′L0

(a, l′2)} if ! δ′L0
(a, l′2)

∅ otherwise;
99 PL ∈ (2ST AT E×ST AT E×ST AT E)∗;

100 δL ∈ DT RANSIT IONS;
101 (PL, δL) := induction
102 step 0 :

103 PL
(0) := 〈{s′L} ×R′ × {s′′L}〉;

104 δL
(0) := ∅;

105 step k + 1 :

106 N := {(a,
⋃

((succL(a))((PL
(k))k+1))) | a ∈ Σ};

107 PL
(k+1) := PL

(k) · 〈q | q ∈ Proj2(N) & q 6∈ PL(k)〉;
108 δL

(k+1) := δL
(k) ∪ {((k + 1, a),#PL

(k+1)(q)) | (a, q) ∈ N};
109 until k =

∣∣∣PL(k)
∣∣∣

204CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

110 ;
111 PR ∈ (2ST AT E×ST AT E×ST AT E)∗;
112 δR ∈ DT RANSIT IONS;
113 (PR, δR) := induction
114 step 0 :

115 PR
(0) := 〈L′ × {s′R} × {s′′R}〉;

116 δR
(0) := ∅;

117 step k + 1 :

118 N := {(a,
⋃

((succR(a))((PR
(k))k+1))) | a ∈ Σ};

119 PR
(k+1) := PR

(k) · 〈q | q ∈ Proj2(N) & q 6∈ PR(k)〉;
120 δR

(k+1) := δR
(k) ∪ {((k + 1, a),#PR

(k+1)(q)) | (a, q) ∈ N};
121 until k =

∣∣∣PR(k)
∣∣∣

122 ;
123 ψ ∈ BMOUT PUT ;
124 ψ := {((l, a, r), ψ0(l, a, r)) | l ∈ {1, . . . , |PL|}, a ∈ Σ, r ∈

{1, . . . , |PR|}}, where
125 ψ0 ∈ BMOUT PUT ;
126 ψ0(l, a, r) := (CΨ(ψ′′, δ′′L, δ

′′
R))(l′′1 , ψ

′(l′1, a, r
′
2), r′′2), where

127 l′1 := Proj1(elementOf((PL)l));
128 r′2 := Proj2(elementOf((PR)r));
129 l′2 := δ′L(l′1, a);
130 r′1 := δ′R(r′2, a);
131 l′′1 := elementOf({l′′1 | (l′1, r

′
1, l
′′
1) ∈ (PL)l});

132 r′′2 := elementOf({r′′2 | (l′2, r
′
2, r
′′
2) ∈ (PR)r});

133 ;
134 ;
135 ;

The program starts with the definition of the generalized bimachine output
function Cψ in Lines 85-90. The symbol

⊙
denotes the concatenation of a

list of words. For computing the left and right deterministic automata of the
target bimachine two inductive power set constructions are used. Starting
from the initial states of the deterministic automata (Lines 103, 115) we
compute the list of states needed for the two automata. In Lines 94-98
auxiliary functions are defined based on the first input bimachine B1. Here
δ′R0

computes for a symbol a and state q of the right automaton of B1 the set
of all a-predecessors of q. Similarly δ′L0

computes for a symbol a and state q
of the left automaton of B1 the set of all a-predecessors of q. With the help
of these functions then in Lines 97 and 98 the sets of a-successors of single
triples (l′1, r

′
1, l
′′
2) respectively (l′2, r

′
2, r
′′
2) with respect to the relations ∆L and

∆R introduced in the formal construction in Section 6.4 are computed. After
this preparation the inductive power set constructions are defined. In Lines
106 and 118 the sets N provide an implicit description of all trannsitions

8.4. C(M) PROGRAMS FOR BIMACHINES 205

from the states (PL
(k))k+1 and (PR

(k))k+1 that are treated at step k + 1
of the two inductions. At this point we use the a-successor sets for single
triples. Given the sets N , we find the new states needed (Lines 107, 119)
and the new transitions needed (Lines 108, 120). Finally in Lines 123-134 we
define the bimachine output function according to the formal construction.

Note that the generalized bimachine output function Cψ can be used for
implementing the output function of the bimachine. If

B = 〈〈Σ, QL, sL, FL, δL〉 , 〈Σ, QR, sR, FR, δR〉 ,Ψ〉 ,

then OB(α) = CΨ((Ψ, δL, δR), sL, α, sR).

Bignum arithmetics with bimachines as an application

We complete the section with an example presenting the use of bimachines
for implementing basic arithmetic operations on unbounded natural num-
bers.

Example 8.4.4 Any natural number (e.g. 5389) can be represented as
string of digits such as [’5’,’3’,’8’,’9’]. The programs defined below
take as input an arbitrary natural number K ∈ IN. Given the number K
an “addition” bimachine is computed that reads as input a second natural
number x represented as a string of digits as indicated above. The output
of the addition bimachine is the representation of x + K as a string of
digits. In a similar way, for a given input number K, bimachines for the
operations x 7→ x −K (subtraction, defined for inputs x ≥ K), x 7→ x ·K
(multiplication), x 7→ x/K (division), and for the remainder operation after
dividing by K are computed. In each case, input and output numbers are
represented as strings.

The program starts with importing all programs from the current sec-
tion in Line 1. The bimachines representing the aforementioned operations
are obtained from corresponding transducers that are built first. In general
these transducers are non-deterministic, conversion to a bimachine leads to
a deterministic device. The types of the new functions for computing the
operations are defined in Lines 2-3. The functions take as input a natural
number and compute a transducer or a bimachine. Afterwards we proceed
with the definition of the set of digits in Line 4 and the definition of the
function preventLeadingZeros, which restricts the domain of a given trans-
ducer to the set of all numbers expressed without leading zeros (Lines 5-8).
In Lines 9-10 we define the function for converting the code (UNICODE) of
the symbol for a digit to the corresponding number and in Lines 11-13 we
define the inverse function.

1 import ← ”Section 8.4.cm”;

206CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

2 addTK, subTK,mulTK,divExactTK,divTK, remTK : IN→ FST ;
3 addBK, subBK,mulBK, divBK, remBK : IN→ BM;
4 Digits := {′0′, . . . ,′ 9′};
5 preventLeadingZeros : FST → FST ;
6 preventLeadingZeros(T) :=

composeFST(identityFSA(Dom), T), where
7 Dom := unionFSA(FSAWORD(”0”),

concatFSA(symbolSet2FSA({′1′, . . . ,′ 9′}),
starFSA(symbolSet2FSA(Digits))));

8 ;
9 digit2number : SYMBOL → IN;

10 digit2number(d) := d−′ 0′;
11 number2digit : IN→ SYMBOL;
12 number2digit(n) := n+′ 0′;

Addition. The first operation to be realized is the addition x 7→ x + K.
It is hard to design a mechanical procedure for digit-based addition when
reading the sequences of digits from left to right. Hence first an “addi-
tion” transducer for the reverse reading order is built. Using the reverse
operation for transducers, the transducer for the correct reading order is
obtained as a derivate. To illustrate the construction of the transducer for
the reverse reading let us assume that K = 907. In the transducer to be
built, addition of a number x represented as a sequence of digits, say x =
[’5’,’8’,’7’,’7’], is realized on a path of the following form:

907→′7′:′4′ 91→′7′:′8′ 9→′8′:′7′ 1→′5′:′6′ 0

States are numbers, starting with K. Inputs are the digits ’7’,’7’,’8’,’5’
of x in the reverse reading order. When reading a digit d from state K ′ we
add the corresponding number to K ′. The last digit of the sum n (i.e. the
remainder of the division of n by 10) is the output of the transition. The
new number reached is the integer bn/10c. Below, these states/numbers are
called “remainders”. Note that the reversed output is x = [′6′,′ 7′,′ 8′,′ 4′],
which in fact represents the sum 907 + 5877. The above path only shows
the states/remainders 907, 91, 9, 1, and 0 needed for adding x = 5877.
However, for any given number K, only a finite number of states are needed
for processing any given sequence of digits. This leads to the following
program.

13 addTK(K) := reverseFST(Digits, {1, . . . , |L|+1}, {1}, {f},∆′), where
14 L ∈ IN∗;
15 ∆ ∈ 2T T RANSIT ION ;
16 (∆, L) := induction
17 step 0 :

18 (L(0),∆(0)) := (〈K〉, ∅);

8.4. C(M) PROGRAMS FOR BIMACHINES 207

19 step i+ 1 :

20 c := (L(i))i+1;
21 N := {((〈d〉, 〈d′〉), c′) | d ∈ Digits, n = digit2number(d) + c,

c′ = n/10, d′ = number2digit(n mod 10)};
22 L(i+1) := L(i) · 〈c′ | c′ ∈ Proj2(N) & c′ 6∈ L(i)〉;
23 ∆(i+1) := ∆(i) ∪ {(i+ 1, l,#L(i+1)(c′)) | (l, c′) ∈ N};
24 until i =

∣∣L(i)
∣∣

25 ;
26 f := |L|+ 1;
27 ∆′ := ∆ ∪ {(i, (ε, c), f) | i ∈ {1, . . . , |L|},

c =

{
”” if (L)i = 0
ρ(str((L)i)) otherwise

};

28 ;

Lines 14-27 describe the inductive construction of the transducer for the
reverse reading order. As illustrated above, each state in the transducer
(with the exception of the final state f) corresponds to a given remainder.
The “official” name for a state is an index number in the list L. In this list
at the i-th position we store the i-th remainder obtained. The list L and the
transitions ∆ from states i are defined in the induction in Lines 16-27. We
start with initializing the list L with the first remainder K in Line 18. The
inductive step in Lines 19-23 proceeds with the definition of the transitions
for state i+ 1 with remainder c (Line 20). In Line 21 in the set N we collect
for each digit d the last digit d′ and the remainder c′ of the sum with c. The
list L is extended adding the new remainders in Line 22 and ∆ is extended
adding the transitions from i + 1 in Line 23. The induction ends when the
list L is exhausted. Finally in Lines 26-27 we define from each state an
outgoing transition to the final state f with ε on the upper tape and the
digits for the remainder on the lower tape. Note that these transitions are
only relevant when all input digits are consumed.

Multiplication. The next function mulTK constructs for a given number K
a transducer representing the function f(x) = x×K.

29 mulTK(K) := reverseFST(Digits, {1, . . . , |L|+1}, {1}, {f},∆′), where
30 L ∈ IN∗;
31 ∆ ∈ 2T T RANSIT ION ;
32 (∆, L) := induction
33 step 0 :

34 (L(0),∆(0)) := (〈0〉, ∅);
35 step i+ 1 :

36 c := (L(i))i+1;
37 N := {((〈d〉, 〈d′〉), c′) | d ∈ Digits, n = digit2number(d)×K+c,

c′ = n/10, d′ = number2digit(n mod 10)};
38 L(i+1) := L(i) · 〈c′ | c′ ∈ Proj2(N) & c′ 6∈ L(i)〉;

208CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

39 ∆(i+1) := ∆(i) ∪ {(i+ 1, l,#L(i+1)(c′)) | (l, c′) ∈ N};
40 until i =

∣∣L(i)
∣∣

41 ;
42 f := |L|+ 1;
43 ∆′ := ∆ ∪ {(i, (ε, c), f) | i ∈ {1, . . . , |L|},

c =

{
”” if (L)i = 0
ρ(str((L)i)) otherwise

};

44 ;

The construction used in Lines 29-44 is very similar to the preceding one
for addTK. The only differences are (i) the initial state is initialized to the
remainder 0 and (ii) the definition of N in the inductive step (Line 37) is
modified, here we multiply with K every digit of the input.

Subtraction. The function subTK for subtraction x 7→ x − K is obtained
in a simple way: we just invert the addition transducer addTK(K). Before
the inversion the domain of the transducer is restricted to numbers without
leading zeros. Otherwise the result would not be functional:

45 subTK(K) := inverseFST(preventLeadingZeros(addTK(K)));

Division. Similarly the function divExactTK building the transducer repre-
senting the function f(x) = x/K for the numbers divisible by K is obtained
by inversion of the multiplication transducer:

46 divExactTK(K) := inverseFST(preventLeadingZeros(mulTK(K)));

The next step generalizes the exact division operation to numbers not divis-
ible by K. By composing subTK(i) with divExactTK(K) we represent the
functions f(x) = (x− i)/K for the numbers x for which x− i is divisible by
K. In Line 47 we build the union of divExactTK(K) with all these functions
(i = 1, . . . ,K − 1) for the representation of the function f(x) = bx/Kc.

47 divTK(K) := unionFST(〈divExactTK(K)〉 ·
〈composeFST(subTK(i),divExactTK(K)) | i ∈ {1, . . . ,K − 1}〉);

Remainder of division. The function remTK (Lines 48-51) constructs the
transducer representing the function f(x) = x − bx/Kc ×K (remainder of
division by K). The range of multTK represents all numbers divisible by K
(Line 49). The image of this set under the function addTK(i) represents the
numbers with remainder i of division by K. Each of these sets is mapped
to i and the corresponding mappings are joined in Line 48 for constructing
the function remTK(K).

8.4. C(M) PROGRAMS FOR BIMACHINES 209

Figure 8.1: The bimachine representing the function f(x) = x× 3.

48 remTK(K) := unionFST(〈productFSA(exact,FSAWORD(”0”))〉 ·
〈productFSA(rangeFST(composeFST(IDexact, addTK(i))),

FSAWORD(str(i))) | i ∈ {1, . . . ,K − 1}〉), where
49 exact := rangeFST(mulTK(K));
50 IDexact := identityFSA(exact);
51 ;

The program ends by defining the corresponding bimachine constructions in
Lines 52-56.

52 addBK(K) := pseudoMinimalBM(bmFST(addTK(K)));
53 subBK(K) := pseudoMinimalBM(bmFST(subTK(K)));
54 mulBK(K) := pseudoMinimalBM(bmFST(mulTK(K)));
55 divBK(K) := pseudoMinimalBM(bmFST(divTK(K)));
56 remBK(K) := pseudoMinimalBM(bmFST(remTK(K)));

In Figure 8.1 the resulting bimachine of mulBK(3) is shown.

Remark 8.4.5 For any K ≥ 1 the functions represented by divTK and
remTK do have the bounded variation property. For some K (e.g. for K =
2, 5, 10) the functions represented by mulTK do have the bounded variation
property. For other K (e.g. for K = 3, 7, 9) the functions represented
by mulTK do not have the bounded variation property. For any K ≥ 1
the functions represented by addTK and subTK do not have the bounded
variation property. Therefore many of the above arithmetic functions can
not be represented as subsequential transducers.

210CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

Remark 8.4.6 Using the bimachine (or transducer) composition we can
effectively construct a bimachine for any composition of the presented arith-
metic operations (like f(x) := (bx/3c+48)×256−125). The result is a single
bimachine and therefore performing the composed calculation will proceed
as fast as a single arithmetic operation. The time will be linear in respect
to the number of digits of the input number.

Conclusion

Author’s Contributions

The main scientific contributions of this dissertation are:

1. A complete and coherent presentation of the theory of finite-state au-
tomata, transducers and bimachines, together with detailed proofs of
the main properties and correctness of constructions, is given, which
combines abstract algebraic terms with computationally efficient con-
structions.

2. A decision procedure for deciding the bounded variation property of a
finite-state transducers has been developed, which can be integrated
in the sequentialization construction. In previous approaches (see, for
example, [Roche and Schabes, 1997a]), in order to avoid the endless
operation of the sequentialization construction, the bounded variation
property has to be tested in advance by a complex special algorithm.
With the presented method, this problem is solved in an elegant way
by adding one additional check within the construction (see Theo-
rem 5.3.8).

3. A new construction with polynomial complexity for canonization of
a subsequential transducer is presented (see Corollary 5.5.15 and Re-
mark 5.5.16). The advantage of the new construction is its good effi-
ciency and the use of a fully automata-based approach.

4. A new construction has been developed for constructing a bimachine
from a finite-state transducer (see Proposition 6.2.5). The advantage
of the new construction is the avoidance of the pre-construction for
obtaining an unambiguous finite-state transducer. For certain classes
of transducers, a variant of the new construction results in an expo-
nentially smaller number of states of the derived bimachine [Gerdjikov
et al., 2017].

5. A construction together with correctness proof was obtained for di-
rect composition of bimachines (Section 6.4). Unlike the standard
approach, which requires the conversion of the bimachines to letter

211

212CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

finite-state transducers and vice versa, in the new construction the
resulting bimachine is constructed directly.

The main scientific-applicational contributions of the presented dis-
sertation are:

1. A new programming language C(M) has been developed that allows us
to focus on abstract-level mathematical steps in describing algorithms
instead of describing low-level execution details.

2. Working implementations in C(M) of all major constructions for finite-
state automata, transducers and bimachines are presented.

3. The dissertation provides implementations of real-life programs based
on finite-state automata, transducers and bimachines for a number
of practical tasks such as spelling correction, phonetization, bignum
arithmetic, and more.

Dissertation Publications

The presented dissertation essentially covers Chapters 1-8 of the monograph:

• Mihov, S. and Schulz, K. (2019). Finite-State Techniques: Automata,
Transducers and Bimachines. Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press.

Results presented in the dissertation are published in 11 articles and 1
book chapter – 3 of the articles are published in journals with IMPACT
factor and 7 in journals and proceedings with SJR factor. There are 227
citations (without self-citations) of those papers registered in SCOPUS.

1. Angelova, G. and Mihov, S. (2008). Finite state automata and simple
conceptual graphs with binary conceptual relations. In Supplementary
Proceedings of the 16th International Conference on Conceptual Struc-
tures, ICCS 2008, Toulouse, France, July 7-11, 2008, pages 139–148.

2. Daciuk, J., Mihov, S., Watson, B., and Watson, R. (2000). Incremen-
tal construction of minimal acyclic finite state automata. Computa-
tional Linguistics, 26(1):3–16.
IMPACT factor: Q1, SCOPUS citations: 84

3. Ganchev, H., Mihov, S., and Schulz, K. U. (2008). One-letter au-
tomata: How to reduce k tapes to one. In Hamm, F and Kepser,
S, editor, Logics For Linguistic Structures, volume 201 of Trends in
Linguistics-Studies and Monographs, pages 35–55.

8.4. C(M) PROGRAMS FOR BIMACHINES 213

4. Gerdjikov, S. and Mihov, S. (2017a). Myhill-nerode relation for se-
quentiable structures. CoRR, abs/1706.02910.

5. Gerdjikov, S. and Mihov, S. (2017b). Over which monoids is the
transducer determinization procedure applicable? In Language and
Automata Theory and Applications - 11th International Conference,
LATA 2017, Ume̊a, Sweden, March 6-9, 2017, Proceedings, volume
10168 LNCS, pages 380–392.

6. Gerdjikov, S., Mihov, S., and Schulz, K. U. (2017). A simple method
for building bimachines from functional finite-state transducers. In
Carayol, A. and Nicaud, C., editors, Implementation and Application
of Automata, volume 10329 LNCS, pages 113–125. Springer Interna-
tional Publishing.

7. Mihov, S. and Maurel, D. (2001). Direct construction of minimal
acyclic subsequential transducers. In Proceedings of the Conference
on Implementation and Application of Automata CIAA’2000, volume
2088 of LNCS, pages 217–229. Springer.
SCOPUS citations: 3

8. Mihov, S. and Schulz, K. U. (2004). Fast approximate search in large
dictionaries. Computational Linguistics, 30(4):451–477.
IMPACT factor: Q1, SCOPUS citations: 45

9. Mitankin, P., Gerdjikov, S., and Mihov, S. (2014). An approach
to unsupervised historical text normalisation. In Digital Access to
Textual Cultural Heritage 2014, DATeCH 2014, Madrid, Spain, May
19-20, 2014, pages 29–34.
SCOPUS citations: 3

10. Mitankin, P., Mihov, S., and Schulz, K. U. (2011). Deciding word
neighborhood with universal neighborhood automata. Theoretical
Computer Science, 412(22):2340–2355.
IMPACT factor: Q3, SCOPUS citations: 1

11. Ringlstetter, C., Schulz, K. U., and Mihov, S. (2007). Adaptive text
correction with web-crawled domain-dependent dictionaries. ACM
Transactions on Speech and Language Processing, 4(4).
SCOPUS citations: 10

12. Schulz, K. U. and Mihov, S. (2002). Fast String Correction with
Levenshtein-Automata. International Journal of Document Analysis
and Recognition, 5(1):67–85.
SCOPUS citations: 81

214CHAPTER 8. C(M) IMPLEMENTATIONOF FINITE-STATE DEVICES

Statement of originality

This is to certify, that this dissertation contains original results obtained
from my own research. The results obtained, described, and / or published
by other researchers are duly and thoroughly cited in the bibliography.

This dissertation is not presented in procedures for obtaining a scientific
degree at another college, university or scientific institute.

Signature:
Stoyan Mihov

Bibliography

[Allauzen et al., 2007] Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., and
Mohri, M. (2007). Openfst: A general and efficient weighted finite-state
transducer library. In Holub, J. and Žďárek, J., editors, Implementation
and Application of Automata, pages 11–23, Berlin, Heidelberg. Springer
Berlin Heidelberg.

[Angelova and Mihov, 2008] Angelova, G. and Mihov, S. (2008). Finite state
automata and simple conceptual graphs with binary conceptual relations.
In Supplementary Proceedings of the 16th International Conference on
Conceptual Structures, ICCS 2008, Toulouse, France, July 7-11, 2008,
pages 139–148.

[Béal et al., 2003] Béal, M.-P., Carton, O., Prieur, C., and Sakarovitch, J.
(2003). Squaring transducers: an efficient procedure for deciding func-
tionality and sequentiality. Theoretical Computer Science, 292(1):45 –
63.

[Beesley and Karttunen, 2003] Beesley, K. and Karttunen, L. (2003). Finite
State Morphology. CSLI studies in computational linguistics: Center for
the Study of Language and Information. CSLI Publications.

[Berstel, 1979] Berstel, J. (1979). Transductions and context-free languages.
Leitfäden der angewandten Mathematik und Mechanik. Teubner.

[Choffrut, 1977] Choffrut, C. (1977). Une caractérisation des fonctions
séquentielles et des fonctions sous-séquentielles en tant que relations ra-
tionelles. Theoretical Computer Science, 5:325–338.

[Daciuk et al., 2000] Daciuk, J., Mihov, S., Watson, B., and Watson, R.
(2000). Incremental construction of minimal acyclic finite state automata.
Computational Linguistics, 26(1):3–16.

[Eilenberg, 1974] Eilenberg, S. (1974). Automata, Languages, and Machines
- Volume A, volume volume 59 of Pure and Applied Mathematics. Aca-
demic Press.

215

216 BIBLIOGRAPHY

[Eilenberg, 1976] Eilenberg, S. (1976). Automata, Languages, and Machines
- Volume B. Academic Press.

[Ganchev et al., 2008] Ganchev, H., Mihov, S., and Schulz, K. U. (2008).
One-letter automata: How to reduce k tapes to one. In Hamm, F and
Kepser, S, editor, LOGICS FOR LINGUISTIC STRUCTURES, volume
201 of Trends in Linguistics-Studies and Monographs, pages 35–55. WAL-
TER DE GRUYTER GMBH. Conference in Honor of Uwe Monnich on
his 70th Birthday, Freudenstadt, GERMANY, NOV, 2004.

[Gerdemann and van Noord, 1999] Gerdemann, D. and van Noord, G.
(1999). Transducers from rewrite rules with backreferences. In Proceed-
ings of the 9th Conference of the European Chapter of the Association for
Computational Linguistics (EACL 99), pages 126–133.

[Gerdjikov and Mihov, 2017a] Gerdjikov, S. and Mihov, S. (2017a). Myhill-
nerode relation for sequentiable structures. CoRR, abs/1706.02910.

[Gerdjikov and Mihov, 2017b] Gerdjikov, S. and Mihov, S. (2017b). Over
which monoids is the transducer determinization procedure applicable?
In Language and Automata Theory and Applications - 11th International
Conference, LATA 2017, Ume̊a, Sweden, March 6-9, 2017, Proceedings,
volume 10168 LNCS, pages 380–392.

[Gerdjikov et al., 2017] Gerdjikov, S., Mihov, S., and Schulz, K. U. (2017).
A simple method for building bimachines from functional finite-state
transducers. In Carayol, A. and Nicaud, C., editors, Implementation and
Application of Automata, volume 10329 LNCS, pages 113–125. Springer
International Publishing.

[Hopcroft et al., 2006] Hopcroft, J. E., Motwani, R., and Ullman, J. D.
(2006). Introduction to Automata Theory, Languages, and Computation.
Pearson. 3nd edition.

[Hulden, 2009] Hulden, M. (2009). Finite-State Machine Construction
Methods and Algorithms for Phonology and Morphology. PhD thesis, Uni-
versity of Arizona.

[Hutton, 2007] Hutton, G. (2007). Programming in Haskell. Cambridge
University Press.

[Kaplan and Kay, 1994] Kaplan, R. and Kay, M. (1994). Regular models of
phonological rule systems. Computational Linguistics, 20(3):331–279.

[Karttunen, 1997] Karttunen, L. (1997). The replace operator. In Roche,
E. and Schabes, Y., editors, Finite-State Language Processing, pages 117–
147. MIT Press.

BIBLIOGRAPHY 217

[Karttunen et al., 1997a] Karttunen, L., Chanod, J.-P., Grefenstette, G.,
and Schiller, A. (1997a). Regular expressions for language engineering.
Journal of Natural Language Engineering, 2(4):307–330.

[Karttunen et al., 1997b] Karttunen, L., Gaál, T., and Kempe, A. (1997b).
Xerox finite-state tool. Technical report, Xerox Corporation.

[Kozen, 1997] Kozen, D. C. (1997). Automata and Computability. Springer,
New York, Berlin.

[Lewis and Papadimitriou, 1998] Lewis, H. R. and Papadimitriou, C. H.
(1998). Elements of the Theory of Computation. Prentice-Hall, Upper
Saddle River, New Jersey. 2nd edition.

[Maurel and Guenthner, 2005] Maurel, D. and Guenthner, F. (2005). Au-
tomata and Dictionaries. Texts in Computer Science. College Publica-
tions.

[Mihov and Maurel, 2001] Mihov, S. and Maurel, D. (2001). Direct con-
struction of minimal acyclic subsequential transducers. In Proceed-
ings of the Conference on Implementation and Application of Automata
CIAA’2000, volume 2088 of LNCS, pages 217–229. Springer.

[Mihov and Schulz, 2019] Mihov, S. and Schulz, K. (2019). Finite-State
Techniques: Automata, Transducers and Bimachines. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press.

[Mihov and Schulz, 2004] Mihov, S. and Schulz, K. U. (2004). Fast approx-
imate search in large dictionaries. Computational Linguistics, 30(4):451–
477.

[Mitankin et al., 2014] Mitankin, P., Gerdjikov, S., and Mihov, S. (2014).
An approach to unsupervised historical text normalisation. In Digital
Access to Textual Cultural Heritage 2014, DATeCH 2014, Madrid, Spain,
May 19-20, 2014, pages 29–34.

[Mitankin et al., 2011] Mitankin, P., Mihov, S., and Schulz, K. U. (2011).
Deciding word neighborhood with universal neighborhood automata. The-
oretical Computer Science, 412(22):2340–2355.

[Mohri, 1996] Mohri, M. (1996). On some applications of finite-state au-
tomata theory to natural language processing. Journal of Natural Lan-
guage Engineering, 2:1–20.

[Mohri, 1997] Mohri, M. (1997). Finite-state transducers in language and
speech processing. Computational Linguistics, 23(2):269–311.

[Mohri, 2000] Mohri, M. (2000). Minimization algorithms for sequential
transducers. Theoretical Computer Science, 234:177–201.

218 BIBLIOGRAPHY

[Mohri, 2004] Mohri, M. (2004). Weighted finite-state transducer algo-
rithms. an overview. In Formal Languages and Applications, pages 551–
563. Springer.

[Mohri et al., 2008] Mohri, M., Pereira, F., and Riley, M. (2008). Speech
recognition with weighted finite-state transducers. In Springer Handbook
of Speech Processing, pages 559–584. Springer.

[Mohri and Sproat, 1996] Mohri, M. and Sproat, R. (1996). An efficient
compiler for weighted rewrite rules. In Proceedings of the 34th Meeting of
the Association for Computational Linguistics (ACL’96), pages 231–238,
Santa Cruz, CA.

[Navarro and Raffinot, 2002] Navarro, G. and Raffinot, M. (2002). Flexible
Pattern Matching in Strings. Cambridge University Press, Cambridge,
UK.

[Pratt and Zelkowitz, 2000] Pratt, T. W. and Zelkowitz, M. V. (2000). Pro-
gramming Languages: Design and Implementation (4td Ed.). Pearson.

[Reutenauer and Schützenberger, 1991] Reutenauer, C. and
Schützenberger, M. P. (1991). Minimization of rational word func-
tions. SIAM J. Computing, 20(4):669–685.

[Ringlstetter et al., 2007] Ringlstetter, C., Schulz, K. U., and Mihov, S.
(2007). Adaptive text correction with web-crawled domain-dependent dic-
tionaries. ACM Transactions on Speech and Language Processing, 4(4).

[Roche and Schabes, 1997a] Roche, E. and Schabes, Y. (1997a). Determin-
istic part-of-speech tagging with finite-state transducers. In Roche, E.
and Schabes, Y., editors, Finite-State Language Processing, Language,
Speech, and Communication, pages 205–240. The MIT Press.

[Roche and Schabes, 1997b] Roche, E. and Schabes, Y. (1997b). Introduc-
tion. In Roche, E. and Schabes, Y., editors, Finite-State Language Pro-
cessing, pages 1–66. MIT Press.

[Sakarovitch, 2009] Sakarovitch, J. (2009). Elements of Automata Theory.
Cambridge University Press, New York, NY, USA.

[Schmid, 2006] Schmid, H. (2006). A programming language for finite state
transducers. In Yli-Jyrä, A., Karttunen, L., and Karhumäki, J., editors,
Finite-State Methods and Natural Language Processing, pages 308–309,
Berlin, Heidelberg. Springer Berlin Heidelberg.

[Schulz and Mihov, 2002] Schulz, K. U. and Mihov, S. (2002). Fast String
Correction with Levenshtein-Automata. International Journal of Docu-
ment Analysis and Recognition, 5(1):67–85.

BIBLIOGRAPHY 219

[Schützenberger, 1961] Schützenberger, M.-P. (1961). A remark on finite
transducers. Information and Control, 4:185–196.

[Schützenberger, 1975] Schützenberger, M. P. (1975). Sur les relations ra-
tionnelles. In GI Conference on Automata Theory and Formal Languages,
volume 33 of Springer LNCS, pages 209–213.

[Schwartz et al., 1986] Schwartz, J. T., Dewar, R. B., Schonberg, E., and
Dubinsky, E. (1986). Programming with Sets; an Introduction to SETL.
Springer-Verlag, Berlin, Heidelberg.

[van Noord, 2000] van Noord, G. (2000). Treatment of epsilon moves in
subset construction. Comput. Linguist., 26(1):61–76.

	Preface
	Interest in the Topic and Overview of the Main Results in the Field
	Aims and Objectives of the Dissertation
	Methodology

	Formal preliminaries
	Sets, functions and relations
	Lifting functions to sets and tuples
	Alphabets, words and languages
	Word tuples, string relations and string functions
	The general monoidal perspective

	Monoidal finite-state automata
	Basic concept and examples
	Closure properties of monoidal finite-state automata
	Monoidal regular languages and monoidal regular expressions
	Equivalence between monoidal regular languages and monoidal automaton languages
	Simplifying the structure of monoidal finite-state automata

	Classical finite-state automata and regular languages
	Deterministic finite-state automata
	Determinization of classical finite-state automata
	Additional closure properties for classical finite-state automata
	Minimal deterministic finite-state automata and the Myhill-Nerode equivalence relation
	Minimization of deterministic finite-state automata
	Coloured deterministic finite-state automata
	Pseudo-determinization and pseudo-minimization of monoidal finite-state automata

	Monoidal multi-tape automata and finite-state transducers
	Monoidal multi-tape automata
	Additional closure properties of monoidal multi-tape automata
	Classical multi-tape automata and letter automata
	Monoidal finite-state transducers
	Classical finite-state transducers
	Deciding functionality of classical finite-state transducers

	Deterministic transducers
	Deterministic transducers and subsequential transducers
	A determinization procedure for functional transducers with the bounded variation property
	Deciding the bounded variation property
	Minimal subsequential finite-state transducers - Myhill-Nerode relation for subsequential transducers
	Minimization of subsequential transducers
	Numerical subsequential transducers

	Bimachines
	Basic definitions
	Equivalence of regular string functions and classical bimachines
	Pseudo-minimization of monoidal bimachines
	Direct composition of classical bimachines

	The C(M) language
	Basics and simple examples
	Types, terms, and statements in C(M)

	C(M) implementation of finite-state devices
	C(M) implementations for automata algorithms
	C(M) programs for classical finite-state transducers
	C(M) programs for deterministic transducers
	C(M) programs for bimachines

	Conclusion
	Author's Contributions
	Dissertation Publications
	Statement of originality

