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General Characteristics of the Disser-
tation

Interest in the Topic and Overview of the Main

Results in the Field

Finite-state techniques provide theoretically elegant and computationally ef-
ficient solutions for various (hard, non-trivial) problems in text and nat-
ural language processing [Roche and Schabes, 1997b, Mohri, 1997, Kart-
tunen et al., 1997a], speech processing [Mohri et al., 2008], pattern matching
[Navarro and Raffinot, 2002], knowledge representation [Angelova and Mihov,
2008], and many others. Due to its importance in many fundamental appli-
cations, the theory of finite-state automata and related finite-state machines
has been studied intensively and its development still continues.

The theory of finite-state automata has been described from a compu-
tational point of view in numerous textbooks (e.g. [Hopcroft et al., 2006,
Kozen, 1997, Lewis and Papadimitriou, 1998]). These books are mainly
about finite-state automata and regular languages over a free monoid and
present mostly the basic automata properties such as: the Kleene theorem
for the equivalence of regular languages with finite-state automata languages,
the determinization of finite-state automata, the closures with respect to in-
tersection and complement, the Myhill-Nerod relation and the minimization
of finite-state automata, and constructions of finite-state automata from reg-
ular expressions.

From a theoretical-algebraic point of view, finite automata have been
studied in the monographs [Eilenberg, 1974, Eilenberg, 1976, Berstel, 1979,
Sakarovitch, 2009]. In these books, in addition to the classical case of free
monoids, finite state automata over arbitrary monoids are also considered.
These works also explore a number of additional algebraic properties, as well
as properties of finite-state transducers.

A presentation focused on the applications of the finite-state machines
for searching and natural language processing is presented in the works [Ka-
plan and Kay, 1994, Mohri, 1996, Roche and Schabes, 1997b, Navarro and
Raffinot, 2002, Beesley and Karttunen, 2003, Maurel and Guenthner, 2005].
One of the most common applications is the use of finite-state transducers
for application and representation of replace rules. These techniques are pre-
sented in, e.g. [Mohri and Sproat, 1996, Karttunen, 1997, Kaplan and Kay,
1994, Gerdemann and van Noord, 1999, Hulden, 2009].

Finite-state transducers and more specifically subsequential finite-state
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transducers with outputs in numerical monoids are at the heart of modern
speech recognition applications. They are described, for example, in [Mohri,
1997, Mohri et al., 2008]. The results for subsequential finite-state transduc-
ers are generalized for the case of other output monoids in [Gerdjikov and
Mihov, 2017b, Gerdjikov and Mihov, 2017a].

Similarity search is another important application area of finite-state au-
tomata and transducers. Application of finite state techniques for text cor-
rection is described in [Ringlstetter et al., 2007, Mitankin et al., 2014]. In
[Schulz and Mihov, 2002, Mihov and Schulz, 2004, Mitankin et al., 2011]
efficient methodologies for approximate dictionary search and constructions
of deterministic Levenshtein finite-state automata are presented.

Due to the complexity of their construction, the theory of bimachines is
relatively poorly developed. After being introduced and studied in [Schützenberger,
1961, Reutenauer and Schützenberger, 1991], they are applied for natural
language processing, for example, in [Roche and Schabes, 1997b]. In order
to overcome the complexities of the bimachine constructions, in [Gerdjikov
et al., 2017] we introduce a new bimachine construction, which avoids the
preliminary step for constructing an intermedate unambiguous transducer.
For certain classes of transducers this construction is shown to lead to expo-
nentially smaller number of states in the resulting bimachine.

There are numerous implementations of software libraries for the con-
struction and application of finite-state automata and tansducers. The most
widely used systems that also offer transducer constructions are [Karttunen
et al., 1997b, Schmid, 2006, Allauzen et al., 2007].

Aims and Objectives of the Dissertation

The aim of the dissertation is to describe the recent advances of the finite
state technology, following a combined mathematical and implementational
point of view. Though concepts are introduced in a mathematically rigorous
way and correctness proofs for all procedures are given, the dissertation is
not meant as a purely theoretical presentation of the subject. The goal of
the dissertation is to provide both – formal construction for finite-state ma-
chines with correctness proofs and working implementations of all presented
constructions together with corresponding documentation. These allows one
to understand and implement complex finite-state based procedures for prac-
tically relevant tasks.
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Methodology

The presentation in the dissertation follows the following principles:

1. Theoretical generalisations aiming the extension of the scope of appli-
cability.
The spectrum of finite-state machines that are covered is not restricted
to classical finite-state automata and “recognition” tools. We also treat
important “input-output” and “translation” devices such as multi-tape
automata, finite-state transducers and bimachines. All these machines
can be used, e.g., for efficient text rewriting, information extraction
from textual corpora, and morphological analysis.

2. Practical feasibility of the created abstract constructions.
After a conceptual introduction, full implementations/executable pro-
grams are given for all procedures, including a documentation of the
programming code. In this way it is possible to observe the concrete
behaviour of algorithms for arbitrary examples. It is also not difficult
to enhance the given programs by means of self-written trace function-
alities, which helps to even more thorough exploration of particular
details of the algorithms and programs presented.

3. Applicability to substantial practical problems.
Conceptual descriptions and implementations in a natural way lead
to an intermediate goal reached at the end of the dissertation. Here
we show also how to use the technology introduced for solving some
important practical problems like spelling correction, phonetization,
bignum arithmetics and others.

Approbation of the Results

Results included in the dissertation are presented at:

1. Conference on Mathematical Logic, SU “St. Kliment Ohridski”, Gy-
olechitsa, 12 May 2018 .

2. Conference on Mathematical Logic, SU “St. Kliment Ohridski”, Gy-
olechitsa, 7 October 2016 .

3. Gastvortrag, Centrum für Informations und Sprachverarbeitung (CIS),
Ludwig-Maximilians Universität München, 23 Februar 2015
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4. Conference on Mathematical Logic, SU “St. Kliment Ohridski”, Gy-
olechitsa, 19 September 2014 .

Some of the results were reported at the following international conferences:

1. 11th International Conference on Language and Automata Theory and
Applications, LATA 2017; Umea; Sweden; 6 March 2017

2. 22nd International Conference on Implementation and Application of
Automata, CIAA 2017; Marne-la-Vallee; France; 27 June 2017

3. International Conference on Advanced Computing for Innovation, AComIn
2015; Sofia; Bulgaria; 10 November 2015

4. 1st International Conference on Digital Access to Textual Cultural Her-
itage, DATeCH 2014; Madrid; Spain; 19 May 2014

5. 11th IAPR International Workshop on Document Analysis Systems,
DAS 2014; Tours; France; 7 April 2014

6. 12th International Conference on Document Analysis and Recognition,
ICDAR 2013; Washington, DC; United States; 25 August 2013

7. 7th Conference on Computability in Europe, CiE 2011; Sofia; Bulgaria;
27 June 2011

Dissertation Publications

The presented dissertation essentially covers Chapters 1-8 of the monograph:

• Mihov, S. and Schulz, K. (2019). Finite-State Techniques: Automata,
Transducers and Bimachines. Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press.

Results presented in the dissertation are published in 11 articles and 1
book chapter – 3 of the articles are published in journals with IMPACT factor
and 7 in journals and proceedings with SJR factor. There are 227 citations
(without self-citations) of those papers registered in SCOPUS.

1. Angelova, G. and Mihov, S. (2008). Finite state automata and simple
conceptual graphs with binary conceptual relations. In Supplementary
Proceedings of the 16th International Conference on Conceptual Struc-
tures, ICCS 2008, Toulouse, France, July 7-11, 2008, pages 139–148.
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2. Daciuk, J., Mihov, S., Watson, B., and Watson, R. (2000). Incremental
construction of minimal acyclic finite state automata. Computational
Linguistics, 26(1):3–16.
IMPACT factor: Q1, SCOPUS citations: 84

3. Ganchev, H., Mihov, S., and Schulz, K. U. (2008). One-letter au-
tomata: How to reduce k tapes to one. In Hamm, F and Kepser,
S, editor, Logics For Linguistic Structures, volume 201 of Trends in
Linguistics-Studies and Monographs, pages 35–55.

4. Gerdjikov, S. and Mihov, S. (2017a). Myhill-nerode relation for se-
quentiable structures. CoRR, abs/1706.02910.

5. Gerdjikov, S. and Mihov, S. (2017b). Over which monoids is the
transducer determinization procedure applicable? In Language and
Automata Theory and Applications - 11th International Conference,
LATA 2017, Ume̊a, Sweden, March 6-9, 2017, Proceedings, volume
10168 LNCS, pages 380–392.

6. Gerdjikov, S., Mihov, S., and Schulz, K. U. (2017). A simple method
for building bimachines from functional finite-state transducers. In
Carayol, A. and Nicaud, C., editors, Implementation and Application of
Automata, volume 10329 LNCS, pages 113–125. Springer International
Publishing.

7. Mihov, S. and Maurel, D. (2001). Direct construction of minimal
acyclic subsequential transducers. In Proceedings of the Conference
on Implementation and Application of Automata CIAA’2000, volume
2088 of LNCS, pages 217–229. Springer.
SCOPUS citations: 3

8. Mihov, S. and Schulz, K. U. (2004). Fast approximate search in large
dictionaries. Computational Linguistics, 30(4):451–477.
IMPACT factor: Q1, SCOPUS citations: 45

9. Mitankin, P., Gerdjikov, S., and Mihov, S. (2014). An approach to
unsupervised historical text normalisation. In Digital Access to Textual
Cultural Heritage 2014, DATeCH 2014, Madrid, Spain, May 19-20,
2014, pages 29–34.
SCOPUS citations: 3

10. Mitankin, P., Mihov, S., and Schulz, K. U. (2011). Deciding word
neighborhood with universal neighborhood automata. Theoretical
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Computer Science, 412(22):2340–2355.
IMPACT factor: Q3, SCOPUS citations: 1

11. Ringlstetter, C., Schulz, K. U., and Mihov, S. (2007). Adaptive text
correction with web-crawled domain-dependent dictionaries. ACM
Transactions on Speech and Language Processing, 4(4).
SCOPUS citations: 10

12. Schulz, K. U. and Mihov, S. (2002). Fast String Correction with
Levenshtein-Automata. International Journal of Document Analysis
and Recognition, 5(1):67–85.
SCOPUS citations: 81

Content of the Dissertation

The dissertation contains 226 pages, 8 chapters, preface, conclusion and bib-
liography, 38 figures, and 5 pages of references, which include 48 titles. The
main body of the dissertation covers Chapters 1-8 of the monograph [Mihov
and Schulz, 2019].

1 Formal preliminaries

The aim of this chapter is twofold. First, we recall a collection of basic math-
ematical notions that are needed for the discussions of the following chapters.
Second, we have a first - still purely mathematical - look at the central top-
ics of the dissertation: languages, relations and functions between strings, as
well as important operations on languages, relations and functions. We also
introduce monoids, a class of algebraic structures that gives an abstract view
on strings, languages, and relations.

1.1 Sets, functions and relations

In this section the definitions and the notations for sets, n-tuples, relations
and functions are introduced. We define the operations composition of rela-
tions and functions, projection and inversion of relations, image of a set by a
binary relations, as well as the reflexive and transitive closure of binary rela-
tions (Kleene relational star R∗). For binary relations, the concepts of reflex-
ivity, symmetry, transitivity and antisymmetry are introduced. The concepts
of equivalence relation and equivalence classes, refinement of a equivalence
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relation, as well as injectivity, surjectivity and bijectivity of functions are
defined in the standard way.
Convension: In what follows, by a function we always mean a partial func-
tion if not mentioned otherwise. As a general convention, when writing an
expression f(m) we always mean that f is defined for m. An expression !f(n)
means that f is defined for n.

The following concepts are more specific:

Definition 1.1.6 A binary relation R ⊆ M × N is infinitely ambiguous iff
there exists an m ∈M such that the set R({m}) is infinite.

Definition 1.1.9 Let R ⊆ ∏n
i=1Mi where n ≥ 2. The relation

R×i := {m̄×i | R(m̄)}

is called the projection of R w.r.t. the set of coordinates {1, . . . , i − 1, i +
1, . . . , n}. Let ∅ 6= {i1, . . . , ik} ⊆ {1, . . . , n}. Then

Proj(〈i1, . . . , ik〉, R) := {〈mi1 , . . . ,mik〉 | 〈m1, . . . ,mn〉 ∈ R}

is called the generalized projection of R w.r.t. the sequence of coordinates
〈i1, . . . , ik〉.

Definition 1.1.16 Let R ⊆ ∏n
i=1 Mi where n ≥ 2. Let I = 〈i1, . . . , ik〉 and

J = 〈j1, . . . , jl〉 be two sequences where {i1, . . . , ik} and {j1, . . . , jl} are non-
empty subsets of the index set {1, . . . , n}. Then Func(I, J, R) denotes the
function that maps each element 〈mi1 , . . . ,mik〉 of Proj(I, R) to the set

{〈mj1 , . . . ,mjl〉 ∈ Proj(J,R) | ∃〈m1, . . .mn〉 ∈ R}.

1.2 Lifting functions to sets and tuples

We now introduce two ways of “lifting” a function that are used later at
many places.

Definition 1.2.1 Let f : M → N be a function. The “set-lifted” version of
f is the function f̂ : 2M → 2N defined pointwise:

f̂(T ) = {f(t) | t ∈ T ∩ dom(f)}.

The function f̂ is a total function – f̂(T ) is defined for any T ⊆M .

Later we will simply use the symbol f to denote a lifted version if this does
not lead to confusion.
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Proposition 1.2.3 Let f : M → N be a function, let Ti ⊆ M for every
i ∈ I. Then

f(
⋃
i∈I
Ti) =

⋃
i∈I
f(Ti).

Definition 1.2.4 Let f : Mk → N be a k-ary function, let n ≥ 2. The
“tuple-lifted” version of f is the k-ary function f̄ : (Mn)k → Nn defined
component-wise:

f̄(〈m1,1, . . . ,m1,n〉, . . . , 〈mk,1, . . . ,mk,n〉)
= 〈f(m1,1, . . . ,mk,1), . . . , f(m1,n, . . . ,mk,n)〉.

1.3 Alphabets, words and languages

Words, languages, and operations on languages are the formal basis of classic
finite state machines. In this section, these concepts are introduced in the
standard way.

An alphabet Σ is a set of symbols. If not mentioned otherwise, alphabets
are assumed to be non-empty and finite.

Definition 1.3.1 Let Σ be an alphabet. A word w over Σ is an n-tuple

w = 〈a1, . . . , an〉

where n ≥ 0 and ai ∈ Σ for i = 1, . . . , n. The integer n is called the length
of w and denoted |w|. The empty tuple 〈〉 = ε, which has length 0, is called
the empty word. Σ∗ denotes the set of all words over Σ, and Σε := Σ ∪ {ε}.
The concatenation of two words u = 〈a1, . . . , an〉 and v = 〈b1, . . . , bm〉 ∈ Σ∗

is
u · v := 〈a1, . . . , an, b1, . . . , bm〉 .

Definition 1.3.3 Let t ∈ Σ∗, assume that t can be represented in the form
t = u · v ·w for some u, v, w ∈ Σ∗. Then v ∈ Σ∗ is an infix of t. If u = ε, then
v is a prefix of t. If w = ε, then v is a suffix of t. The notation v ≤ t (v < t)
expresses that v is a (proper) prefix of t.

Definition 1.3.9 Let Σ be an alphabet. A subset L ⊆ Σ∗ is called a lan-
guage over Σ.

Definition 1.3.10 Let L1, L2 be classical languages over the alphabet Σ.
Then

L1 · L2 := {w1 · w2 | w1 ∈ L1, w2 ∈ L2}
is called the concatenation of L1 and L2.
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Definition 1.3.13 Let L be a language. We inductively define

1. L0 = {ε},

2. Lk+1 = Lk · L,

The language L∗ =
⋃∞
k=0 L

k is called the Kleene star of L.

1.4 Word tuples, string relations and string functions

For all notions introduced in the previous section there are natural general-
izations when moving from elements to n-tuples.

Definition 1.4.1 The concatenation of n-tuples of words (or n-way concate-
nation of words) is defined as

〈u1, . . . , un〉 ·̄ 〈v1, . . . , vn〉 := 〈u1 · v1, . . . , un · vn〉.

Definition 1.4.6 Let n ≥ 1. For each i = 1, . . . , n, let Σi be an alphabet.
Then each set R ⊆ ∏n

i=1 Σ∗i is called an n-ary string relation.

Definition 1.4.8 Let R1, R2 be n-ary string relations. The concatenation
of R1 and R2 is

R1 ·̄ R2 := {ū ·̄ v̄ | ū ∈ R1, v̄ ∈ R2}.

Definition 1.4.12 The (concatenation) Kleene star for an n-ary string re-
lation R is defined as R∗ =

⋃∞
k=0 R

k, where

• R0 = {ε̄},

• Rk+1 = Rk ·̄ R,

1.5 The general monoidal perspective

In the last two sections we introduced algebraic structures that describe
strings and n-tuples of strings. These two structures are special cases of the
general concept of a monoid. In this section we introduce the general concept
of a monoid, and develop a kind of rudimentary “formal language theory”
for general monoids.

Definition 1.5.1 A monoid M is a triple 〈M, ◦, e〉 where

• M is a non-empty set, the set of monoid elements,
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• ◦ : M ×M →M is the monoid operation (we will use infix notation),

• e ∈M is the monoid unit element,

and the following conditions hold:

• ∀a, b, c ∈M : a ◦ (b ◦ c) = (a ◦ b) ◦ c (associativity of “◦”),

• ∀a ∈M : a ◦ e = e ◦ a = a (e is a unit element).

Definition 1.5.4 Let M = 〈M, ◦, e〉 be a monoid. A monoidal language
over M is a subset of M .

Definition 1.5.5 Let M = 〈M, ◦, e〉 be a monoid. For T1, T2 ⊆M the set

T1 ◦ T2 := {t1 ◦ t2 | t1 ∈ T1, t2 ∈ T2}.

is called the monoidal product of the monoidal languages T1 and T2.

Definition 1.5.6 Let M = 〈M, ◦, e〉 be a monoid and T ⊆ M . We induc-
tively define

1. T 0 = {e},

2. T k+1 = T k ◦ T ,

We call T ∗ =
⋃∞
k=0 T

k the iteration or (monoidal) Kleene star of T .

Definition 1.5.7 A subset T ⊆ M of a monoid M = 〈M, ◦, e〉 is a sub-
monoid of M iff e ∈ T and T 2 ⊆ T .

Proposition 1.5.8 For any subset T ⊆ M of a monoid M, the set T ∗ is
the smallest submonoid of M containing T .

Definition 1.5.9 Let M1 = 〈M1, ◦, e1〉 and M2 = 〈M2, •, e2〉 be monoids.
A total function h : M1 → M2 is a monoid homomorphism iff the following
conditions hold:

• h(e1) = e2,

• ∀a, b ∈M1 : h(a ◦ b) = h(a) • h(b).

Proposition 1.5.14 Let M = 〈M, ◦, e〉 be a monoid, let Σ be an alphabet
and f : Σ→M be a total function. Then the natural extension hf of f over
Σ∗, inductively defined as
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1. hf (ε) = e

2. hf (α · a) = hf (α) ◦ f(a), where α ∈ Σ∗, a ∈ Σ,

is a homomorphism between the monoids Σ∗ and M and the unique homo-
morphism extending f .

Definition 1.5.15 Let n ≥ 1, for 1 ≤ i ≤ n let Mi = 〈Mi, ◦i, ei〉 be a
monoid. Let ē := 〈e1, . . . , en〉 and let ◦̄ : (

∏n
i=1Mi) × (

∏n
i=1Mi) →

∏n
i=1Mi

denote the function

〈u1, . . . , un〉 ◦̄ 〈v1, . . . , vn〉 := 〈u1 ◦1 v1, . . . , un ◦n vn〉 .

Then the triple
∏n
i=1Mi := 〈∏n

i=1Mi, ◦̄, ē〉 is called the Cartesian product of
the monoids Mi.

2 Monoidal finite-state automata

Here we immediately look at the more general concept of a monoidal finite-
state automaton, and the focus of this chapter are general constructions
and results for finite-state automata over arbitrary monoids and monoidal
languages.

2.1 Basic concept and examples

We introduce the central concept of this chapter.

Definition 2.1.1 A monoidal finite-state automaton (MSA) is a tuple of the
form A = 〈M, Q, I, F,∆〉 where

• M = 〈M, ◦, e〉 is a monoid,

• Q is a finite set of states,

• I ⊆ Q is the set of initial states,

• F ⊆ Q is the set of final states, and

• ∆ ⊆ Q×M ×Q is a finite set called the transition relation.

Triples 〈p,m, q〉 ∈ ∆ are called transitions. The transition 〈p,m, q〉 begins at
p, ends at q and has the label m.
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Definition 2.1.3 Classical finite-state automata are monoidal finite-state
automata where the underlying monoid is the free monoid over a finite al-
phabet Σ and the transition labels are in Σε = Σ ∪ {ε}.

Definition 2.1.7 Let A = 〈M, Q, I, F,∆〉 be a monoidal finite-state au-
tomaton. A proper path in A is a finite sequence of k > 0 transitions

π = 〈q0, a1, q1〉 〈q1, a2, q2〉 . . . 〈qk−1, ak, qk〉

where 〈qi−1, ai, qi〉 ∈ ∆ for i = 1 . . . k. The number k is called the length of
π, we say that π starts in q0 and ends in qk. States q0, . . . , qk are the states
on the path π. The monoid element w = a1 ◦ . . . ◦ ak is called the label of π.
We may denote the path π as

π = q0 →a1 q1 . . .→ak qk.

The null path of q ∈ Q is 0q starting and ending in q with label e. A successful
path is a path starting in an initial state and ending in a final state.

Definition 2.1.10 Let A be as above. Then the set of all labels of successful
paths of A is called the monoidal language accepted (or recognized) by A and
is denoted L(A).

Definition 2.1.14 Let A be a monoidal finite-state automata. The gener-
alized transition relation ∆∗ is defined as the smallest subset of Q×M ×Q
with the following closure properties:

• for all q ∈ Q we have 〈q, e, q〉 ∈ ∆∗.

• For all q1, q2, q3 ∈ Q and w, a ∈ M : if 〈q1, w, q2〉 ∈ ∆∗ and 〈q2, a, q3〉 ∈
∆, then also 〈q1, w ◦ a, q3〉 ∈ ∆∗.

Theorem 2.1.22 Any monoidal finite-state automaton is the homomorphic
image of a classical finite-state automaton. Any monoidal automaton lan-
guage can be obtained as a homomorphic image of a classical automaton
language.

2.2 Closure properties of monoidal finite-state automata

We show that the class of monoidal automaton languages is closed under the
main monoidal operations.

Proposition 2.2.1 The class of monoidal automaton languages is closed
under monoid homomorphisms. The class of monoidal automaton languages
over a given monoidM is closed under the regular operations union, monoidal
product, and monoidal Kleene-Star.

12



2.3 Monoidal regular languages and monoidal regular
expressions

Definition 2.3.1 Let M = 〈M, ◦, e〉 be a monoid. We define the class of
monoidal regular languages over M by induction:

1. ∅ is a monoidal regular language over M;

2. if m ∈M , then {m} is a monoidal regular language over M;

3. if L1, L2 ⊆M are monoidal regular languages over M, then

• L1 ∪ L2 is a monoidal regular language over M (union),

• L1 ◦ L2 is a monoidal language over M (monoidal product, cf.
Def. 1.5.5),

• L∗1 is a monoidal regular language overM (monoidal Kleene star,
cf. Def. 1.5.6).

Definition 2.3.5 Let M = 〈M, ◦, e〉 be a monoid. A monoidal regular ex-
pression overM forM∩{(, ), ∗,+, ·, ∅} = ∅ is a word overM∪{(, ), ∗,+, ·, ∅}.The
set of monoidal regular expressions over M is defined by induction:

1. ∅ is a monoidal regular expression over M;

2. if m ∈M , then m is a monoidal regular expression over M;

3. if E1 and E2 are monoidal regular expressions over M, then

• (E1 + E2) is a monoidal regular expression over M,

• (E1 · E2) is a monoidal regular expression over M,

• (E∗1) is a monoidal regular expression over M.

2.4 Equivalence between monoidal regular languages
and monoidal automaton languages

In this section we show that monoidal regular expressions and monoidal
finite-state automata yield two descriptions of the same class of languages.

Proposition 2.4.1

1. (Empty language) For A∅ = 〈M, ∅, ∅, ∅, ∅〉 we have L(A∅) = ∅.
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2. (Single element languages) Let m ∈ M . For the monoidal finite-
state automaton Am = 〈M, {q0, q1}, {q0}, {q1}, {〈q0,m, q1〉}〉 we have
L(Am) = {m}.

Theorem 2.4.2 (Kleene) A monoidal language is regular if and only if it
is a monoidal automaton language.

2.5 Simplifying the structure of monoidal finite-state
automata

In contrast to the operations considered in Section 2.2 the operations con-
sidered here do not modify the monoidal language of the given automaton.
The goal is rather to simplify automata from a structural point of view, thus
facilitating the recognition process.

Definition 2.5.1 A monoidal finite-state automaton A = 〈M, Q, I, F,∆〉 is
trimmed iff each state q ∈ Q is on a successful path of A.

It is straightforward to check for a given state q ∈ Q of a given monoidal
finite-state automaton A if it is on a successful path. In the negative case we
may delete q and all transitions leading to or departing from q. In this way,
a trimmed monoidal finite-state automaton A′ equivalent to A is obtained.

Definition 2.5.2 Let A = 〈M, Q, I, F,∆〉 be a monoidal finite-state au-
tomaton whereM = 〈M, ◦, e〉. A is called e-free iff ∆ ⊆ Q× (M \ {e})×Q.

Proposition 2.5.4 For any monoidal finite-state automaton A = 〈M, Q, I, F,∆〉
there exists an equivalent e-free monoidal finite-state automaton A’ with the
same set of states.

Proposition 2.5.6 For any monoidal finite-state automaton A = 〈M, Q, I, F,∆〉
there exists an equivalent e-free monoidal finite-state automaton A’ with the
same set of states such that for each q ∈ Q we have LA(q) = LA′(q).

3 Classical finite-state automata and regular

languages

Classical finite-state automata represent the most important class of monoidal
finite-state automata. Since the underlying monoid is free, this class of au-
tomata has several interesting specific features. In this chapter we present the
main properties in regards to determinization and minimization of classical
finite-state automata.
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3.1 Deterministic finite-state automata

Definition 3.1.1 Let A = 〈Σ, Q, I, F,∆〉 be a classical finite-state automa-
ton. A is deterministic iff the following conditions hold:

• A has exactly one initial state q0,

• all transition labels are letters in Σ and

• 〈p, a, q〉 ∈ ∆ and 〈p, a, q′〉 ∈ ∆ implies q = q′ for all triples in ∆.

In this situation the transition relation can be described as a (partial) func-
tion δ : Q× Σ→ Q.

Deterministic finite-state automata are often represented in the form

〈Σ, Q, q0, F, δ〉

.

Definition 3.1.4 Let D ⊆ Σ∗ be a finite set of words over the alphabet Σ.
The trie for D is the deterministic finite-state automaton

AD = 〈Σ,Pref (D), ε,D, δ〉

where
δ = {〈α, σ, α · σ〉 | σ ∈ Σ & α, α · σ ∈ Pref (D)}.

The proof of the following proposition is obvious.

Proposition 3.1.5 Let D ⊆ Σ∗ be a finite set of words. Then

1. L(AD) = D,

2. Each state q of AD can be reached on exactly one path from the initial
state ε. The label of this path is the string q.

3.2 Determinization of classical finite-state automata

Our next aim is to show that each classical finite-state automaton can be
effectively converted to an equivalent deterministic classical finite-state au-
tomaton.

Proposition 3.2.1 Every monoidal finite-state automaton A = 〈Σ, Q, I, F,∆〉
over the free monoid Σ∗ can be converted to an equivalent classical finite-state
automaton A′ without ε-transitions with a set of states Q′ such that Q ⊆ Q′

and for each q ∈ Q we have LA(q) = LA′(q).
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Theorem 3.2.2 (Determinization of classical finite-state automata)

Every classical finite-state automaton A = 〈Σ, Q, I, F,∆〉 can be converted
to an equivalent deterministic finite-state automaton AD with total transition
function.

3.3 Additional closure properties for classical finite-
state automata

Proposition 3.3.1 (Complementing deterministic FSA) Let

A = 〈Σ, Q, q0, F, δ〉

be a deterministic finite-state automaton where δ is a total function. Let

A′ = 〈Σ, Q, q0, Q \ F, δ〉 .

Then L(A′) = Σ∗ \ L(A).

Proposition 3.3.2 Let A1 = 〈Σ, Q1, I1, F1,∆1〉 and A2 = 〈Σ, Q2, I2, F2,∆2〉
be two classical ε-free finite-state automata. Then the following holds:

1. (Intersection for ε-free classical finite-state automata) For the finite-
state automaton

A := 〈Σ, Q1 ×Q2, I1 × I2, F1 × F2,∆
′〉

where ∆′ := {〈〈q1, q2〉 , a, 〈r1, r2〉〉 | 〈q1, a, r1〉 ∈ ∆1 & 〈q2, a, r2〉 ∈ ∆2}
we have L(A) = L(A1) ∩ L(A2).

2. (Difference for deterministic classical finite-state automata) If A2 is a
deterministic classical finite-state automaton and the transition func-
tion of A2 is total, then for the finite-state automaton

A := 〈Σ, Q1 ×Q2, I1 × I2, F1 × (Q2 \ F2),∆′〉

where ∆′ := {〈〈q1, q2〉 , a, 〈r1, r2〉〉 | 〈q1, a, r1〉 ∈ ∆1 & 〈q2, a, r2〉 ∈ ∆2}
we have L(A) = L(A1) \ L(A2).

Proposition 3.3.3 Let A := 〈Σ∗, Q, F, I,∆〉 be a monoidal finite-state au-
tomaton over the free monoid Σ∗. Then for the monoidal finite-state automa-
ton

A′ := 〈Σ∗, Q, F, I,∆′〉
where ∆′ = {〈q2, ρ(a), q1〉 | 〈q1, a, q2〉 ∈ ∆} we have L(A′) = ρ(L(A)).

Corollary 3.3.4 The class of languages accepted by classical finite-state au-
tomata is closed under complement, intersection, set difference, and reversal.
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3.4 Minimal deterministic finite-state automata and
the Myhill-Nerode equivalence relation

In order to find a minimal deterministic automaton for a classical language
it is important to take an algebraic perspective.

Definition 3.4.1 An equivalence relation R ⊆ Σ∗ × Σ∗ is called right in-
variant if

∀u, v ∈ Σ∗ : u R v → (∀w ∈ Σ∗ : u · w R v · w).

Definition 3.4.2 Let L ⊆ Σ∗ be a language, let R ⊆ Σ∗×Σ∗ be an equiva-
lence relation. L and R are called compatible if

∀u, v ∈ Σ∗ : (u ∈ L & u R v)→ v ∈ L.

Proposition 3.4.4 Let R ⊆ Σ∗×Σ∗ be a right invariant equivalence relation
such that the index of R is finite, let L ⊆ Σ∗ be a language over Σ compatible
with R. Then for the deterministic classical finite-state automaton

AR,L = 〈Σ, {[s]R | s ∈ Σ∗}, [ε]R, {[s]R | s ∈ L}, δR〉

with transition function δR = {〈[u]R, a, [u · a]R〉 |u ∈ Σ∗, a ∈ Σ} we have
L(AR,L) = L.

Proposition 3.4.7 Let A = 〈Σ, Q, q0, F, δ〉 be a deterministic classical finite-
state automaton. Then

1. RA := {〈u, v〉 ∈ Σ∗ × Σ∗ | δ∗(q0, u) = δ∗(q0, v)} is a right invariant
equivalence relation and L(A) is compatible with RA,

2. the automaton ARA,L(A) is isomorphic to A by the state renaming func-
tion h : {[s]RA | s ∈ Σ∗} → Q defined as h([w]RA) = δ∗(q0, w).

Definition 3.4.8 Let L ⊆ Σ∗ be a language over Σ. Then the relation

RL = {〈u, v〉 ∈ Σ∗ × Σ∗ | ∀w ∈ Σ∗ : u · w ∈ L iff v · w ∈ L}

is called the Myhill-Nerode relation for the language L.

Proposition 3.4.9 Let L ⊆ Σ∗ be a language over Σ. Then the Myhill-
Nerode relation RL is a right invariant equivalence relation and RL is com-
patible with L.
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Definition 3.4.10 Let RL have finite index. Then the canonical determin-
istic automaton ARL,L for RL and L is called the Myhill-Nerode automaton
for the language L.

Proposition 3.4.12 Let A = 〈Σ, Q, q0, F, δ〉 be a classical deterministic
finite-state automaton. Then RA ⊆ RL(A).

Theorem 3.4.13 For each classical deterministic finite-state automaton there
exists a unique (up to renaming of states) equivalent deterministic finite-state
automaton that is minimal with respect to the number of states.

Theorem 3.4.14 Let L ⊆ Σ∗ be a classical language. Then L is a classical
automaton language iff the index of RL is finite.

Proposition 3.4.17 A deterministic finite-state automaton A = (Σ, Q, q0, F, δ)
is minimal iff distinct states of A are never equivalent.

3.5 Minimization of deterministic finite-state automata

Given a deterministic finite-state automaton A = 〈Σ, Q, q0, F, δ〉 for the lan-
guage L(A) = L we now show how to build an equivalent minimal automaton
AL by simultaneously identifying all equivalent states.

Definition 3.5.1 The relations Ri ⊆ Q×Q (i ≥ 0) are formally defined as

q Ri p :⇔ ∀α ∈ Σ∗ s.th. |α| ≤ i : (δ∗(q, α) ∈ F ↔ δ∗(p, α) ∈ F ).

Lemma 3.5.2 For all states q, p ∈ Q the following two conditions are equiv-
alent:

1. ∀α ∈ Σ∗ s.th. |α| ≤ i+ 1 : (δ∗(q, α) ∈ F ↔ δ∗(p, α) ∈ F ),

2. (a) ∀α ∈ Σ∗ s.th. |α| ≤ i : (δ∗(q, α) ∈ F ↔ δ∗(p, α) ∈ F ), and

(b) ∀σ ∈ Σ, ∀α ∈ Σ∗ s.th. |α| ≤ i : (δ∗(δ(q, σ), α) ∈ F ↔ δ∗(δ(p, σ), α) ∈
F ).

Proposition 3.5.3

q Ri+1 p ⇔ q Ri p & ∀a ∈ Σ : δ(q, a) Ri δ(p, a)
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Corollary 3.5.4 Let A = 〈Σ, Q, q0, F, δ〉 be a deterministic finite-state au-
tomaton where δ is total and each state is reachable. Then the relation
R =

⋂∞
i=0 Ri, where

q R0 p ⇔ (q ∈ F ↔ p ∈ F )

q Ri+1 p ⇔ q Ri p & ∀a ∈ Σ : δ(q, a) Ri δ(p, a)

coincides with the equivalence of states ≡ for A. The automaton

A′ = 〈Σ, {[q]R | q ∈ Q}, [q0]R, {[f ]R | f ∈ F}, δ′〉

where δ′([q]R), σ) := [δ(q, σ)]R is the minimal deterministic automaton equiv-
alent to A.

Definition 3.5.5 Let g : Q→ X. Then the equivalence relation kerQ(g) ⊆
Q×Q defined as

〈p, q〉 ∈ kerQ(g) :⇔ g(p) = g(q)

is called the kernel of g over Q.

Proposition 3.5.6 Let us define f : Q→ {0, 1}

f(q) :=

{
1 if q ∈ F
0 otherwise

and for every a ∈ Σ and i ∈ IN the function f (i)
a : Q→ Q/Ri as

f (i)
a (q) := [δ(q, a)]Ri .

Then

1. R0 = kerQ(f)

2. Ri+1 =
⋂
a∈Σ kerQ(f (i)

a ) ∩Ri

Remark 3.5.9 For finite languages there exist direct methods for construct-
ing the minimal deterministic finite-state automaton which provide better
efficiency [Daciuk et al., 2000].
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3.6 Coloured deterministic finite-state automata

We introduce a simple generalization of deterministic finite-states automata
called coloured deterministic finite-state automata and show how this gener-
alization can be represented by classical automata

Definition 3.6.1 Let C be a finite set called the set of colours. A C-coloured
deterministic finite-state automaton is a deterministic finite-state automaton
〈Σ, Q, q0, F, δ〉 with total transition function δ together with a surjective total
function col : F → C. We write A = 〈Σ, C,Q, q0, F, δ, col〉 for the coloured
automaton. Colour col(q) is called the colour of state q ∈ F . The lan-
guage L(A) accepted by a coloured automaton A is defined as usual, ignoring
colours.

Definition 3.6.2 Let A = 〈Σ, C,Q, q0, F, δ, col〉 be a C-coloured determin-
istic finite-state automaton. The colouring of words recognized by A is the
function colA : L(A)→ C,w 7→ col(δ∗(q0, w)).

Proposition 3.6.3 Let L ⊆ Σ∗ be a language and let c : L → C be a
colouring function for the words of L. Consider the modified language

Lc := {α · c(α) |α ∈ L} ⊆ Σ∗ · C.

Let A = 〈Σ, C,Q, q0, F, δ, col〉 be a C-coloured deterministic finite-state au-
tomaton such that L(A) = L and colA = c. Let

Ac := 〈Σ ∪ C,Q ∪ {f}, q0, {f}, δ ∪ {〈q, col(q), f〉 | q ∈ F}〉

where f 6∈ Q is a new state. Then L(Ac) = Lc.

Using the correspondence from Proposition 3.6.3 it is possible to trans-
fer classical automata results to the case of coloured automata, including
minimization results.

Theorem 3.6.12 For each coloured deterministic finite-state automaton there
exists a unique (up to renaming of states) equivalent coloured deterministic
finite-state automaton that is minimal with respect to the number of states.

Proposition 3.6.14 A coloured deterministic finite-state automaton A is
minimal iff distinct states of A are never equivalent.

Definition 3.6.15 We introduce equivalence relations Ri (i ≥ 0) on Q, in
this case inductively defining

q R0 p ↔ (q ∈ F ↔ p ∈ F ) & (q ∈ F → col(q) = col(p))

q Ri+1 p ↔ q Ri p & ∀a ∈ Σ : δ(q, a) Ri δ(p, a).
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Corollary 3.6.16 Let A = 〈Σ, C,Q, q0, F, δ, col〉 be a coloured deterministic
finite-state automaton where δ is total and each state is reachable, let Ri

defined as above (i ≥ 0). Then R =
⋂∞
i=0Ri coincides with the equivalence of

states ≡ on A. The coloured automaton

A′ = 〈Σ, C, {[q]R | q ∈ Q}, [q0]R, {[f ]R | f ∈ F}, δ′, col′〉

where δ′([q]R), σ) := [δ(q, σ)]R and col′([q]R) := col(q) is the minimal coloured
deterministic automaton equivalent to A.

3.7 Pseudo-determinization and pseudo-minimization
of monoidal finite-state automata

In this section we show that the definition of a deterministic monoidal finite-
state automaton is not natural. can be represented as the homomorphic
image of a classical finite-state automaton (cf. Theorem 2.1.22).

Definition 3.7.1 Let M = 〈M, ◦, e〉 be a monoid. A monoidal finite-state
automaton A = 〈M, Q, I, F,∆〉 is called pseudo-deterministic if there exists
exactly one initial state in I and for any state q ∈ Q and any m ∈ M there
exists at most one state q′ such that 〈q,m, q′〉 ∈ ∆.

Proposition 3.7.2 For each monoidal finite-state automaton A we may ef-
fectively construct a pseudo-deterministic monoidal finite-state automaton A′
equivalent to A.

Definition 3.7.3 Let M = 〈M, ◦, e〉 be a monoid. A pseudo-deterministic
monoidal finite-state automatonA = 〈M, Q, I, F,∆〉 is called pseudo-minimal
if the free companion of A is a minimal deterministic finite-state automaton.

Proposition 3.7.4 For each monoidal finite-state automaton A we may
effectively construct a pseudo-minimal monoidal finite-state automaton A′
equivalent to A.

4 Monoidal multi-tape automata and finite-

state transducers

An important generalization of classical finite-state automata are multi-tape
automata, which are used for recognizing relations of a particular type. These
relations offer a natural way to formalize all kinds of translations and trans-
formations, which makes multi-tape automata interesting for many practical
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applications and explains the general interest in this kind of device. From
the perspective developed in the previous chapters, multi-tape automata
represent a special subtype of monoidal automata. A natural subclass are
monoidal finite-state transducers, which can be defined as two-tape automata
where the first tape reads strings. In this chapter we present the most im-
portant properties of monoidal multi-tape automata in general and monoidal
finite-state transducers in particular.

4.1 Monoidal multi-tape automata

We first introduce the general concept of a monoidal multi-tape automaton.

Definition 4.1.1 A monoidal n-tape automaton is a monoidal finite-state
automatonA = 〈∏n

i=1Mi, Q, I, F,∆〉 over a monoidM =M1×M2 . . .×Mn

which is a Cartesian product of n monoids. If n ≥ 2, the automaton is also
called a multi-tape automaton.

In order to stress that the languages accepted by monoidal multi-tape
automata are relations we introduce the following terminology.

Definition 4.1.5 A monoidal n-tape automaton relation is a monoidal lan-
guage recognized by a monoidal n-tape automaton.

4.2 Additional closure properties of monoidal multi-
tape automata

We now want to show that the class of relations accepted by monoidal multi-
tape automata is closed under some additional operations. Some of the
following constructions are obtained in a more elegant way if we add an
e-loop to each state. We define

E(∆) := ∆ ∪ {〈q, e, q〉 | q ∈ Q}.

Proposition 4.2.1

1. (Cartesian product) Let A1 = 〈M1, Q1, I1, F1,∆1〉 and A2 = 〈M2, Q2, I2, F2,∆2〉
be two monoidal automata and let

∆ := {〈〈q1, q2〉 , 〈u1, u2〉 , 〈q′1, q′2〉〉 | 〈q1, u1, q
′
1〉 ∈ E(∆1) & 〈q2, u2, q

′
2〉 ∈ E(∆2)}.

Then for the monoidal 2-tape automaton

A := 〈M1 ×M2, Q1 ×Q2, I1 × I2, F1 × F2,∆〉

we have L(A) = L(A1)× L(A2).
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2. (Projection) Let A = 〈M1 ×M2 × . . .×Mn, Q, I, F,∆〉 be a monoidal
n-tape automaton and n ≥ 2. Let ∆×i := {〈q, ū×i, q′〉 | 〈q, ū, q′〉 ∈ ∆}.
Then for the monoidal (n− 1)-tape automaton

A′ := 〈M1 × . . .×Mi−1 ×Mi+1 × . . .×Mn, Q, F, I,∆×i〉

we have L(A′) = L(A)×i.

3. (Inverse relation for 2-tape automata) Let A = 〈M1 ×M2, Q, I, F,∆〉
be a monoidal 2-tape automaton and

∆′ := {〈q1, 〈v, u〉 , q2〉 | 〈q1, 〈u, v〉 , q2〉 ∈ ∆}.

Then for the monoidal 2-tape automaton

A′ = 〈M2 ×M1, Q, I, F,∆
′〉

we have L(A′) = L(A)−1.

4. (Identity relation) Let A = 〈M, Q, I, F,∆〉 be a monoidal automaton
and

∆′ := {〈q1, 〈u, u〉 , q2〉 | 〈q1, u, q2〉 ∈ ∆}.

Then for the monoidal 2-tape automaton

A′ = 〈M×M, Q, I, F,∆′〉

we have L(A′) = IdL(A).

Corollary 4.2.2 The class of monoidal multi-tape automaton relations is
closed under Cartesian products, projections, and inverse relations.

4.3 Classical multi-tape automata and letter automata

Definition 4.3.1 A classical n-tape automaton is an n-tape automaton over
a monoid that is a Cartesian product of free monoids.

Definition 4.3.2 An n-tape letter automaton is a classical n-tape automa-
ton A = 〈Σ1 × Σ2 × . . .× Σn, Q, I, F,∆〉 such that ∆ ⊆ Q × (Σε

1 × . . . ×
Σε
n)×Q.

Proposition 4.3.3 Let A be a classical n-tape automaton. Then A can be
converted to an equivalent n-tape letter automaton.
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Proposition 4.3.4 (Relational composition) Let

A1 = 〈Σ1 × Σ, Q1, I1, F1,∆1〉
A2 = 〈Σ× Σ2, Q2, I2, F2,∆2〉

be 2-tape letter automata. Let ∆ be the set of all tuples

〈〈q1, q2〉, 〈u,w〉, 〈q′1, q′2〉〉

where there exists v ∈ Σ∪{ε} such that 〈q1, 〈u, v〉, q′1〉 ∈ E(∆1) and 〈q2, 〈v, w〉, q′2〉 ∈
E(∆2). Then for the 2-tape automaton

A := 〈Σ1 × Σ2, Q1 ×Q2, I1 × I2, F1 × F2,∆〉

we have L(A) = L(A1) ◦ L(A2) (here ◦ denotes relational composition).

Remark 4.3.7 In [Ganchev et al., 2008] the n-tape one-letter automata are
introduced which can be considered as n-tape letter automata for which the
labels have ε on all tapes but one. All properties in this section hold for
n-tape one-letter automata as well.

4.4 Monoidal finite-state transducers

Definition 4.4.1 A monoidal finite-state transducer is a monoidal 2-tape
automaton T = 〈Σ∗ ×M, Q, I, F,∆〉 where the underlying product monoid
has the form Σ∗×M for some alphabet Σ. If ∆ ⊆ Q× (Σε×M)×Q, then
T is called a monoidal letter transducer.

Definition 4.4.4 A monoidal finite-state transducer T = 〈Σ∗×M, Q, I, F,∆〉
is functional iff the language L(T ) represents a partial function Σ∗ →M. In
this situation, T is said to represent the function L(T ).

Definition 4.4.5 A monoidal finite-state transducer T = 〈Σ∗×M, Q, I, F,∆〉
is infinitely ambiguous if the relation L(T ) is infinitely ambiguous (cf. Defi-
nition 1.1.6).

Definition 4.4.6 A monoidal finite-state transducer T = 〈Σ∗ ×M, Q, I, F,∆〉
is said to be real-time if ∆ ⊆ Q× (Σ×M)×Q.

Proposition 4.4.8 Let T = 〈Σ∗ ×M, Q, I, F,∆〉 be a monoidal letter trans-
ducer. Assume that the set of all path labels of the form 〈ε,m〉 in T is finite.
Then there exists a real-time transducer T ′ equivalent to T up to ε.
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4.5 Classical finite-state transducers

Definition 4.5.1 A classical finite-state transducer is a transducer

T = 〈Σ∗1 × Σ∗2, Q, I, F,∆〉

where the second tape runs over a free monoid Σ∗2.

Proposition 4.5.7 A trimmed classical finite-state transducer T is infinitely
ambiguous iff there exists a loop in T with a label 〈ε, u〉, where u 6= ε.

4.6 Deciding functionality of classical finite-state trans-
ducers

Definition 4.6.1 Let Σ be a finite alphabet. The advance function ω :
(Σ∗ × Σ∗)× (Σ∗ × Σ∗)→ Σ∗ × Σ∗ is defined as:

ω(〈x, y〉 , 〈α, β〉) =
〈
c−1xα, c−1yβ

〉
, where c = xα ∧ yβ.

The iterated advance function ω∗ : (Σ∗ × Σ∗) × (Σ∗ × Σ∗)∗ → (Σ∗ × Σ∗) is
defined inductively (note that ε and U denote sequences of pairs of strings):

• ω∗(〈x, y〉 , ε) = 〈x, y〉,

• ω∗(〈x, y〉 , U 〈α, β〉) = ω(ω∗(〈x, y〉 , U), 〈α, β〉).

We say that ω(〈x, y〉 , 〈α, β〉) (resp. ω∗(〈x, y〉 , U)) is the advance of 〈x, y〉
with 〈α, β〉 (resp. U).
The advance ω(〈x, y〉 , 〈α, β〉) = 〈u, v〉 of the pair of words 〈x, y〉 ∈ Σ∗ × Σ∗

with 〈α, β〉 ∈ Σ∗ × Σ∗ is said to be balancible if u = ε or v = ε.

Definition 4.6.4 Let T = 〈Σ∗I × Σ∗, Q, I, F,∆〉 be a classical real-time finite-
state transducer (∆ ⊆ Q × (ΣI × Σ∗) × Q). The squared output transducer
of T is the classical 2-tape automaton

ST = 〈Σ∗ × Σ∗, Q×Q, I × I, F × F,∆′〉

where ∆′ is the set of all transitions of the form

〈〈q′1, q′2〉 , 〈α1, α2〉 , 〈q′′1 , q′′2〉〉

where there exists a ∈ Σ such that 〈q′1, 〈a, α1〉 , q′′1〉 ∈ ∆, and 〈q′2, 〈a, α2〉 , q′′2〉 ∈
∆.
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Proposition 4.6.5 Let T = 〈Σ∗I × Σ∗, Q, I, F,∆〉 be a classical real-time
finite-state transducer T = 〈Σ∗I × Σ∗, Q, I, F,∆〉. Then T is functional iff
for each successful path with label 〈α, β〉 in the squared output transducer ST
we have α = β.

Definition 4.6.6 Let T = 〈Σ∗ × Σ∗, Q, I, F,∆〉 be a classical finite-state
transducer. The pair 〈u, v〉 ∈ Σ∗ × Σ∗ is called an admissible advance of the
state q ∈ Q if there exists a path

π : q0 →〈α1,β1〉 q1 →〈α2,β2〉 q2 . . .→〈αn,βn〉 qn = q

starting from an initial state q0 ∈ I such that

〈u, v〉 = ω∗(〈ε, ε〉 , 〈α1, β1〉 . . . 〈αn, βn〉).

By Adm(q) we denote the set of all admissible advances of the state q ∈ Q.

Corollary 4.6.7 Let T = 〈Σ∗I × Σ∗, Q, I, F,∆〉 be a classical real-time finite-
state transducer. Let ST be the squared output transducer of T , with set of
final states F ′ = F × F . Then T is functional iff for each p ∈ F ′ we have
Adm(p) ⊆ {〈ε, ε〉}.

Proposition 4.6.8 Let T = 〈Σ∗I × Σ∗, Q, I, F,∆〉 be a classical real-time
finite-state transducer, let ST be the squared output transducer of T , let p be
a state on a successful path of ST . Assume that

1. there exists 〈u, v〉 ∈ Adm(p) such that 〈u, v〉 is not balancible (i.e.,
u 6= ε and v 6= ε), or

2. |Adm(p)| > 1.

Then T is not functional.

Proposition 4.6.10 Let T be a classical real-time finite-state transducer
and let ST = 〈Σ∗ × Σ∗, Q×Q, I × I, F × F,∆′〉 be the squared output trans-
ducer of T . Then the pair 〈u, v〉 ∈ Σ∗ × Σ∗ is an admissible advance of
q ∈ Q×Q iff

• q ∈ I × I and 〈u, v〉 = 〈ε, ε〉, or

• there exist a state q′ ∈ Q×Q, an admissible advance 〈u′, v′〉 of q′ and
a transition 〈q′, 〈α, β〉 , q〉 ∈ ∆′ such that 〈u, v〉 = ω(〈u, v〉 , 〈α, β〉).
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Corollary 4.6.11 Let T be a classical real-time finite-state transducer and
let ST = 〈Σ∗ × Σ∗, Q×Q, I × I, F × F,∆′〉 be the squared output transducer
of T . Let the functions Adm(k) : Q×Q→ 2Σ∗×Σ∗ be defined inductively:

1. Adm(0)(q) :=

{
{〈ε, ε〉} if q ∈ I × I
∅ otherwise.

2. Adm(k+1)(q) := Adm(k)(q) ∪
{{ω(〈u′, v′〉 , 〈α, β〉)} | 〈q′, 〈α, β〉 , q〉 ∈ ∆′, 〈u′, v′〉 ∈ Adm(k)(q′)}.

Then Adm =
⋃∞
k=0 Adm

(k).

Corollary 4.6.12 Let T be a classical finite-state transducer. Then T is
functional iff

1. |({ε} × Σ∗) ∩ L(T )| ≤ 1;

2. T is not infinitely ambiguous;

3. T ′ is functional, where T ′ is the classical real-time finite-state trans-
ducer equivalent to T up to ε.

The propositions above provide us with a procedure for deciding the
functionality of a given classical finite-state transducer, implemented in Pro-
gram 8.2.12.

5 Deterministic transducers

In this chapter we explore deterministic finite-state transducers. Obviously,
it only makes sense to ask for determinism if we restrict attention to trans-
ducers with a functional input-output behaviour. In this chapter we focus
on transducers that are deterministic on the input tape (called sequential
or subsquential transducers). The subsequential finite-state transducers are
widely used for text processing [Mohri, 1996, Roche and Schabes, 1997b] and
speech processing [Mohri et al., 2008].

5.1 Deterministic transducers and subsequential trans-
ducers

Definition 5.1.1 A monoidal finite-state transducer T = 〈Σ∗ ×M, Q, I, F,∆〉
is deterministic if the following conditions hold:

1. |I| = 1, i.e., there is exactly one initial state;
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2. δ := {〈q1, a, q2〉 | ∃m ∈ M : 〈q1, 〈a,m〉 , q2〉 ∈ ∆} is a (partial) function
Q× Σ→ Q;

3. λ := {〈q1, a,m〉 | ∃q2 ∈ Q : 〈q1, 〈a,m〉 , q2〉 ∈ ∆} is a (partial) function
Q× Σ→M ;

The functions δ and λ are respectively called the transition function and the
transition output function, and ∆ is called the transition relation. Note that
δ and λ have the same domain since both are derived from ∆. Deterministic
monoidal finite-state transducers are also denoted in the form

T = 〈Σ,M, Q, q0, F, δ, λ〉

where I = {q0} and ∆ = {〈q, 〈a, λ(q, a)〉 , δ(q, a)〉 | 〈q, a〉 ∈ dom(δ)}.

Classical deterministic finite-state transducers are defined accordingly, de-
manding that the monoid M is free.

Definition 5.1.4 A monoidal subsequential transducer is a tuple

T = 〈Σ,M, Q, q0, F, δ, λ,Ψ〉

where 〈Σ,M, Q, q0, F, δ, λ〉 is a deterministic monoidal finite-state transducer
and Ψ : F → M is the state output function with domain F . The un-
derlying automaton of T is the deterministic finite-state automaton AT =
〈Σ, Q, q0, F, δ〉 and the input language of T is the set

L(T )×2 = L(AT ) = {t ∈ Σ∗ | δ∗(q0, t) ∈ F}.

A classical subsequential transducer is a monoidal subsequential transducer
where the monoid M is the free monoid Σ′∗ over a finite output alphabet Σ′.
Classical subsequential transducer are denoted also with 〈Σ,Σ′, Q, q0, F, δ, λ,Ψ〉.

Definition 5.1.5 Let T = 〈Σ,M, Q, q0, F, δ, λ,Ψ〉 be a monoidal subse-
quential transducer. The output function OT : L(T )×2 →M of T is defined
as follows (“·” represents the monoid operation):

∀t ∈ L(T )×2 : OT (t) := λ∗(q0, t) ·Ψ(δ∗(q0, t)).

Definition 5.1.7 Let T = 〈Σ,M, Q, q0, F, δ, λ,Ψ〉 be a monoidal subse-
quential transducer. The output function for q ∈ Q is

Oq
T : Σ∗ →M; α 7→ λ∗(q, α) ·Ψ(δ∗(q, α)).
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Proposition 5.1.10 Let T1 = 〈Σ,Σ′, Q1, q01, F1, δ1, λ1,Ψ1〉 be a classical
subsequential transducer and T2 = 〈Σ′,M, Q2, q02, F2, δ2, λ2,Ψ2〉 be a monoidal
subsequential transducer. Then for the transducer

T = 〈Σ,M, Q1 ×Q2, 〈q01, q02〉 , F, δ, λ,Ψ〉

where

• δ = {〈〈q1, q2〉 , σ, 〈δ1(q1, σ), δ∗2(q2, λ1(q1, σ))〉〉 | q1 ∈ Q1, q2 ∈ Q2, σ ∈
Σ},

• λ = {〈〈q1, q2〉 , σ, λ∗2(q2, λ1(q1, σ))〉 | q1 ∈ Q1, q2 ∈ Q2, σ ∈ Σ},

• F = {〈q1, q2〉 | q1 ∈ F1, δ
∗
2(q2,Ψ1(q1)) ∈ F2},

• Ψ = {〈〈q1, q2〉 , λ∗2(q2,Ψ1(q1))�Ψ2(δ∗2(q2,Ψ1(q1)))〉 | 〈q1, q2〉 ∈ F};

we have OT = OT1 ◦OT2.

Definition 5.1.12 The sequential distance of u ∈ Σ∗ and v ∈ Σ∗ is defined
as dS(u, v) = |u|+ |v| − 2|u ∧ v|.

Definition 5.1.13 A regular string function f : Σ∗ → Σ′∗ has the bounded
variation property iff for all k ≥ 0 there exists K ≥ 0 such that for all
u, v ∈ dom(f) always dS(u, v) ≤ k implies dS(f(u), f(v)) ≤ K.

The definition roughly says that two input strings that are identical up to
small suffixes are translated into output strings that are similar up to suffixes.

Definition 5.1.14 A functional classical transducer T has the bounded vari-
ation property iff the regular string function represented by T has the bounded
variation property.

5.2 A determinization procedure for functional trans-
ducers with the bounded variation property

Construction
We assume that a trimmed real-time functional classical transducer

T = 〈Σ∗ × Σ′∗, Q, I, F,∆〉

over Σ× Σ′∗ is given. I.e. ∆ ⊆ Q× (Σ× Σ′∗)×Q.
The subsequential transducer

T ′ = 〈Σ,Σ′, Q′, q′0, F ′, δ′, λ′,Ψ′〉
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equivalent to T is built by induction.
The base of the induction is:

T ′(0) = 〈Σ,Σ′, {q′0}, q′0, ∅, ∅, ∅, ∅〉 , where q′0 = I × {ε}.

Let us assume that we have constructed

T ′(n) =
〈
Σ,Σ′, Q′(n), q′0, F

′(n), δ′(n), λ′(n),Ψ′(n)
〉
.

We define T ′(n+1) = 〈Σ,Σ′, Q′(n+1), q′0, F
′(n+1), δ′(n+1), λ′(n+1),Ψ′(n+1)〉 with

the following components:

• The new transition output function λ′(n+1) extends λ′(n) with all triples
of the form 〈S, σ, w〉 for which {〈q, 〈σ, v〉 , q′〉 ∈ ∆ | 〈q, u〉 ∈ S} 6= ∅,
where S ∈ Q′(n), σ ∈ Σ and

w =
∧

〈q,u〉∈S

∧
〈q,〈σ,v〉,q′〉∈∆

u · v.

• The new transition function δ′(n+1) extends δ′(n) with all triples of the
form 〈S, σ, S ′〉 where 〈S, σ, w〉 is a triple in λ′(n+1) and

S ′ =
⋃

〈q,u〉∈S

⋃
〈q,〈σ,v〉,q′〉∈∆

{〈q′, w−1(u · v)〉}

• Q′(n+1) = Q′(n) ∪ codom(δ′(n+1)),

• F ′(n+1) = {S ∈ Q′(n+1) | ∃ 〈q, β〉 ∈ S : q ∈ F},

• Ψ′(n+1) = {〈S, β〉 |S ∈ F ′(n+1), ∃ 〈q, β〉 ∈ S : q ∈ F}.

Lemma 5.2.2 Let T be as above. Let T ′(n) = 〈Σ,Σ′, Q′, q′0, F ′, δ′, λ′,Ψ′〉 be
constructed by the induction given above in n steps. Then for each word
w ∈ Σ∗ such that λ′∗(q′0, w) and δ′∗(q′0, w) are defined we have the following
properties:

λ′∗(q′0, w) =
∧

q0∈I,〈q0,〈w,u〉,q〉∈∆∗

u

δ′∗(q′0, w) = {〈q, γ〉 | ∃q0 ∈ I ∃ 〈q0, 〈w, u〉 , q〉 ∈ ∆∗ : γ = λ′∗(q′0, w)−1u}.

Lemma 5.2.3 Let T ′(n) = 〈Σ,Σ′, Q′, q′0, F ′, δ′, λ′,Ψ′〉 be constructed by the
induction given above in n steps from the transducer T = 〈Σ∗ × Σ′∗, Q, {q0}, F,∆〉.
Then for each state S ∈ Q′ and q ∈ Q we have |{v ∈ Σ′∗ | ∃ 〈q, v〉 ∈ S}| ≤ 1.
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Lemma 5.2.4 Let T ′(n) = 〈Σ,Σ′, Q′, q′0, F ′, δ′, λ′,Ψ′〉 be constructed by the
induction given above in n steps from the transducer T = 〈Σ∗ × Σ′∗, Q, {q0}, F,∆〉.
Then for each state S ∈ Q′ and 〈q1, v1〉 , 〈q2, v2〉 ∈ S we have

q1 ∈ F & q2 ∈ F → v1 = v2.

Proposition 5.2.5 Let T = 〈Σ∗ × Σ′∗, Q, I, F,∆〉 be a functional real-time
classical transducer such that the inductive construction of T ′ presented above
terminates in the sense that there exists a number k ∈ IN such that T ′(k) =
T ′(k+1) = T ′(k+2) = . . . = T ′, let T ′ = 〈Σ,Σ′, Q′, q′0, F ′, δ′, λ′,Ψ′〉. Then
OT ′ = L(T ).

Theorem 5.2.6 Let T = 〈Σ∗ × Σ′∗, Q, I, F,∆〉 be a trimmed real-time func-
tional classical transducer with the bounded variation property. Then the in-
ductive construction of T ′ presented above terminates in the sense that there
exists a number k ∈ IN such that T ′(k) = T ′(k+1) = T ′(k+2) = . . . = T ′.

Corollary 5.2.7 A regular string function f : Σ∗ → Σ′∗ can be represented
by a classical subsequential transducer iff f has the bounded variation prop-
erty.

5.3 Deciding the bounded variation property

Lemma 5.3.3 Let T be a classical real-time finite-state transducer, let q
denote a state of the squared output transducer ST of T .

1. If 〈u, v〉 ∈ Adm(q) and the corresponding path in ST is π = q0 →
. . .〈α,β〉 → q, then dS(α, β) = |u|+ |v|.

2. If Adm(q) is finite and there exists 〈u, v〉 ∈ Adm(q) such that 〈u, v〉
is not balancible, then each loop 〈q, 〈α, β〉 , q〉 ∈ ∆′∗ has label 〈α, β〉 =
〈ε, ε〉.

Theorem 5.3.4 Let T = 〈Σ∗I × Σ∗, Q, I, F,∆〉 be a trimmed functional clas-
sical real-time finite-state transducer and let ST be the squared output trans-
ducer of T . Then T has the bounded variation property iff for each state q
of ST the set of admissible advances Adm(q) is finite.

Lemma 5.3.5 Let T = 〈Σ∗I × Σ∗, Q, I, F,∆〉 be a trimmed functional clas-
sical real-time finite-state transducer, let C := max

〈q′,〈σ,α〉,q′′〉∈∆
|α|. Let 〈u, v〉 be

an admissible advance of the state 〈p, q〉 ∈ Q×Q of the squared output trans-
ducer ST . If T has the bounded variation property, then |u| < C|Q|2 and
|v| < C|Q|2.
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The above propositions provide us with an effective procedure for de-
ciding the bounded variation property of a classical real-time transducer,
implemented in Program 8.3.2.

Corollary 5.3.7 Let T = 〈Σ∗I × Σ∗, Q, I, F,∆〉 be a trimmed functional
classical real-time finite-state transducer, let ST = 〈Σ∗ × Σ∗, Q×Q, I × I, F × F,∆′〉
be the squared output transducer of T . Let T ′(n) = 〈ΣI ,Σ

∗, Q′, q′0, F
′, δ′, λ′,Ψ′〉

be constructed in n steps by the inductive determinization procedure described
in Section 5.2. Let S ∈ Q′ be a state in T ′(n). Then for each pair 〈p, u〉 ∈ S
there exists a pair 〈q, v〉 ∈ S such that 〈u, v〉 is an admissible advance of the
state 〈p, q〉 (i.e 〈u, v〉 ∈ Adm(〈p, q〉)).

Theorem 5.3.8 Let T = 〈Σ∗ × Σ∗, Q, I, F,∆〉 be a trimmed real-time func-
tional classical transducer, let C := max

〈q′,〈σ,α〉,q′′〉∈∆
|α|. Then the inductive con-

struction presented in Section 5.2 terminates iff at each step n of the con-
struction of the corresponding subsequential transducer

T ′(n) = 〈ΣI ,Σ
∗, Q′, q′0, F

′, δ′, λ′,Ψ′〉

for each state S in Q′ and each pair 〈p, u〉 ∈ S we have |u| < C|Q|2.

he above theorem provides us with an effective way for testing the termi-
nation of the inductive determinization construction presented in Section 5.2.

5.4 Minimal subsequential finite-state transducers - Myhill-
Nerode relation for subsequential transducers

We now show that also in the case of subsequential finite-state transducers
a new kind of Myhill-Nerode relation yields a minimal subsequential trans-
ducer.

Definition 5.4.1 Let f : Σ∗ → Σ′∗ be a (partial) function. Then

Rf = {〈u, v〉 ∈ Σ∗ × Σ∗ | ∃u′ ∈ Σ′∗ ∃v′ ∈ Σ′∗ ∀w ∈ Σ∗ :
(u · w ∈ dom(f)↔ v · w ∈ dom(f)) &
(u · w ∈ dom(f)→ u′ ∈ Pref (f(u · w)) & v′ ∈ Pref (f(v · w)) &

u′−1f(u · w) = v′−1f(v · w))}

is called the Myhill-Nerode relation for f .

Proposition 5.4.2 Let f : Σ∗ → Σ′∗ be a function. Then the Myhill-Nerode
relation for f is a right invariant equivalence relation.
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Definition 5.4.3 Let f : Σ∗ → Σ′∗ be a function. The longest common
output of f is the function lcof : Σ∗ → Σ′∗ defined as follows:

lcof (u) =


∧

w∈Σ∗ & u·w∈dom(f)

f(u · w) if u ∈ Pref (dom(f))

ε otherwise.

Definition 5.4.4 A subsequential finite-state transducer with initial output
over the monoid M = 〈M, ◦, e〉 is a tuple T = 〈Σ,M, Q, q0, F, δ, λ, ι,Ψ〉
such that 〈Σ,M, Q, q0, F, δ, λ,Ψ〉 is a subsequential finite-state transducer
and ι ∈M . The output function of the subsequential finite-state transducer
with initial output T is defined as OT (α) = ι ◦ λ∗(q0, α) ◦Ψ(δ∗(q0, α)).

Proposition 5.4.6 Let T = 〈Σ,Σ′, Q, q0, F, δ, λ, ι,Ψ〉 be a classical subse-
quential finite-state transducer with initial output representing f : Σ∗ → Σ′∗

and total transition function δ. Let

RT := {〈u, v〉 ∈ Σ∗ × Σ∗ | δ∗(q0, u) = δ∗(q0, v)}.

Then RT is a right invariant equivalence relation and RT is a refinement of
the Myhill-Nerode relation Rf .

Corollary 5.4.7 Let T = 〈Σ,Σ′, Q, q0, F, δ, λ, ι,Ψ〉 be a subsequential clas-
sical finite-state transducer with initial output and total transition function δ
representing f : Σ∗ → Σ′∗. Then |Σ∗/Rf | ≤ |Σ∗/RT | = |Q|.

Proposition 5.4.8 Let f : Σ∗ → Σ′∗ be a function such that the index of
the Myhill-Nerode relation Rf is finite. Let

Tf =
〈
Σ,Σ′,Σ∗/Rf , [ε]Rf , {[s]Rf | s ∈ dom(f)}, δ, λ, ι,Ψ

〉
,

where:

• δ = {
〈
[u]Rf , a, [u · a]Rf

〉
|u ∈ Σ∗, a ∈ Σ},

• λ = {
〈
[u]Rf , a, lcof (u)−1lcof (u · a)

〉
|u ∈ Σ∗, a ∈ Σ, u·a ∈ Pref (dom(f))}∪

{
〈
[u]Rf , a, ε

〉
|u ∈ Σ∗, a ∈ Σ, u · a 6∈ Pref (dom(f))},

• ι = lcof (ε),

• Ψ = {
〈
[u]Rf , lcof (u)−1f(u)

〉
|u ∈ dom(f)}.

Then Tf is a classical subsequential finite-state transducer with initial output
and we have OTf = f and the transition function δ is total.
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Theorem 5.4.10 Let f : Σ∗ → Σ′∗ be a function. Then f is the output
function of a subsequential finite-state transducer iff the index of Rf is finite.

Theorem 5.4.11 Let f : Σ∗ → Σ′∗ be a function such that the index of Rf

is finite. Then the Myhill-Nerode transducer Tf for f is minimal with respect
to number of states among all subsequential classical finite-state transducers
with initial output and total transition function representing f .

5.5 Minimization of subsequential transducers

In this section we show how to minimize a given subsequential finite-state
transducer, essentially following the approach in [Mohri, 2000]. We present
the procedure for the case of classical subsequential finite-state transducers.
But essentially the same technique can be used for other target monoids that
satisfy some additional conditions [Gerdjikov and Mihov, 2017a].

Definition 5.5.1 Let T = 〈Σ,Σ′, Q, q0, F, δ, λ, ι,Ψ〉 be a trimmed classical
subsequential finite-state transducer with initial output. The maximal state
output msoT (q) for a state q ∈ Q is defined as

msoT (q) :=
∧

w∈Σ∗ & δ∗(q,w)∈F
Oq
T (w).

Definition 5.5.2 Let T = 〈Σ,Σ′, Q, q0, F, δ, λ, ι,Ψ〉 be a trimmed classical
subsequential finite-state transducer with initial output. Then the canonical
form of T is the subsequential finite-state transducer with initial output

T ′ := 〈Σ,Σ′, Q, q0, F, δ, λ
′, ι′,Ψ′〉

where

• ι′ := ι ·msoT (q0),

• Ψ′(q) := msoT (q)−1Ψ(q) for all q ∈ F ,

• λ′(q, σ) := msoT (q)−1(λ(q, σ) ·msoT (δ(q, σ))), for all q ∈ Q, σ ∈ Σ such
that δ(q, σ) is defined.

Proposition 5.5.8 Let T = 〈Σ,Σ′, Q, q0, F, δ, λ, ι,Ψ〉 be a trimmed classical
subsequential transducer in canonical form representing the function f . Let
q1, q2 ∈ Q be two states. Then q1 and q2 are equivalent iff

1. q1 ∈ F iff q2 ∈ F ,
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2. if q1 ∈ F , then Ψ(q1) = Ψ(q2),

3. for all σ ∈ Σ: δ(q1, σ) is defined iff δ(q2, σ) is defined. If both are
defined, then δ(q1, σ) and δ(q2, σ) are equivalent and λ(q1, σ) = λ(q2, σ).

Lemma 5.5.9 Let T = 〈Σ,Σ′, Q, q0, F, δ, λ, ι,Ψ〉 be a trimmed classical sub-
sequential finite-state transducer with initial output in canonical form rep-
resenting the function f : Σ∗ → Σ′∗. Let u, v ∈ Σ∗, let δ∗(q0, u) = q1 and
δ∗(q0, v) = q2 be defined. Then u Rf v iff q1 is equivalent to q2.

Theorem 5.5.10 A classical subsequential finite-state transducer T with
initial output in canonical form representing the string function f is min-
imal (in terms of the number of states) among all classical subsequential
finite-state transducers with initial output representing f iff T is trimmed
and there are no distinct equivalent states in T .

Conversion to canonical form – computing maximal state outputs

Definition 5.5.11 Let T = 〈Σ,Σ′, Q, q0, F, δ, λ, ι,Ψ〉 be a classical subse-
quential finite-state transducer with initial output. Then the monoidal finite-
state automaton

AT := 〈Σ′∗, Q ∪ {f}, {q0}, {f},∆〉

where f 6∈ Q is a new state and

∆ = {〈q,Ψ(q), f〉 | q ∈ F} ∪ {〈q′, λ(q′, σ), q′′〉 | 〈q′, σ, q′′〉 ∈ δ}

is called the output automaton of T .

Clearly, the language of AT is equal to ι−1codom(OT ) and for each state
q ∈ Q we have

LAT (q) =
⋃

w∈Σ∗ & δ∗(q,w)∈F
Oq
T (w).

Following Proposition 3.2.1 we compute a classical finite-state automaton
A′T with an extended set of states Q′ without ε-transitions such that for
each q ∈ Q we have LAT (q) = LA′T (q). A′T is called the expanded output
automaton of T .

Proposition 5.5.13 Let T = 〈Σ,Σ′, Q, q0, F, δ, λ, ι,Ψ〉 be a classical subse-
quential finite-state transducer with initial output, let

A′T = 〈Σ′, Q ∪Q′′ ∪ {f}, q0, F
′′,∆′′〉
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be the expanded output automaton of T , let q ∈ Q. Then

LA′T (q) =
⋃

w∈Σ∗,δ∗(q,w)∈F
Oq
T (w)

and
msoT (q) =

∧
LA′T (q).

Proposition 5.5.14 Let A = 〈Σ′, Q, q0, F, δ〉 be a trimmed deterministic
finite-state automaton. Let

π = q0 →a1 q1 →a2 q2 . . . qk−1 →ak qk

be a path starting at q0. Then w =
∧
L(A) for w = a1a2 . . . ak iff the following

properties hold:

• qk is final or there are more than one outgoing transitions from qk. i.e.

qk ∈ F ∨ |{σ ∈ Σ′ | !δ(qk, σ)}| > 1.

• For each i in 0, . . . , k − 1 the state qi is not final and there is exactly
one outgoing transition from qi. I.e.

∀i ∈ {0, . . . , k − 1} : qi 6∈ F & |{σ ∈ Σ′ | !δ(qi, σ)}| = 1.

Corollary 5.5.15 Let T = 〈Σ,Σ′, Q, q0, F, δ, λ, ι,Ψ〉 be a trimmed classical
subsequential finite-state transducer with initial output and let

A′T = 〈Σ′, Q ∪Q′′ ∪ {f}, q0, F
′′,∆′′〉

be the expanded output automaton of T . Let Dq = 〈Σ′, Qq, {q}, Fq, δq〉 be
the deterministic finite-state automaton obtained from the determinization
of A′T

q = 〈Σ′, Q ∪Q′′ ∪ {f}, q, F ′′,∆′′〉. Then

msoT (q) =
∧
L(Dq) = wq,

where wq ∈ Σ′∗ is the label of the maximal unique path of Dq.

Remark 5.5.16 In order to find the longest common prefix of the language
of A′T

q (cf. Corollary 5.5.15) we can proceed by determinizing only the initial
part of the automaton, until we reach the state qk for which the conditions in
Proposition 5.5.14 are fulfilled. Hence only a small part of the automaton has
to be determinized. The complexity of finding msoT (q) is O(|wq||Q ∪ Q′′|2)
(cf. Program 8.3.5).
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Pseudo-minimization – computing the minimal subsequential trans-
ducer

Proposition 5.5.18 Let T = 〈Σ,Σ′, Q, q0, F, δ, λ, ι,Ψ〉 be a canonical trimmed
subsequential finite-state transducer with initial output. Consider the new al-
phabet

Γ := {〈c, λ(q, c)〉 | c ∈ Σ, q ∈ Q & !δ(q, c)},

and the set of transitions δA := {〈q, 〈c, λ(q, c)〉 , q′〉 | 〈q, c, q′〉 ∈ δ}. Then

AT := 〈Γ, codom(Ψ), Q, q0, F, δA,Ψ〉

is a codom(Ψ)-coloured deterministic finite-state automaton. Let

A′T = 〈Γ, codom(Ψ), Q′, q′0, F
′, δ′A,Ψ

′〉

denote the minimal codom(Ψ)-coloured deterministic finite-state automaton
equivalent to AT . Then the subsequential finite-state transducer

T ′ := 〈Σ,Σ′, Q′, q′0, F ′, δ′, λ′, ι,Ψ′〉 ,

where

δ′ := {〈q, c, q′〉 | 〈q, 〈c, α〉 , q′〉 ∈ δ′A}
λ′ := {〈q, c, α〉 | 〈q, 〈c, α〉 , q′〉 ∈ δ′A}

is the minimal canonical subsequential finite-state transducer equivalent to
T .

Remark 5.5.20 For finite word functions there exist direct methods for
constructing the minimal finite-state subsequential transducer which provide
better efficiency [Mihov and Maurel, 2001].

5.6 Numerical subsequential transducers

In this section we show how the results from the previous sections can be
transferred to the monoid of natural numbers.

Definition 5.6.1 Let T = 〈Σ,Σ′, Q, q0, F, δ, λ,Ψ〉 be a classical subsequen-
tial transducer. Let φ : Σ′∗ →M be a homomorphism between the monoids
Σ′∗ and M = 〈M, •, e〉. Then the monoidal subsequential transducer Tφ =
〈Σ,M, Q, q0, F, δ, λφ,Ψφ〉, where

• λφ := λ ◦ φ (i.e. λφ(q, σ) := φ(λ(q, σ))),
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• Ψφ := Ψ ◦ φ (i.e. Ψφ(q) := φ(Ψ(q))),

is said to be obtained by mapping T with φ.

Proposition 5.6.2 Let Tφ be obtained from the subsequential transducer T
by mapping with φ, where φ : Σ′∗ → M is a homomorphism between the
monoids Σ′∗ and M. Then OTφ = OT ◦ φ.

Proposition 5.6.3 Let Σ′ = {1} and N = 〈IN,+, 0〉. Then the function
ϕ : Σ′∗ → IN defined as

ϕ(1n) := n, for any n ∈ IN

is a monoidal isomorphism between the monoids Σ′∗ and N .

Proposition 5.6.4 Let T be a classical subsequential transducer and let
Σ′ = {1}. Then T can be obtained by mapping Tϕ with ϕ−1 i.e. T = Tϕϕ−1.

Corollary 5.6.5 All results for transducer determinization (Section 5.2),
deciding functionality (Section 4.6), deciding bounded variation (Section 5.3),
and transducer minimization (Section 5.4) obtained for classical subsequen-
tial transducers are transferred directly to monoidal subsequential transducers
over the monoid N .

6 Bimachines

In this chapter we look at a more powerful concept. We introduce bima-
chines, a deterministic finite-state device that exactly represents the class of
all regular string functions.

6.1 Basic definitions

Definition 6.1.1 A monoidal bimachine is a tuple B = 〈M,AL,AR, ψ〉
where

• M = 〈M, ◦, e〉 is a monoid,

• AL = 〈Σ, L, sL, L, δL〉 and AR = 〈Σ, R, sR, R, δR〉 are deterministic
finite-state automata called the left and right automaton of the bima-
chine;

• ψ : (L× Σ×R)→M is a partial function called the output function.

38



Note that all states of AL and AR are final. IfM is a free monoid, then B is
called a classical bimachine. In this case we simply assume that the output
alphabet coincides with the alphabets of the left and right automata, Σ, and
write B = 〈AL,AR, ψ〉.

Definition 6.1.2 Let M = 〈M, ◦, e〉 be a monoid, let B = 〈M,AL,AR, ψ〉
denote a monoidal bimachine, let Σ denote the alphabet of AL and AR.
Consider an input sequence t = σ1σ2 · · ·σn ∈ Σ∗ (n ≥ 0) with letters σi (i =
1, . . . , n). If all the values δ∗L(σ1σ2 · · ·σi) and δ∗R(σnσn−1 · · ·σi) are defined
(1 ≤ i ≤ n) we obtain a pair of paths

πL : l0 →σ1 l1 → . . . li−1 →σi li → . . . ln−1 →σn ln
πR : r0 ←σ1 r1 ← . . . ri−1 ←σi ri ← . . . rn−1 ←σn rn

where πL is a path of the left automaton AL starting from l0 := sL and πR
is a path of the right automaton AL (arrows indicate reading order) starting
from rn := sR. If all outputs ψ(li−1, σi, ri) are defined (1 ≤ i ≤ n), then we
call (πL, πR) a pair of successful paths of B with label σ1σ2 . . . σn and output

OB(t) := ψ(l0, σ1, r1) ◦ ψ(l1, σ2, r2) ◦ . . . ◦ ψ(li−1, σi, ri) ◦ . . . ◦ ψ(ln−1, σn, rn).

In the special case where t = ε we have OB(t) = e. The partial function OB
is called the output function of the bimachine, or the function represented by
the bimachine. If OB(t) = m we say that the bimachine B translates t into
m.

Definition 6.1.4 Let B = 〈M,AL,AR, ψ〉 denote a monoidal bimachine.
The generalized output function ψ∗ of B is inductively defined as follows:

• ψ∗(l, ε, r) = e for all l ∈ L, r ∈ R;

• ψ∗(l, tσ, r) = ψ∗(l, t, δR(r, σ)) ◦ ψ(δ∗L(l, t), σ, r) for l ∈ L, r ∈ R, t ∈
Σ∗, σ ∈ Σ.

6.2 Equivalence of regular string functions and classi-
cal bimachines

We follow the approach presented in [Gerdjikov et al., 2017].

Proposition 6.2.1 For each monoidal bimachine B = 〈M,AL,AR, ψ〉 there
exists a monoidal finite-state transducer A = 〈Σ∗ ×M, Q, I, F,∆〉, such that
OB = L(A).
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Proof. [Construction] We construct the real-time transducer

A := 〈Σ∗ ×M, L×R, {sL} ×R,L× {sR},∆〉

where ∆ contains all transitions 〈l, r〉 →σ
m 〈l′, r′〉 such that δL(l, σ) = l′, δR(r′, σ) =

r, ψ(l, σ, r′) = m.

Proposition 6.2.5 Let T = 〈Σ∗ ×M, Q, I, F,∆〉 be a monoidal trimmed
functional real-time transducer with output in the monoid M = 〈M, ◦, e〉
such that 〈ε, e〉 ∈ L(T ). Then there exists a monoidal bimachine B =
〈M,AL,AR, ψ〉 such that L(T ) = OB.

Proof. [Construction] The right deterministic automaton of the bimachine
AR = 〈Σ, QR, sR, QR, δR〉 is defined as the result when applying the deter-
minization procedure to the reversed underlying automaton of T and setting
all states to final. This means that QR ⊆ 2Q, sR = F and

δR(R, a) := {q ∈ Q | ∃q′ ∈ R,m ∈M : 〈q, 〈a,m〉 , q′〉 ∈ ∆}.

A state selector function is a partial function φ : QR → Q selecting for a non-
empty set P ∈ QR an element p = φ(P ) ∈ P . A state of the left deterministic
automaton AL = 〈Σ, QL, sL, QL, δL〉 is a pair consisting of a subset of Q and
state selector function φ. This implies that QL ⊆ 2Q × 2QR×Q and therefore
QL is finite. The following induction defines the states and the transition
function of the left automaton:

• sL := 〈I, φ0〉 where φ0(R) :=

{
any element of R ∩ I if R ∩ I 6= ∅
undefined otherwise.

• For 〈L, φ〉 ∈ QL and a ∈ Σ we define δL(〈L, φ〉 , a) := 〈L′, φ′〉 where

– L′ := {q′ | ∃q ∈ L,m ∈M : 〈q, 〈a,m〉 , q′〉 ∈ ∆}.

– φ′(R′) :=


any element of {q′ ∈ R′ | ∃m ∈M : 〈q, 〈a,m〉 , q′〉 ∈ ∆}

if q = φ(δR(R′, a)) is defined
undefined otherwise.

Given a pair of states 〈L, φ〉 and R′ of the left and right automaton and
a ∈ Σ, let 〈L′, φ′〉 := δL(〈L, φ〉, a) and R := δR(R′, a). Then

ψ(〈L, φ〉 , a, R′) :=


any element of
{m | 〈φ(R), 〈a,m〉 , φ′(R′)〉 ∈ ∆} if φ(R) is defined
undefined otherwise.
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6.3 Pseudo-minimization of monoidal bimachines

When we want to minimize a monoidal bimachine, we cannot minimize the
two component automata in a näıve way. The minimization procedure has
to take into account the bimachine output function as well.

Definition 6.3.1 Let B = 〈M,AL,AR, ψ〉 be a monoidal bimachine with
component automata AL = 〈Σ, L, sL, L, δL〉 and AR = 〈Σ, R, sR, R, δR〉. The
left profile function ψL : L→ 2Σ×R×Σ∗ is defined as

ψL(qL) := {〈σ, qR, ψ(qL, σ, qR)〉 |σ ∈ Σ, qR ∈ R}.

The set of left profiles of B is defined as ΓL := {ψL(qL) | qL ∈ L}.

Construction of pseudo-minimised bimachine We may think of ψL(qL)
as a colour of qL and consider the coloured automatonAcL = 〈Σ,ΓL, L, sL, L, δL, ψL〉,
the set of all state profiles representing the set of colours. The minimization
procedure for coloured deterministic finite-state automata described in the
second part of Section 3.6 leads to an equivalent minimal coloured determin-
istic finite-state automaton

AcL
′ = 〈Σ,ΓL, {[q]R | q ∈ L}, [sL]R, {[q]R | q ∈ L}, δ′, col′〉

where col′([q]R) := col(q) (see Corollary 3.6.16). We may use

AL′ := 〈Σ,ΓL, {[q]R | q ∈ L}, [sL]R, {[q]R | q ∈ L}, δ′〉

instead of AL as the left automaton and the colouring col′ to define the new
output function. The equation col′([q]R) := col(q) directly ensures that the
new bimachine has the same output function as B.

Definition 6.3.3 Let B = 〈M,AL,AR, ψ〉 be a monoidal bimachine. Then
the monoidal bimachine B′ = 〈M,A′L,A′R, ψ′〉 constructed by the minimiza-
tion of AL and AR (which are treated as coloured automata as described
above, with ψ′([l], σ, [r]) := ψ(l, σ, r)) is called the pseudo-minimal monoidal
bimachine equivalent to B.

6.4 Direct composition of classical bimachines

Formal construction.

Let

ANL := 〈Σ, L′ ×R′ × L′′, {s′L} ×R′ × {s′′L}, L′ ×R′ × L′′,∆L〉
ANR := 〈Σ, L′ ×R′ ×R′′, L′ × {s′R} × {s′′R}, L′ ×R′ ×R′′,∆R〉

where
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1. ∆L contains all transitions of the form 〈〈l′1, r′1, l′′1〉 , a, 〈l′2, r′2, l′′2〉〉 such
that δ′L(l′1, a) = l′2, δ′R(r′2, a) = r′1, δ′′L

∗(l′′1 , ψ
′(l′1, a, r

′
2)) = l′′2 ,

2. ∆R contains all transitions of the form 〈〈l′2, r′2, r′′2〉 , a, 〈l′1, r′1, r′′1〉〉 such
that δ′L(l′1, a) = l′2, δ′R(r′2, a) = r′1, δ′′R

∗(r′′2 , ρ(ψ′(l′1, a, r
′
2))) = r′′1 .

Let AL and AR be the deterministic finite state automata constructed from
ANL and ANR by the subset construction given in Theorem 3.2.2, where the
states are restricted to the ones reachable from the starting states. I.e.

AL = 〈Σ, QL, sL, QL, δL〉
AR = 〈Σ, QR, sR, QR, δR〉

where

sL = {s′L} ×R′ × {s′′L}
sR = L′ × {s′R} × {s′′R}

δ̂L(A, a) = {〈l′2, r′2, l′′2〉 | ∃ 〈l′1, r′1, l′′1〉 ∈ A : 〈〈l′1, r′1, l′′1〉 , a, 〈l′2, r′2, l′′2〉〉 ∈ ∆L}
δ̂R(A, a) = {〈l′1, r′1, r′′1〉 | ∃ 〈l′2, r′2, r′′2〉 ∈ A : 〈〈l′2, r′2, r′′2〉 , a, 〈l′1, r′1, r′′1〉〉 ∈ ∆R}

QL = {A ∈ 2L
′×R′×L′′ | ∃v ∈ Σ∗ : A = δ̂∗L(sL, v)}

QR = {A ∈ 2L
′×R′×R′′ | ∃v ∈ Σ∗ : A = δ̂∗R(sR, v)}

δL = δ̂L|QL×Σ

δR = δ̂R|QR×Σ

For states A and B of AL and AR and a ∈ Σ define

ψ(A, a,B) := w iff

there exist tuples 〈l′1, r′1, l′′1〉 ∈ A and 〈l′2, r′2, r′′2〉 ∈ B such that there exist
l′′2 ∈ L′′ and r′′1 ∈ R′′ such that

〈〈l′1, r′1, l′′1〉 , a, 〈l′2, r′2, l′′2〉〉 ∈ ∆L,

〈〈l′2, r′2, r′′2〉 , a, 〈l′1, r′1, r′′1〉〉 ∈ ∆R,

and w = ψ′′∗(l′′1 , ψ
′(l′1, a, r

′
2), r′′2).

Proposition 6.4.1 Let B′, B′′ be two bimachines over the same alphabet Σ
as above, let the bimachine B and its output function ψ be defined as above.
Then ψ is well-defined and B := 〈AL,AR, ψ〉 represents the composition of
the bimachines B′ and B′′, i.e. OB = OB′ ◦OB′′.
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7 The C(M) language

In this chapter we introduce the C(M) language. The language is used
throughout the rest of the dissertation for implementing and presenting al-
gorithms.

C(M) statements and expressions closely resemble the notation commonly
used for the presentation of formal constructions in a Tarskian style set the-
oretical language. The usual set theoretic objects such as sets, functions,
relations, tuples etc. are naturally integrated in the language. In contrast
to imperative languages such as C or Java, C(M) is a functional declara-
tive programming language. C(M) has many similarities with Haskell [Hut-
ton, 2007] but makes use of the standard mathematical notation like SETL
[Schwartz et al., 1986]. When implementing the solution to a problem, in-
stead of specifying how to achieve it, we specify the goal itself. In prac-
tice, we just formally describe the kind of mathematical object we want to
obtain. This allows us to focus on the high-level mathematical steps of a
construction as opposed to the low-level implementation details. The C(M)
compiler translates a well-formed C(M) program into efficient C code, which
can be executed after compilation. Since it is easy to read C(M) programs,
a pseudo-code description becomes obsolete. The programs presented below
are tested and fully functional and can be compiled without modifications
and run on a computer. The compiler for the C(M) language is freely avail-
able at http://lml.bas.bg/~stoyan/lmd/C(M).html.

7.1 Basics and simple examples

Perhaps the best starting point for an introduction to C(M) is a short selec-
tion of simple examples.

Example 7.1.1 Recall that the composition of two binary relations R1 and
R2 is defined as R1 ◦ R2 := {〈a, c〉 | ∃b : 〈a, b〉 ∈ R1, 〈b, c〉 ∈ R2}. In C(M),
the usual elements for describing sets are available - we may define this
composition directly as

compose(R1, R2) := {(a, c) | (a, b) ∈ R1, (b, c) ∈ R2};

Given the two relations R1 and R2, the above function returns the set of
pairs (a, c) where (a, b) runs over R1 (b is arbitrary) and (b, c) runs over R2.
Mathematically, the n-th order composition R〈n〉 of a binary relation R is
defined in an inductive manner:

• R1 := R,
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• Ri+1 := Ri ◦R

Explicit inductive constructions are a core element of C(M). These definitions
start with a base step such as “step 1” where we define a base form of the
objects to be constructed. Then “step i+1” explains how to obtain variant
i + 1 of the objects from variant i. An “until” clause explains when the
construction is finished. Following this scheme, the n-th order composition
may be introduced in C(M) as the object “composen(R, n)” in the following
way:

composen(R, n) := R′, where
R′ := induction

step 1 :

R′(1) := R;
step i+ 1 :

R′(i+1) := compose(R′(i), R);
until i = n
;

;

Mathematically, the transitive closure of a binary relation R is defined as the
relation

CR :=
∞⋃
i=1

Ri.

To construct CR we may proceed inductively, defining C
(n)
R =

⋃n
i=1 R

i. For

a finite relation the inductive step has to be performed until R〈n+1〉 ⊆ C
(n)
R .

In C(M) we may use exactly the same procedure and construct CR using the
following induction:

CR := induction
step 1 :

CR
(1) := R;

step n+ 1 :

CR
(n+1) := CR

(n) ∪ composen(R, n+ 1);

until composen(R, n+ 1) ⊆ CR
(n)

;

Program 7.1.2 In order to complete this C(M) program we have to specify
the type of each object. The resulting program has the following form:

1 REL is 2IN×IN;
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2 compose : REL ×REL → REL;
3 compose(R1, R2) := {(a, c) | (a, b) ∈ R1, (b, c) ∈ R2};
4 composen : REL × IN→ REL;
5 composen(R, n) := R′, where
6 R′ := induction
7 step 1 :

8 R′(1) := R;
9 step i+ 1 :

10 R′(i+1) := compose(R′(i), R);
11 until i = n
12 ;
13 ;
14 transitiveClosure : REL → REL;
15 transitiveClosure(R) := CR, where
16 CR := induction
17 step 1 :

18 CR
(1) := R;

19 step n+ 1 :

20 CR
(n+1) := CR

(n) ∪ composen(R, n+ 1);

21 until composen(R, n+ 1) ⊆ CR
(n)

22 ;
23 ;

In mathematics, a fixed object can be described in many distinct ways.
Ignoring matters of transparency, it is not important how we specify the
object. However, in a computational context the way how we describe an
object may have a strong influence on the time needed to compute it.

Program 7.1.3 The following improved construction avoids the two defi-
ciencies. First, it explicitly builds the function FR, and the composition is
performed in the optimized way. And second, the induction is performed by
considering at each step one new pair from the set CR. In this way, starting
from CR

(0) := R, in step n + 1 we generate the composition of the n + 1-st
element in C

(n)
R with the relation R until the set C

(n)
R is exhausted.

The program below presents two new features of C(M), the use of a subcase
analysis in definitions (Line 9) and the use of the “functionalize”-operator F
in Line 3, cf. Definition 1.1.16.

1 transitiveClosure : 2IN×IN → 2IN×IN;
2 transitiveClosure(R) := CR, where
3 FR := F1→2(R);
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4 CR := induction
5 step 0 :

6 CR
(0) := R;

7 step n+ 1 :

8 (a, b) := (CR
(n) as (IN× IN)∗)n+1;

9 CR
(n+1) :=

{
CR

(n) ∪ {(a, c) | c ∈ FR(b)} if ! FR(b)

CR
(n) otherwise;

10 until n =
∣∣∣CR(n)

∣∣∣
11 ;
12 ;

7.2 Types, terms, and statements in C(M)

In this section in the dissertation we describe types, terms and statements.

8 C(M) implementation of finite-state devices

In this chapter we present C(M) implementations of the main automata
constructions. Our aim is to provide full, clear and easy to follow descriptions
of the implementations. In some cases the simplicity of the implementation
is achieved at the expense of some inefficiency.

8.1 C(M) implementations for automata algorithms

Program 8.1.1 We start with the basic definitions and algorithms for finite-
state automata. In our formalization, an automaton has a set of initial states,
and transition labels are arbitrary words over the input alphabet.

Program 8.1.2 The following constructions present the regular operations
union, concatenation, and Kleene star for finite-state automata.

Program 8.1.3 The next “supplementary constructions” are given for con-
venience. They can be expressed by our basis functions but help to keep
the description of complex automata constructions transparent. We intro-
duce the Kleene plus of a given automaton, optionality (adding the empty
word) for an automaton, the automaton recognizing a given set of symbols,
and the automaton recognizing all words over a given alphabet.

Program 8.1.4 The C(M) program for ε-removal follows Proposition 2.5.4.
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Program 8.1.5 The C(M) program for ε-removal preserving state lan-
guages closely follows Proposition 2.5.6.

Program 8.1.6 The following program for trimming an automaton re-
moves all states that are not reachable from any initial state and all states
from which no final state can be reached (cf. Definition 2.5.1).

Program 8.1.7 Given an arbitrary finite-state automaton, our next pro-
gram constructs a classical finite-state automaton, i.e., an automaton where
each transition label is a word of length ≤ 1.

Program 8.1.8 As in the general case (cf. Program 8.1.6), trimming a
deterministic automaton means to remove all states that are not reachable
from the initial states and all states from which no final state can be reached
(Definition 2.5.1).

Program 8.1.9 Below we present a efficient determinization construc-
tion. Following Theorem 3.2.2 it builds a deterministic automaton where all
states are reachable from the new initial state.

Program 8.1.10 The following algorithm (product∆) constructs the tran-
sition function of an automaton which is the Cartesian product of two input
automata.

The above function represents the essential part of the programs for inter-
section and difference to be described now.

Program 8.1.11 The following C(M) program implements intersection of
deterministic classical finite-state automata as described in Part 1 of Propo-
sition 3.3.2.

Program 8.1.12 The next C(M) program implements difference of finite-
state automata as described in Part 2 of Proposition 3.3.2.

Program 8.1.13 The following C(M) program implements reversal of finite-
state automata as described in Proposition 3.3.3.

Program 8.1.14 The algorithm implements a minimization procedure for
deterministic finite-state automata based on the inductive construction pre-
sented in Corollary 3.5.4, using the functions defined in Proposition 3.5.6.
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Program 8.1.15 Below we implement two basic functions on deterministic
finite-state automata. The first function ‘Cδ’ implements the transitive clo-
sure of the transition function δ∗. The second function ‘stateseq’ returns the
sequence of states on the automaton path starting from the given input state
that is labeled with the given word.

Example 8.1.16 In order to illustrate the use of the algorithms presented
in this section we provide a program for constructing a deterministic finite-
state automaton that recognizes all valid dates of the Gregorian calendar
formated as expressions of the form

AUGUST 11, 1996

We loosely follow the approach in [Karttunen et al., 1997a]. Date expres-
sions like “FEBRUARY 30, 2015” or “APRIL 31, 1921” are easily described
as incorrect. More challenging is the case with leap days. “FEBRUARY 29,

2000” and “FEBRUARY 29, 2016” are valid dates but “FEBRUARY 29, 2017”
and “FEBRUARY 29, 1900” do not exist.

8.2 C(M) programs for classical finite-state transducers

In this section we present C(M) implementations for the main algorithms
for n-tape automata as described in Secton 4.1. We only look at 2-tape
automata over the free monoid, i.e., classical finite-state transducers.

Program 8.2.1 As a first step the types used for finite-state transducers
over the free monoid are introduced, and the function for renaming the
states of a classical finite-state transducer is defined. We then introduce a
transducer for translating a given word into a second word.

Program 8.2.2 The next program describes union, concatenation, Kleene
star, Kleene plus, optionality, and 〈ε, ε〉-removal for finite-state trans-
ducers.

Program 8.2.3 The program below takes two 1-tape automata as input
and computes a transducer representing the Cartesian product of the two
input automaton languages as in Proposition 4.2.1, Part 1.

Program 8.2.4 Following Proposition 4.2.1 the following program presents
constructions for projections of a 2-tape automaton on the first and second
tape, inverse relation and the identity relation for a given automaton
language.
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Program 8.2.5 The next algorithm, given a finite-state transducer, con-
structs an equivalent classical 2-tape letter automaton, which means that
all transition labels are in Σε × Σε. Following Proposition 4.3.3 we expand
the transitions containing labels with words with more than one symbol by
introducing new intermediate states.

Program 8.2.6 The following algorithm constructs the finite-state trans-
ducer that represents the composition of two finite-state transducers ac-
cording to Proposition 4.3.4.

Program 8.2.7 The next algorithm constructs the finite-state transducer
that represents the reversal of a finite-state transducer.

Real-time translation and pseudo-determinization of transducers

Program 8.2.8 The following algorithms implement the removal of trans-
ducer transitions with label ε on the upper tape as described in the proof of
Proposition 4.4.8, and the conversion of a transducer to a real-time trans-
ducer.

Program 8.2.9 The next algorithm constructs a pseudo-deterministic
transducer equivalent to a given input transducer using the steps described
in the proof of Proposition 3.7.2.

Program 8.2.10 The following algorithm constructs a pseudo-minimal
transducer following Proposition 3.7.4.

Deciding functionality of transducers

Program 8.2.11 The next program constructs the squared output trans-
ducer for a real-time transducer in accordance with Definition 4.6.4.

Program 8.2.12 This program decides the functionality of a transducer
following Corollary 4.6.7, Proposition 4.6.8 and Corollary 4.6.11.

Example 8.2.13 The following program realizes the functionality of a fully-
fledged spell checker. Similar implementations are used e.g. in [Ringlstetter
et al., 2007, Mitankin et al., 2014]. It implements a function testing for an
input word w if w is in a given background dictionary, also retrieving the set
of dictionary words that are “close” to the given word. This set represents
the correction candidates for the given word. Closeness is defined in terms of
the Levenshtein distance. We recall that the Levenshtein distance between
two words is the minimal number of symbol substitutions, deletions and
insertions required for transforming the first word into the second one. This
code can be applied on any suitable word list.
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Remark 8.2.14 The above functions can be applied for large dictionaries
and provide a practical solution to spell checking and other similarity based
computations. Nevertheless some steps can be substantially improved.

1. The minimal deterministic finite-state automaton for the dictionary
can be constructed in a much more efficient way [Daciuk et al., 2000].

2. The deterministic Levenshtein automaton can be constructed directly
using the method in [Schulz and Mihov, 2002]. A more sophisticated
approach presented in [Mihov and Schulz, 2004] constructs the uni-
versal deterministic Levenshtein automaton which does not depend on
the input word. A comprehensive study of universal Levenshtein finite-
state automata and transducers is given in [Mitankin et al., 2011].

3. The words in the intersection of the dictionary automaton and the
Levenshtein automaton can be obtain more efficiently with a parallel
traversal procedure, avoiding the construction of the intersection au-
tomaton.

8.3 C(M) programs for deterministic transducers

In this section we present the algorithms for construction and minimization
of deterministic transducers.

Program 8.3.1 The following algorithm constructs a subsequential finite-
state transducer from a finite-state transducer with the bounded varia-
tion property, closely following the inductive construction presented in Sec-
tion 5.2.

Program 8.3.2 The next program tests the bounded variation poperty
for a transducer in accordance with Theorem 5.3.4 and Lemma 5.3.5.

Minimization of subsequential transducers

Program 8.3.3 The program below defines the type for subsequential
finite-state transducers with initial output and the conversion proce-
dure from and to ordinary subsequential finite-state transducer according to
Definition 5.4.4.

Program 8.3.4 This algorithm returns the expanded output automa-
ton for a given subsequential transducer as defined in Definition 5.5.11.
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Program 8.3.5 The function below calculates the maximal state output
function mso for a given transducer T according to Corollary 5.5.15.

Program 8.3.6 The following program converts a subsequential transducer
into canonical form as defined in Definition 5.5.2.

Program 8.3.7 The next program presents the pseudo-minimization and
minimization procedures for subsequential transducers.

Program 8.3.8 The following function Cλ realizes the generalized transi-
tion output function λ∗ of a subsequential transducer, given the transition
function δ and the transition output function λ.

Program 8.3.9 The following algorithm constructs a subsequential trans-
ducer that represents the composition of two subsequential transducers
following Proposition 5.1.10.

Phonetization of numbers as an application In order to demonstrate
the use of the above constructions we present a program for constructing a
minimal subsequential transducer that maps a number written as a sequence
of digits to its phonetization. This kind of functionality is needed, e.g., for
speech synthesis.

Example 8.3.10 For the current implementation we use the phoneme set
of the Carnegie Mellon University pronouncing dictionary1. In our example
we limit the input range to numbers between 1 and 999999. As a matter of
fact this segment could be easily extended.

Remark 8.3.11 The minimal subsequential transducer for a finite function
can be constructed much more efficiently applying the algorithm presented
in [Mihov and Maurel, 2001].

8.4 C(M) programs for bimachines

In this section we present the algorithms for construction, composition and
normalization of bimachines.

Program 8.4.1 The following algorithm converts a functional transducer
into a bimachine following the construction given in the proof of Proposi-
tion 6.2.5.

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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Program 8.4.2 The next algorithm constructs a pseudo-minimal bima-
chine in accordance with Definition 6.3.3 by minimizing the left and the
right automaton of the bimachine (considered as coloured automata using
state profiles as colours) following the procedure described in Section 6.3.

Program 8.4.3 The algorithm computes the composition of two bima-
chines following the construction presented in Section 6.4.

Bignum arithmetics with bimachines as an application We complete
the section with an example presenting the use of bimachines for implement-
ing basic arithmetic operations on unbounded natural numbers.

Example 8.4.4 Any natural number (e.g. 5389) can be represented as
string of digits such as [’5’,’3’,’8’,’9’]. The programs defined below
take as input an arbitrary natural number K ∈ IN. Given the number K
an “addition” bimachine is computed that reads as input a second natural
number x represented as a string of digits as indicated above. The output of
the addition bimachine is the representation of x + K as a string of digits.
In a similar way, for a given input number K, bimachines for the operations
x 7→ x−K (subtraction, defined for inputs x ≥ K), x 7→ x ·K (multiplica-
tion), x 7→ x/K (division), and for the remainder operation after dividing by
K are computed. In each case, input and output numbers are represented as
strings.

Author’s Contributions

The main scientific contributions of this dissertation are:

1. A complete and coherent presentation of the theory of finite-state au-
tomata, transducers and bimachines, together with detailed proofs of
the main properties and correctness of constructions, is given, which
combines abstract algebraic terms with computationally efficient con-
structions.

2. A decision procedure for deciding the bounded variation property of
a finite-state transducers has been developed, which can be integrated
in the sequentialization construction. In previous approaches (see, for
example, [Roche and Schabes, 1997a]), in order to avoid the endless
operation of the sequentialization construction, the bounded variation
property has to be tested in advance by a complex special algorithm.
With the presented method, this problem is solved in an elegant way
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by adding one additional check within the construction (see Theo-
rem 5.3.8).

3. A new construction with polynomial complexity for canonization of
a subsequential transducer is presented (see Corollary 5.5.15 and Re-
mark 5.5.16). The advantage of the new construction is its good effi-
ciency and the use of a fully automata-based approach.

4. A new construction has been developed for constructing a bimachine
from a finite-state transducer (see Proposition 6.2.5). The advantage
of the new construction is the avoidance of the pre-construction for
obtaining an unambiguous finite-state transducer. For certain classes
of transducers, a variant of the new construction results in an expo-
nentially smaller number of states of the derived bimachine [Gerdjikov
et al., 2017].

5. A construction together with correctness proof was obtained for direct
composition of bimachines (Section 6.4). Unlike the standard approach,
which requires the conversion of the bimachines to letter finite-state
transducers and vice versa, in the new construction the resulting bima-
chine is constructed directly.

The main scientific-applicational contributions of the presented dis-
sertation are:

1. A new programming language C(M) has been developed that allows us
to focus on abstract-level mathematical steps in describing algorithms
instead of describing low-level execution details.

2. Working implementations in C(M) of all major constructions for finite-
state automata, transducers and bimachines are presented.

3. The dissertation provides implementations of real-life programs based
on finite-state automata, transducers and bimachines for a number of
practical tasks such as spelling correction, phonetization, bignum arith-
metic, and more.
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