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Introduction 
Biometrics is the science of recognizing individuals through analysis by technical means of his 

physical or behavioral traits. It assumes that many of these traits (modalities) are strictly 

individual. The following physical traits are considered: voice, face, iris, fingerprints, palm 

veins, hand geometry, palm prints, ear shape, and respectively behavioral such as signature, 

handwriting style, keyboard dynamics, gait and more [Kisku et al., 2014]. 

In the last decade, biometric technologies became a rapidly developing area (in the US 

and China), and their deployment is in various fields – from grocery stores, airports to 

government institutions. The need for biometric solutions drives enormous investments in 

research leading to the development of new algorithms for features extraction and classification 

and design of advanced applications. 

Voice is one of the primary modalities and the most accessible biometric trait, because 

of the widespread use in recent years of mobile phones and voice over Internet (VoIP) 

applications. This fact gives the voice a significant advantage over other biometric traits. It 

leads to the development of many more applications in the field of voice biometrics than in 

other modalities. 

Currently the applications in voice biometrics can be divided into three main groups 

[Jain et al., 2008]:  

• speaker detection (speaker spotting) - detecting a speaker through analysis of multiple 

calls (e.g. in call centers); 

• speaker verification (voice authentication) - a typical application is remote access 

control by phone (e.g. bank transactions); 

• forensic speaker recognition; 

A trendy area is the mobile voice biometrics, i.e. the development of biometric 

applications for mobile devices (phones, tablets, etc.). The main problem in this area is the 

operation of biometric devices in dynamically changing environment.  

In fact, the applications listed above are always based on a system (local or remote) for 

speaker recognition. No matter what is the task – text-dependent or text-independent, 

verification or identification, this system must include one a mandatory algorithm (module), 

namely a voice activity detector. It separates speech fragments in the received audio stream 

and sends the information about them for further processing in the system. Actually, its 

functioning is crucial for the whole system. This is because the speaker's voice model only uses 

the speech fragments and the separation accuracy has a significant impact on the final decision 

of the biometric system. 

The rapidly development of biometric technologies (including voice biometrics) 

worldwide, determines the topic of thesis - voice activity detection in speaker recognition 

systems as extremely up-to-date research. 

 

Purpose of the thesis 
The development of robust features for voice activity detection algorithms intended for speaker 

recognition with telephone speech is the purpose of the thesis. 

 

Tasks of the thesis 
The following tasks have been formulated to achieve the goal of the dissertation: 

1. To develop robust features for speech detection, which based on the properties of the 

spectral autocorrelation function and the group delay spectrum. 
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2. To develop an approach for short phrase endpoint detection that includes two algorithms - 

for adaptive thresholds settings and a finite state machine. 

3. To develop endpoint detection algorithms that uses the proposed features and to study them 

experimentally in fixed-phrase speaker verification tasks. 

4. To develop voice activity detection algorithms that uses the proposed features and to study 

them experimentally in text-independent speaker identification tasks. 

 

 

Research methodology 
The recommended methodology is based on methods and approaches from the following areas: 

 linear algebra – linear transformations, etc.; 

 digital signal processing - correlation analysis, spectral analysis and others; 

 pattern recognition - neural networks, hidden Markov models and others. 

 

 

 

Content of the dissertation 
The dissertation consists of a glossary of terms, introduction, five chapters, contributions, and 

dissertation publications and citations and references. The first chapter is entitled "Speech 

Detection: A Review“, chapter two -“Speech detection features based on the properties of 

SACF and GDS, chapter three -“Algorithms for endpoint detection in fixed-phrase speaker 

verification. The experimental study", fourth -”VAD algorithms in text-independent speaker 

identification. The experimental study” and fifth -“ BG-SRDat – Telephone speech corpus 

intended for speaker recognition”. The main content is set out on 164 pages, 48 figures and 27 

tables are included. The list of references includes 151 sources. 

 

 
Chapter 1. Speech detection: A Review 
1.1. Introduction 
Speech detection is defined as the process of localization of speech among different types of 

non-speech events. Non-speech events are all audio events accompanying the realization of the 

speech message but not related to the information it carries. These non-speech events may be 

from the surrounding environment (street noise, background conversations, etc.), from the 

communication channel or sound artifacts generated by the speaker (sigh, cough, etc.). 

Speech detection is referred to in various terms, the most common of these being Voice 

Activity Detection (VAD) [Tuononen, 2008]. As a speech detection sub-task and sometimes 

as a separate type of detection the Endpoint Detection (ED), i.e. defining the boundary points 

of the speech message is considered. It locates only the border points (start and end) of a 

message while pausing inside the word or phrase is not marked (if they are up to a certain 

length). In most cases, ED- algorithms are used in text-dependent speaker recognition task with 

words or short phrases. 

The speech detector is a separate step in the biometric pre-processing system. The main 

goal in developing this kind of algorithm is to achieve robustness of their decision, i.e. the 

segmentation of the speech sequence does not change regardless of signal quality and 

environmental conditions variations [Nautsch et al., 2016]. 

1.2. VAD algorithms 
VAD algorithms contain three main modules: feature extraction, classifier, and hangover 

scheme [Ramirez et al., 2007]. Frequently used features are based on - spectral divergence 

[Ramirez et al., 2004], group delay functions [Krishnan et al., 2006], autocorrelation functions 
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[Ghaemmaghami et al., 2010a], periodic and aperiodic components [Ishizuka et al., 2010], 

delta-phase spectrum [McCowan, 2012], formants [Yoo et al., 2015], polynomial regression of 

the Mel spectrum [Disken, 2017], i-vectors [Yamamoto et al., 2017]. 

The decision module (classifier) uses different approaches according to the task and the 

type of used speech data. For example, for text-dependent speaker recognition with corpus 

RSR2015 [Alam et al., 2014] the sequential Gaussian mixture model [Ying et al., 2011] have 

been used. In text-independent speaker verification in NIST 2008 SRE (Speaker Recognition 

Evaluation) a multilayer perceptron [Ganapathy et al., 2011] is used. With the same type of 

speaker verification and NIST 2016 SRE has used a deep learning neural network [Yamamoto 

et al., 2017]. 

1.2.1. Features used in VAD and ED algorithms 
The text describes the features used in VAD and ED algorithms. The material in this section is 

mainly based on the review published in [Graf et al., 2015]. 

1.2.2. Classifiers used in VAD and ED algorithms 
The main classifiers used in VAD algorithms are the Gaussian mixture model, support vectors 

machine, and method with i-vectors. 

1.2.3. VAD algorithms in speaker recognition systems 
1.2.3.1. Study of VAD algorithms in text-independent speaker verification system for NIST SRE 

In work [Mak et al., 2014], the VAD algorithms have been specially adapted for NIST 2010 

SRE. A feature of these speaker verification tests is the quality of the records. In a considerable 

part of them, the SNR is about 5 dB. Two systems are used for speaker verification. The former 

uses the GMM-SVM approach [Campbell et al., 2006a] and the latter is with the i-vectors 

method [Dehak et al., 2011]. The following VAD algorithms were tested in the paper. These 

are AE-VAD (used signal energy), ASR-VAD (segmented data obtained by speech recognition 

system and provided by NIST [NIST, online]), GMM-VAD (algorithm using model with 

Gaussian mixtures [Fukuda et al., 2010], SM-VAD (Sohn algorithm [Sohn et al., 1999]), SS + 

SM-VAD (SM-VAD using spectral subtraction), SS + AE-VAD (AE-VAD using spectral 

subtraction). 

With the GMM-SVM system, the used SM-VAD detector performs better than GMM-

VAD for NIST SRE interview data. The main reason is a large amount of pre-segmented 

speech needed for GMM training. The spectral subtraction dramatically improves the accuracy 

of the AE-VAD signal energy detector and has little effect on SM-VAD accuracy. In the 

statistical model, the background noise is taken into consideration in the calculation of the 

estimation function, and in this case, the spectral subtraction is not sufficient enough. Best 

results for both criteria – EER and minDCF - were obtained at SS + AE-VAD. 

In the system that using i-vectors four versions of SM-VAD has been tested. It is 

assumed that the distribution of the Fourier coefficients can be respectively with Gaussian 

(basic algorithm), with Laplace and with Gamma distribution. The fourth test has a Gaussian 

distribution but spectral subtraction was used in the pre-processing step. Experiments show 

that SM-VAD with Gamma distribution demonstrates better results than the underlying 

algorithm at EER (Equal Error Rate) criterion. 

1.2.3.3. VAD algorithms based on MLP 

The proposed algorithm [Ganapathy et al., 2011] is based on the posterior probabilities of the 

phonemes in English obtained at the outputs of a multilayer perceptron (MLP). In MLP training 

are used features obtained by the frequency domain linear prediction method (FDLP) 

[Ganapathy et al., 2010]. Thus a 420-dimensional feature vector is obtained. MLP training has 

been implemented with CTS (conversational telephone speech) data [Hain et al., 2005] 

containing telephone calls lasting 180 hours. Speaker verification is based on the GMM-UBM 

system with i-vectors and GPLDA [Garcia-Romero et al., 2011]. To train, UBM uses data from 

NIST 2004 SRE, Switchboard II Phase III and NIST 2006 SRE. In training mode, the VAD 
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algorithm provided by NIST is used. In speaker verification tests the following VAD 

algorithms are implemented:  with adaptive energy signal [Reynolds et al., 2005], with Mel-

cepstrum, with time-frequency modulation [Mesgarani et al., 2006]. The MLP1- proposed 

algorithm uses as features are used Mel cepstrum with CMS, while the MLP2 uses features are 

obtained by FDLP. Verification accuracy is estimated by EER and detection accuracy by the 

total mean error of FAE and MDE calculated for all pronunciations. The experimental results 

show that the highest verification rate was achieved using the MLP2 VAD algorithm. It is 

interesting to note that in MLP2, a minimum EER is obtained even when training and testing 

are done with different languages. 

1.3. Endpoint detection algorithms  

1.3.1. Introduction 
ED algorithms include two main steps – features extraction and decision. In the first stage, one 

or more speech features are calculated, for example - signal energy [Li et al., 2012], spectral 

entropy [Zhang et al., 2013], [Zhang et al., 2016], time-frequency parameters [Kyriakides et 

al., 2011], wavelets [Yali et al., 2014], Mel cepstrum [Cao et al., 2017] and others. On the 

second stage, the most commonly used are finite state machine [Chung et al., 2014] or 

classifiers - neural networks [Wu et al., 2012], Hidden Markov Models (HMM) [Zhang et al., 

2005], Support Vector Machines (SVM) [Feng et al., 2016] and others. 

1.3.2. Algorithms for endpoint detection 
1.3.2. 4 Li algorithm using Teager energy 

An ED-algorithm using the Teager Energy Operator (TEO) as a feature has been proposed [Li, 

2012]. Unlike traditional energy, this type of energy contains information not only about the 

amplitude but also about the frequency characteristics of the signal. In order to determine the 

endpoints, threshold values and corresponding logical rules are introduced. Tests were made 

with speech with additive noises selected from NOISEX-92 [Noisex, online]. The main 

disadvantage of this ED–algorithm in noisy speech signals is the unsatisfactory detection of 

endpoints when there are fricative sounds. Notwithstanding this fact, compared to the 

traditional energy, the results obtained demonstrate the advantages of the TEO. 

1.4. Conclusion 
Based on the review, it can be concluded that the combination of sources providing various 

information is a successful strategy in developing algorithms for speech detection in a real-

world environment. This involves a fusion of different representations of the speech signal, a 

fusion of multiple feature streams in one VAD algorithm, and a combination of different VAD 

algorithms. In turn, these VAD algorithms can be built with different classifiers, which give an 

opportunity for greater adaptability of the detection when changing environmental conditions. 

 

Chapter 2. Speech detection features based on the properties of SACF and 

GDS 
2.1. Speech detection features using a spectral autocorrelation function 

2.1.1. Introduction 
The work proposes to form speech detection features using the properties of the spectral 

autocorrelation function. The main idea is to achieve peak enhancement of the harmonic 

components in the spectral autocorrelation function using the approximation of its first 

derivative. 

2.1.2. Spectral autocorrelation function. Properties. 
Spectral AutoCorrelation Function (SACF) can be calculated in different ways according to 

the purposes for which it is used. It is accepted that the SACF is defined as discrete quantities 

of the magnitude spectrum (or power spectrum) with spectral resolution as in the Fourier 

transform used to obtain the spectrum. If )(kX  is the magnitude spectrum of the speech 
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obtained by FFT for the current segment, the biased estimate of the autocorrelation function 

AR ( l )  is defined as [Klapuri, 2000] 

2 1

0

2 K / l

A

k

R ( l ) X( k ) . X( k l )
K

 



  ,    (2.1) 

where Ll ,...,0 and 12/KL  ; K is the size of FFT and L is the number of lags. 

2.1.3. Delta spectral autocorrelation function 
In this work, a parameter for speech detection based on the first-order derivative of the spectral 

autocorrelation function is proposed. Since this derivative has no analytical form, it can only 

be approximated by finite differences. However, applying the first-order finite difference to 

real signals leads to increased noise since these differences are, in fact, a high-pass filtration. 

To avoid this problem, an idea similar to this one described in [Rabiner et al., 2010] but 

implemented in different way is proposed. In [Rabiner et al., 2010] the first derivative in time 

of a cepstral contour is represented as an orthogonal polynomial approximation of the contour 

calculated within a specific time area. In this case, the first-order polynomial coefficient 

describes the slope (i.e., the first derivative in time) of the cepstral trajectory for a given time 

segment. These orthogonal first-order polynomial coefficients are known as delta cepstral 

coefficients or just a delta cepstrum. 

Another interpretation of the delta cepstrum is proposed in [Fukuda et al., 2010], where 

it is considered as a sequence obtained at the output of a noncausal FIR filter. Its transfer 

function ( )H z  is defined as 
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The derivative of the spectral autocorrelation considered as an output signal of the filter 

in (2.5) is proposed in the thesis. It is named Delta Spectral Autocorrelation Function (DSACF) 

and is calculated using SACF values within the current segment (intra-frame processing). In 

the text, SACF is referred to as ( , )R n l  regardless of how it is calculated - by the amplitude or 

by the power spectrum. The spectrum type is specified further in the text. 

DSACF ( , )R n l  for the nth segment is calculated by SACF ( , )R n l  according to 

1
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q R n l q R n l q

R n l

q





  

 




    (2.6) 

where Ll ,...,0  is the number of lags of the SACF; Q is typically between 2 and 5, i.e. filter 

length from 5 to 11 lags and 1,...,0  Nn , N is the number of segments. It is accepted 

( , ) 0R n l   for 0l   and l L , i.e. the first and last few values of ( , )R n l , should not be 

subject to analysis as boundary conditions influence them. In Fig. 2.3 waveforms of three 

signals, their normalized SACFs and their corresponding DSACFs (Q= 3) up to lag 100L  

are shown. 

In the DSACF in Fig 2.3 (g) strong positive and negative peaks that are difficult to 

interpret are observed. To be overcome this it is proposed to use the idea of the second FFT 

described in [Wang et al., 2001], but applied not to the amplitude spectrum but to the spectral 

and delta spectral autocorrelation functions. In this way, it is possible to make direct 

comparison between the two spectra (2nd FFT spectrums) and determine the effect of the 

application of the delta filter (2.5) to the spectral autocorrelation function. 
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Fig.2.3. Normalized SACF and the corresponding DSACF for (a) phoneme /a/, 

(b) fricative /sh/ and (c) white noise. 

 

The Fig. 2.4 shows the amplitude spectrum of the part of the phoneme 'a' (sampled frequency 

8 kHz) and amplitude spectra of SACF, filter in (2.5) and DSACF - ( ) ,RS  ( )H   and 

( )RS  , respectively. The graphics are obtained with the following parameters - K = 3 

(formula (2.6) - filter length 7 lags), FFT - 512 points, and the unbiased spectral autocorrelation 

function obtained by 
/2 1

0

1
( ) . ( ) ; 0; ;

/ 2( )

( ) ; 0

K l

k

X k X k l l l L
K lR l

R l l

 




  

 
  


   (2.7) 

where K is the number of FFT points, / 4L K  and (.)X  is the amplitude spectrum. 

In Figs. 2.5 and 2.6 the block diagrams of the algorithms for calculating of the ( )RS   and 

( )RS   are shown. 

 
Fig. 2.4. Magnitude spectra of: (a) phoneme /a/, (b) SACF, (c) delta filter and (d) DSACF. 
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Fig.2.5. Block diagram of the algorithm for calculating of ( )RS  . 

 

Fig.2.6. Block diagram of the algorithm for calculating of ( )RS  . 

 

The fundamental frequency (pitch) in the phoneme segment shown in Fig. 2.4 (a) is 

about 125 Hz. At a sampling rate of 8000 Hz and FFT with 512 points, the difference between 

the peaks of the pitch in Fig. 2.4 (a) is 8 spectrum bins. By applying 2nd FFT to SACF and 

DSACF and according to the calculations in [Akant et al., 2010] the peak corresponding to the 

fundamental frequency in the spectrum is at 64 bin, as seen in Fig. 2.4 (b) and (d). 

The delta filter with magnitude response shown in Fig.2.4 (c) can be regarded as a set 

of three band filters. In the figure, the amplitude is linear in order to be suitable for comparison 

with the other two amplitude spectra - the SACF and the DSACF. If the amplitude is 

logarithmic and the points are determined at -3 dB relative to the maximum (0 dB) the values 

of the frequencies are shown in Table 2.1. With Lf  and Hf  are noted the cutoff frequencies, 

0f  is the central frequency and B are the bandwidth of the bandpass filters. 

 

Table 2.1. Frequencies of the delta filter 
BPF 

Lf [Hz] 0f [Hz] Hf [Hz] B[Hz] 

1 383 772 1179 796 

2 1904 2193 2501 597 

3 3111 3405 3699 588 

 

The first filter is essential in the filtering of the SACF. The level at its center frequency 0f  is 

higher than that of the first and second filters, respectively, by about 7.3 dB and 9.5 dB. This 

filter reduces the components in the spectra of SACF close to the DC term and corresponding 

to the envelope energy of the spectral autocorrelation function. Furthermore, there is a sharp 

peak in the DSACF spectrum that corresponds to the energy of fundamental frequency 

harmonics in the spectral autocorrelation function – as seen in Fig.2.4 (d). 

In Fig. 2.9 are shown the described above magnitude spectrums but calculated for 

speech with additive white noise at SNR=5 dB. 

 

| . |Hamming FFT SACF

Speech  signal

single segment

Magnitude 

spectrum of SACF

  

  

  

FFT | . |

  

  

( )RS  ( )RS 

| . |Hamming FFT SACF

Speech signal

single segment

Magnitude 

spectrum of DSACF

  

  

  

FFT | . |

  

  

Delta filter

Eq.(2.6)

                         

DSACF

( )RS  ( )RS 



8 
 

 
Fig. 2.9. SNR=5 dB - Magnitude spectrums of: phoneme /a/, (b) SACF, (c) 2nd FFT and (d) DSACF. 

 

Comparing the spectra with the clear and noisy signals shown in Figs. 2.4 and 2.9 the following 

will be established. First, the idea of [Wang et al., 2001] to emphasize the pitch peak for the 

noisy signals is confirmed. In Fig. 2.9 (c) the peak in the 2nd FFT spectrum located at 64 bin 

corresponds to the fundamental frequency of 125 Hz. Second, when comparing the spectra of 

SACF, respectively - Figs. 2.4 (b) and 2.9 (b) and of the DSACF - Figs. 2.4 (d) and 2.9 (d), it 

is found that the peak in the SACF spectrum is reduced to a much greater extent than the 

corresponding peak in the delta spectral autocorrelation function. Moreover, the peak in the 

DSACF spectrum for the noisy signal is more pronounced even than in the 2nd FFT spectrum. 

These facts are arguments for using the DSACF as the basis for the formation of robust speech 

detection features. 

2.1.4. Mean-Delta (MD) features 
2.1.4-A. Motivation 

The characteristics of the DSACF described in §2.1.3 underlie the features suggested in the 

dissertation. As can be seen in Fig. 2.3 (g) (h) (e) DSACF has significant positive and negative 

peaks even for the fricative consonant “sh”. This property, on the one hand, and on the other 

hand, the shape of the spectrum of the DSACF for noisy signals shown in Fig. 2.9 (d), are the 

starting points for the formation of the features suggested in the dissertation. The author 

assumes that if a parameter is formed that for the current segment is a summary estimate of the 

number and magnitude of the peaks in the DSACF, then this parameter can be successfully 

used as a speech detection feature, especially for noisy speech signals. In the dissertation, this 

assumption was confirmed experimentally for two versions of the DASCF calculated 

respectively by the Fourier amplitude spectrum and by the modified group delay spectrum. 

The speech detection features suggested in Chapter 2 are formed by the DSACF and 

not by its spectrum. The direct use of the DSACF spectrum (i.e., the application of a second 

FFT) to develop speech detection features and the evaluation of their effectiveness in speaker 

recognition systems is a subject of future research. 

2.1.4.1. Mean Delta feature 

The first proposed feature is called the Mean-Delta (MD) feature and is intended for use in 

time contour analysis. For nth segment the MD feature ( )dm n  is defined as  

0

( ) ( , )
L

d

l

m n F R n l


 
  

 
       (2.13) 
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where ( , )R n l  is the causal part of DSACF. In the formula (2.13) with F (.) is denotes an 

additional transformation which is defined according to the features of the speech detection 

algorithm. The so-called basic algorithm for calculation of the MD feature will be presented 

here. For nth segment, it has the form: 

 compute the magnitude spectrum )(kX of the Hamming-windowed speech signal via 

the Fast Fourier Transform (FFT) of size K; 

 apply mean normalization (the mean vector of the amplitude spectrum is calculated 

over all segments in the file) 

1

( , )
( , )

1
( , )

N

n

X n k
X n k

X n k
N 




      (2.14) 

where N is the number of segments in the utterance (file); 

 compute the unbiased spectral autocorrelation function with lags L=K/4 using the 

normalized amplitude spectrum 
/2 1

0

1
( , ) ( , ) . ( , ) ; 0; ;

/ 2

K l

k

R n l X n k X n k l l l L
K l

 



   


        (2.15) 

 compute delta spectral autocorrelation function ( , )R n l  according to (2.6) with Q = 3; 

 smooth the time contour of the delta spectral autocorrelation function (for each lag) 

using the Long-Term Spectral Envelope (LTSE) algorithm with parameter J = 3 

[Ramirez et al., 2004]. The smoothed version of ( , )sR n l  is noted as 

 ( , ) max ( , .
j Js

j J
R n l R n j l




        ( 2.16) 

 compute the MD parameter ( )dm n  as 
0.5

0

( ) ( , )
L

s

d

l

m n R n l


 
  
 
   (2.17) 

 smoothing of ( )dm n  contour by a moving average filter; 

In Fig. 2.10 the block diagram of the above algorithm for calculating of the MD feature is 

shown. 

 

 
Fig.2.10. Block diagram of the algorithm for calculating of the MD feature. 
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2.1.4.2. Basic mean delta feature 

The second feature is named as Basic Mean-Delta (BMD) and is intended for speech detection 

in recognition algorithms, i.e. the parameter is defined in vector form. For nth segment BMD 

feature ( )BMDm n  is defined as follows: 

 compute the magnitude spectrum )(kX of the Hamming-windowed speech signal via 

the FFT with size K; 

 apply mean normalization (the mean vector of the amplitude spectrum is calculated 

over all segments in the file) according (2.14); 

 compute the unbiased spectral autocorrelation function with lags L=K/4 using the 

normalized amplitude spectrum according (2.15) 

 compute delta spectral autocorrelation function ( , )R n l  according to (2.6) with Q=3; 

 smoothing of the time contour of the delta spectral autocorrelation function (for each 

lag) using the Long-Term Spectral Envelope (LTSE) algorithm with parameter J = 3 

[Ramirez et al., 2004]. The smoothed version of ( , )sR n l  is noted as 

 ( , ) max ( , .
j Js

j J
R n l R n j l




        (2.18) 

 divide the total number of lags L in DSACF by V equal in length and non-overlap ranges 

as follows 

1 2 1 2 1 2{ , }...{ , }...{ , }v v V VL L L L L L      (2.19) 

 determine the size of the BMD vector ( )BMDm n  by the number of V ranges in the form 

( ) { ( ,1),..., ( , ),..., ( , )}BMD BMD BMD BMDm n m n m n v m n V  (2.20) 

 vth component in ( , )BMDm n v is defined as 

 
1

( , ) log max ( , )
v

v

m L
s

BMD
m L

m n v R n m




  
  

   (2.21) 

2.1.4.3. Modified mean delta feature 

The third feature is called Modified Mean-Delta (MMD) feature and is intended for speech 

detection by recognition algorithms. It is defined in a manner similar to the basic MD feature 

in § 2.1.4.2. The difference is that a rectangular window is applied on the lags sequence. This 

window length is Y lags and is shifted by step of U lags so the number of steps is V and it 

determines the size of the MMD vector. For nth
 segment MMD parameter ( )MMDm n is 

( ) { ( ,1),..., ( , ),..., ( , )}МMD MMD MMD MMDm n m n m n v m n V   (2.22) 

where ( , )MMDm n v  has the form 

 
( 1)*

( 1)*
( , ) log max ( , )

m v U Y
s

MMD
m v U

m n v R n m
  

 

  
  

   (2.23) 

2.2. Speech detection features based on the group delay spectrum 

2.2.1. Introduction 
This item includes the description of the Group Delay Spectrum (GDS) [Murthy et al., 2011] 

and an analysis of its variations for speech signals with additive noise. This analysis is 

indirectly done by using of the Projection Distortion Measure (PDM) based on the additive 

spectral model [Mansour et al., 1989]. Here a feature called the Group Delay Mean Delta 

(GDMD) that combines Modified GDS (MGDS) [Hegde et al., 2007] and the MD feature 

discussed in § 2.1.1.4 is proposed. 

2.2.2. Group Delay Spectrum 

2.2.3. Study of the GDS for speech with additive noise  

2.2.4. Group Delay Mean Delta feature 
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MGDS ( )m   is defined as  

( )
( ) ( ( ) )

( )
m

 
   

 

 
   
 

    (2.44) 

where 

2

( ) ( ) ( ) ( )
( )

( )

R R I IX Y Y X

S 

   
 



 
  
 

   (2.45) 

and ( )S  is the cepstral-smoothed version of the FFT spectrum ( )X  . The parameters α and 

γ vary from 0 to 1 (0 <α ≤ 1) and (0 <γ ≤ 1). These two parameters and cepstral-smoothed 

spectrum in denominator were introduced to reduce the amplitude peaks and to limit the 

dynamic range in the MGDS. To control the degree of cepstral smoothing in ( )S   a cepstral 

lifter with a length wl is used.  

A new feature called Group Delay Mean Delta (GDMD) - a feature that is intended for 

speech detection by contour analysis is proposed. It uses the Mean-Delta approach proposed in 

§2.1.4, but in this case, the spectral autocorrelation function is defined not with the FFT 

spectrum but with the modified GDS defined in (2.44). The main purpose of this combination 

is to use the properties of the GDS and to achieve enhancement of the peaks in the delta spectral 

autocorrelation function. Two modifications of the GDMD feature are proposed. For nth 

segment, the proposed GDMD features are calculated in three steps (for the sake of the clarity 

the index n is omitted in some formulas): 

A. Step 1. Calculation of MSGS according to [Hegde et al., 2007] as follows: 

 let ( )x n  is the speech signal in the current segment, n = 1,…, N is the number of samples 

in the segment; 

 apply FFT to the sequences x(n) and nx(n) and obtain the corresponding spectra X(k) 

and Y(k); 

 compute ( )S k - cepstrallly smoothed spectrum of ( )X k  using low-order cepstral 

lifter wl ; 

 compute the MGDS ( )m k  as  

Im Im

2

( ) ( ) ( ) ( )
( ) [sign]. ,

( )

R R
m

X k Y k Y k X k
k

S k







    (2.46) 

where [sign] is the sign of the term 

2

( ) ( ) ( ) ( )

( )

R R I IX k Y k Y k X k

S k 


    (2.47) 

Parameters α, γ and 
w

l are adjusted according to the particular requirements. 

B. Step 2. Calculation of MD feature, using MGDS ( )m k  (2.46) as follows: 

 compute the average MGDS – averaged over all frames in the utterance; 

 obtain the mean normalized MGDS )(kn

m
  by dividing the frame MGDS by the average 

MGDS; 

 compute the non-normalized unbiased spectral autocorrelation function ( )mR l  using 

the mean normalized MGDS )(kn

m
   

/2

0

1
( ) ( ) ( ); 0; ;

/ 2

K l
n n

m m m

k

R l k k l l l L
K l

 




   

     (2.48) 

where K is the size of FFT, 0,..., ,l L  L is the number of correlation lags, and 4/KL  . 
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 compute the delta spectral autocorrelation function 
mR (n,l )  according to (2.7) using 

mR (n,l ) with delta window Q as (here index n is included) 

1

2

1

2

Q

m m

q

m Q

q

q.( R (n,l q ) R (n,l q ))

R (n,l )

q





  

 




    (2.49) 

 perform a contour smoothing for delta spectral autocorrelation function 
mR (n,l )  by 

using J-order long-term spectral envelope algorithm [Ramirez et al., 2004]. The 

obtained smoothed version of 
mR (n,l )  is denoted as s

mR (n,l )   

 ( , ) max ( , .
j Js

m m j J
R n l R n j l




        (2.50) 

 compute the GDMD parameter 
gdm (n)  using 

s

mR (n,l )  as 

0

L
s

gd m

l

m (n) R (n,l )


 
  
 
     (2.51) 

C. Step 3-1. Compute and smooth the lin-GDMD contour: 

 compute the lin-GDMD parameter
gd linm (n)

 using
gdm (n)  according to 

0 5.

gd lin gdm (n) m (n)
        (2.52) 

 smooth the gd linm  contour by a moving average filter; 

C. Step 3-2. Compute and smooth the log-GDMD contour: 

 normalize the
gdm (n)  contour in (2.51) and obtain the final contour 

*

gdm (n)  as  

* min( ) ( ) ,gd gd gdm n m n m      (2.53) 

where 
min min{ ( )}gd gd

n
m m n . 

 compute log-GDMD according to  

1 *

gd log gdm (n) log( m (n))  
    (2.54) 

 smooth the 
loggdm 

 contour by moving average filter; 

Fig. 2.12 shows the block diagram of the above algorithm for computing the GDMD feature. 

The normalization done in (2.53) and (2.54) is proposed because the minimum values obtained 

in the GDMD contour are always less than 1, i.e., direct use of а log function is not appropriate. 

2.3. Conclusions 
The first part of Chapter 2 discusses some of the characteristics of the spectral autocorrelation 

function obtained by the FFT spectrum. A method is proposed in which, by applying a delta 

filter to the spectral autocorrelation function, the so-called delta spectral autocorrelation 

function is obtained. In the second part of the chapter has made a qualitative study of the effect 

of the additive noise on the GDS. On the one hand, based on the delta spectral autocorrelation 

function properties alone, and, on the other, by combining it with the modified group delay 

spectrum, a total of five speech detection features have been proposed. These are the features 

- MD, log -GDMD, lin-GDMD, BMD, and MMD. The first three are for detection by contours 

analysis and the last two for detection by recognition algorithms. 
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Fig. 2.12. Block diagram of the algorithm for the GDMD features computing. 

 

Chapter 3. Algorithms for endpoint detection in fixed-phrase speaker 

verification. The experimental study 
3.1. Introduction 
In this chapter, a comparative experimental analysis is conducted using the proposed in the 

previous chapter features designed for contour-based speech detection. The following features 

are selected as references: Energy-Entropy (EE) feature [Huang et al., 2000]; Spectral Entropy 

with Normalized frame Spectrum (SENS) [Renevey et al., 2001]; Modified Teager's Energy 

(MTE) [Gu et al., 2002] and Long-Term Spectral Divergence (LTSD) [Luengo et al., 2010]. In 

the experiments endpoint detector including thresholds setting algorithm and finite state 

machine is used. Various versions of this endpoint detector are developed according to the 

contour features. 

It should be noted that a detector, endpoint detector, and an algorithm for endpoint 

detection are used synonymously in Chapter 3. This is done to make the text clearer. 

In order to estimate the performance of the endpoint detection algorithms, three 

experiments are carried out. In the first one, the Euclidean distances between two Z-normalized 

feature contours – for clean and noisy versions of the testing phrase [Chen et al., 2005] are 

calculated. The goal is to estimate the difference between contours caused by the noise. The 

speech samples from SpEAR corpus are used [SpEAR, online].  

In the second one, the endpoint accuracy was evaluated in terms of frames differences 

between hand-labeled and detected endpoints. The speech samples from two corpora are used 

– in Bulgarian from BG-SRDat [Ouzounov, 2003] and in English from TIDIGITS [Dan Ellis, 

online]. 

In the third experiment, the performance of the endpoints detection algorithms in terms 

of the recognition rate is estimated via two fixed-text speaker verification applications. The 

first application is based on the Dynamic Time Warping (DTW) algorithm [Theodoridis et al., 

2010] while the second one uses the left-to-right HMM [Gales et al., 2008]. The verification 

results are compared to those obtained by manual endpoint detection. Here the speech examples 

are selected only from the Bulgarian corpus BG-SRDat. 

Hamming MGDS
Spectral mean 

normalization

SACF

DSACF

LTSE

Normalization

Speech signal

log-GDMD feature

Smoothing

   

lin-GDMD

Smoothing 

lin-GDMD feature

   

GDMD
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The ZHTER – test method proposed in [Bengio et al., 2004] is used to assess the 

difference (in the statistical sense) between the endpoint detectors by using the obtained 

verification rate.  

3.2. Reference features 
The reference features listed above are described. 

3.3. Analysis of Z-normalized contours 

3.4. Endpoint detection algorithms 
Most often, when developing endpoint detectors for short phrases, two algorithms work 

together - the first one for thresholds setting (fixed or adaptive) and the second - a finite state 

machine [Li et al ., 2002], [Abdulla et al ., 2009], [Chung et al ., 2014]. The paper proposes an 

approach for developing such a detector, including an algorithm for calculating adaptive 

thresholds and a deterministic finite state machine. In most cases, such ED-detectors are ad 

hoc solutions. In the course of the research, it was found to be extremely difficult to reproduce 

decisions based on heuristic rules accurately. Therefore, in the thesis, the efficiency of the 

proposed finite state machine is compared with the hangover algorithm, which is well described 

in the standard [ETSI, 2007]. Based on the proposed approach (and depending on the 

characteristics of the features contours), three algorithms for endpoint detection have been 

developed.  

3.4.2. Adaptive thresholds settings algorithm 

To reduce the detection errors due to the use of fixed thresholds scheme an adaptive algorithm 

that uses two pairs of thresholds is proposed. The first pair is intended for detection of the 

starting point, while the second one – for the ending point. In other words, two thresholds – 

low and high – are set using the contour characteristics in the beginning part of the speech 

record, and the state automaton uses these thresholds for starting point detection only. In a 

similar way, the two other thresholds – low and high – are set using the contour specifics in the 

ending part, and they are used only for detection of the ending point. The critical issue in this 

algorithm is how to define the beginning and ending parts in speech record based only on the 

contour features. In order to do this, it is proposed to use the contour peaks analysis. 

Let { }, 1, , ,iP p i G   is the set of peaks, where G  is the total number of peaks in 

analyzed contour. Each peak is defined as ( , )i i ip v l  where vi is the peak value and li is the 

location of the peak, i.e., the number of contour frame where the peak is placed. Let define new 

set sort{ }M
v

Q P obtained after sorting the peaks over the peak values vi  in descending order 

and select the first M of them and M<<G. Let define min
l  and max

l where }{min
min M

l
Ql   and 

}{max
max M

l
Ql  . The position of the splitting point spll , i.e., the point that divides the contour 

into two parts – beginning and ending – is defined as spl min max min( )l l l l   .  

In the proposed algorithm, a single initial threshold is computed for each part of the 

contour. By using this threshold, two additional averages downm and upm are estimated. The first 

average is calculated from the contour values smaller than the threshold, while the second one 

– from the values equal to or higher than it. In such way, the pairs of thresholds low high

beg beg,T T  for 

beginning part of the contour and 
low high

end end,T T  for the ending one are defined. The thresholding 

algorithm is as follows. 

Step 1. Compute the contour values ( ) 0; 1,C n n N  , N is number of frames. 

Step 2. Find contour peaks { }; ( , );i i i iP p p v l   vi is the peak value, li is the location of 

the peak and Gi ,,1 , G is the number of peaks. 

Step 3. Find sort{ }M
v

Q P  in descending order and select the first M peaks; M<<G. 
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Step 4. Compute }{min
min M

l
Ql  and max max{ }.M

l
l Q  

Step 5. Compute splitting point  

spl min max min( ).l l l l         (3.22) 

Step 6. Compute initial thresholds for the beginning and ending part of the contour:  

 init

beg spl

init

end spl

( ) ; 1, , ,

{C( )}; 1, , .

T C n n l

T n n l N

  

   
   (3.23) 

Step 7. Compute additional average values for the beginning part:  
spl

spl

init

down beg1
beg

1

( ) ( )
1 if ( ) ,

, ( )
0 otherwise,

( )

l

n

l

n

C n w n
C n T

m w n

w n





 
  







  (3.24) 

spl

spl

init

up beg1
beg

1

( ) ( )
1 if ( ) ,

, ( )
0 otherwise.

( )

l

n

l

n

C n v n
C n T

m v n

v n





 
  







   (3.25) 

Step 8. Compute additional average values for the ending part:  

spl

spl

init
1down end

end

1

( ) ( )
1 if ( ) ,

, ( )
0 otherwise,

( )

N

n l

N

n l

C n w n
C n T

m w n

w n

 

 

 
  






  (3.26) 

spl

spl

init
1up end

end

1

( ) ( )
1 if ( ) ,

, ( )
0 otherwise.

( )

N

n l

N

n l

C n v n
C n T

m v n

v n

 

 

 
  






  (3.27) 

Step 9. Compute pair of thresholds for the beginning part: 
low down up down

beg beg 1 beg beg

high init low

beg beg 1 beg

( ),

max( , ).

T m m m

T T T





  


   (3.28) 

Step 10. Compute pair of thresholds for the ending part: 
low down up down

end end 2 end end

high init low

end end 2 end

( ),

max( , ).

T m m m

T T T





  


   (3.29) 

The parameters  ,,,,
2211  and M are adjusted according to the particular requirements. 

3.4.3. Finite-state automation 

In the book about Bulgarian phonetics [Tilkov et al., 1977] it is claimed that no word begins 

with more than four consonants, and no word ends with more than three consonants. The 

preliminary experiments with a limited set of Bulgarian words (selected from [Tilkov et al., 

1977]) have shown that the voiced fragments can be preceded (in the beginning) and followed 

(in the end) by unvoiced ones with a length of about 200-400 and 400-600 ms, respectively. It 

is worth to point out that for the English language, it is claimed that no word begins with more 

than three consonants, and no current word ends with more than four consonants [Roach, 

2009]. Besides, it is claimed that the mentioned above time fragments for the English language 

are about 300 and about 500 ms, respectively [Ghaemmaghami et al., 2010b]. The 

comprehensive analysis of this issue, however, is clearly outside the scope of this study. 
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These two time constants are applied in the developed state automaton for defining of 

the pre-voiced and post-voiced fragments where the beginning and ending points will be 

searched. 

The proposed ED algorithm is based on eight-state automaton with states: INIT, 

SCAN_DATA, SCAN_START, MAYBE_IN, SCAN_END, MAYBE_OUT, END_FOUND 

and END. A specific feature of the proposed state automaton is that in some circumstances, an 

error may occur. If this is happened the ED algorithm stops, and the particular file is ignored 

in the further processing steps. The errors occur in four cases: 

 when the utterance ends outside the audio file – error ERR_TOOLONG; 

 when the SNR is very low – error ERR_LOWSPEECH; 

 when the current thresholds do not allow the starting or ending points to be found – 

errors ERR_BAD_BEG_THRS, ERR_BAD_END_THRS; 

 when the estimated length of the utterance is less than MinLengthTime – error 

ERR_TOOSHORT. 

This error mechanism is designed to prevent cases when inappropriate speech data have 

been entered in the recognition system. Protection from so-called inappropriate pronunciation 

or sound artifacts is an essential step in the real-time voice verification systems over telephone 

lines.  

The finite state machine based decision logic applied to the ED is shown in  

Fig. 3.12. The parameters TSCAN_START, TMAYBE_IN, T1SCAN_END, T2SCAN_END and TMAYBE_OUT are 

state timers. Each one of the time constants MaxQuietTime, UpTime1, UpTime2, MiddleTime, 

MinLengthTime, EndTime, BegTime, MaxStateTime determines the length of the interval after 

which the state transition is performed. In this algorithm two types of so-called Endpoint 

Candidates (EC) are proposed. These EC are segment numbers that are likely candidates for 

the ending point, which is selected from them by logical rules. The results from the proposed 

ED algorithm (with adaptive thresholds) applied on the log-GDMD feature contour for a noisy 

speech example selected from the “Lombard Speech” section in the SpEAR database are 

illustrated in Fig. 3.13. The state transition-timing diagram is shown in Fig. 3.13 (c). Along the 

contour in Fig. 3.13 (d) are marked important details in the temporal execution of the proposed 

algorithm as: hand-labelled and estimated endpoints, splitting point, endpoint candidate type-

1, pairs of thresholds low high

beg beg,T T for beginning part and 
low high

end end,T T for ending part one.  

 

 

 
Fig.3.12. Finite state machine based decision logic diagram. 
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Fig. 3.13. Example from the SpEAR database: (a) clean signal; (b) noisy version; (c) the state transition timing 

diagram; (d) log-GDMD feature contour with marked some details in temporal execution of the algorithm. 
 

3.5. Endpoint detectors 

3.5.1. GDMD-E detector 

This detector is a combination of the log-GDMD feature (§ 2.2.4), adaptive thresholds 

algorithm (§ 3.3.2) and the finite state machine (§ 3.3.3). The block diagram of the proposed 

ED-algorithm is shown in Fig. 3.15. 

 

 
Fig. 3.15. The block diagram of the GDMD-E detector. 

 

3.5.2. LTSD-E detector 

This detector is proposed to test the performance of the LTSD feature alone. Typically, VAD-

LTSD algorithm includes its own adaptive threshold and hangover scheme [Ramirez et al., 

2004]. Here, the LTSD-E detector is designed using the LTSD feature contour and proposed 

in this paragraph, adaptive thresholds and finite state machine. 

3.5.3. GDMD-H detector 

This detector is proposed in order to study the join operation of the hangover algorithm and 

log-GDMD feature contour. The block diagram of the proposed ED-algorithm is shown in Fig. 

3.17. 
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Fig. 3.17. The block diagram of the GDMD-H detector. 

 

 

3.6. Experiments 

3.6.1. Speech data 
The speech data used in the experiments are selected from the BG-SRDat corpus [Ouzounov, 

2003] and the TIDIGITS corpus [Dan Ellis, online]. In the first experiment – accuracy 

evaluation – the data are chosen from both data sources, while in the second experiment – 

verification task –they are selected only from the former one. From BG-SRDat corpus short 

records are selected. The length of the utterance is about 2 sec, and the length of the single 

record (file) is about 2.5-3 sec. The speech data used in the study include 337 files collected 

from 18 male speakers. From the TIDIGITS corpus (in English) are selected examples 

containing spoken digit strings. The speech data used in the study include 84 files collected 

from 3 male and three female speakers. The hand labeling of the endpoints for all speech data 

is done in order to have reference endpoints for comparative purposes.  

3.6.2. Algorithms settings 

The endpoint detectors parameters are tuned in the study only in the endpoint accuracy 

experiments. Thus leads to a maximum rate of distribution for frame differences less than 10-

frames. The tuned parameters are later used in the speaker verification tests. All adjustments 

are performed experimentally using a trial-and-error approach. 

3.6.3. Detection accuracy estimation 
In this experiment the endpoints accuracy was evaluated in terms of frames difference between 

hand-labelled and detected endpoints [Yamamoto et al., 2006]. The frames difference BD ( s )

between hand-labelled and detected beginning points is defined as (for each utterance) 

B B BD ( s ) M ( s ) ED ( s )  ,    (3.30) 

where BM ( s ) is the hand-labelled beginning point; BED ( s ) is the beginning point obtained by 

endpoint detection algorithm and 1s , ,S is the number of utterances. The frames difference 

for ending points ED ( s ) is defined as 

E E ED ( s ) M ( s ) ED ( s )  ,    (3.31) 

where EM ( s ) is the hand-labelled ending point; EED ( s ) is the ending point obtained by 

endpoint detection algorithm. 

Detection accuracy analysis is performed by plotting histograms of the frames 

differences - separately for beginning and ending points. The data points (phrases) from each 

corpus used for the histograms’ creation are 84 and 262 and the final numbers of bins are 9 and 

19, respectively. These numbers are the averages of the number of bins calculated for each 

feature by the Scott’s standard reference rule [Scott, 2010]. 

In Table 3.4 the statistical information of the histograms is presented – each value 

shows the rate of distribution in percentages for all test conditions. The absolute values of the 

differences are denoted in Table 3.4 as |DB| and |DE| while with D  are denoted their average 

values for the particular feature and the corresponding frame difference.  

Adaptive

Thresholding

Hangover 
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Speech Endpoints

Log GDMD 
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Table 3.4. Rate of the distribution 

Speech corpus BG-SRDat 

No. Features & 

adapt2thr 

|DB| |DE| D  

≤ 5 ≤ 10 ≤ 5 ≤10 ≤ 5 ≤ 10 

1 log-MTE-E 56.10 71.37 55.72 77.09 55.91 74.23 

2 log-EE-E 49.61 65.26 36.64 58.01 43.12 61.64 

3 log-MD-E 60.30 80.91 54.96 74.42 57.63 77.67 

4 log-GDMD-E 54.96 87.02 51.90 78.24 53.43 82.63 

5 LTSD-E 41.60 84.35 37.02 67.17 39.31 75.76 

6 log-GDMD-H 47.32 87.02 35.11 61.06 41.22 74.04 

7 LTSD-H 45.80 85.11 24.42 46.56 35.11 65.83 

 

The best results (based on D ) are obtained for log-scale features with combination with 

the adaptive thresholds algorithm. The following four ED are selected: log-GDMD-E& 

adapt2thr, log-GDMD-H&adapt2thr, LTSD-E&adapt2thr and LTSD-H described in [Luengo 

et al., 2010, §2] and for them are plotted commonly stacked histograms in Figs. 3.18-3.19. Two 

labels – skip and add – are added to the histograms. They are used to denote the areas in 

histograms corresponding to the skipped or the added frames. 

The used phrase begins with the following two phonemes ‘з’ and ‘д’ (it is the Bulgarian 

word ‘здравей-‘zdravei’). The stacked histogram in Fig.3.18 has two modes. This occurrence 

is based on the fact that for some records all algorithms skip the voiced fricative ‘з’ and set the 

beginning point at the voiced stop consonant ‘д’ (after the voice bar). These errors correspond 

to the left mode with a difference of about [-5] frames. The right mode (difference about [+5] 

frames) is a result of added noisy segments before the first phoneme ‘з’, because of the log-

scale feature which amplifies low-level contour values. The phrase ended with unvoiced 

fricative ‘с’, which is difficult to detect in telephone records due to its noise-like characteristics. 

In this case, in Fig. 3.19 there is a maximum at frame difference [- 5] frames. This means that 

adding of noisy frames at the end of the phrase is observed. In the histogram a significant value 

exists at frames difference equal or greater than [-20] as the contribution of the LTSD-H 

detector being the largest. 

 

          
        Fig. 3.18. The histograms of DB - BG-SRDat                  Fig.3.19. The histograms of DE - BG-SRDat 

 

3.6.4. Text-dependent speaker verification 

The performance of various endpoint detectors described in § 3.5.3 is compared via the 

verification results, i.e., for each ED algorithm, a separate speaker verification task is carried 

out. The additional verification task is done with hand-labelled endpoints. Two different 
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algorithms are applied in speaker verification tasks - DTW and HMMs. The tests are conducted 

with short phrases selected from the BG-SRDat corpus. 

3.6.4.1. Pre-processing 

In the pre-processing step, the Hamming-windowed frames of 30 ms with a rate of 10 ms are 

used. The number of the Mel-Frequency Cepstral Coefficients (MFCC) is 14 (with 24 Mel 

filters of equal area), and the cepstral normalization is applied for each file separately 

[Ganchev, 2011]. 

3.6.4.2. Speaker verification via DTW 

3.6.4.3. Speaker verification via HMM 

The phrase modeling is done by a whole-phrase continuous HMM [Buyuk et al., 2012]. The 

selected model is with a left-to-right topology with no skip state and the output distributions 

are represented as a mixture of Gaussians with diagonal covariance matrices. Well-known 

Baum-Welch Algorithm [Gales, et al., 2008] carries out the HMM training. In the verification, 

the individual speaker’s thresholds are used. They are estimated by using the world (or 

background) model as a non-speaker model. The speaker’s score is obtained by computing the 

log-likelihood ratio of the particular utterance using the speaker and world models. The 

verification thresholds are set a priori based on distributions of the scores from claimed 

speakers and impostors [Munteanu et al., 2010]. 

3.6.4.4. Speech data used in verification 

The speech data used in the speech verification experiments include 337 records of the phrase 

collected from 18 male speakers. The more significant part - 262 records from 12 speakers 

(these data are the same for both applications) is intended for models forming (training set), 

for thresholds settings (validation set) and testing (verification set). Because the speech corpus 

is small, the same data set is used for training and validation [Bengio et al., 2004]. The rest of 

the data – 75 records from 6 speakers are selected for the UBM training in the HMM test. 

The 52 fold cross validation method is applied in order to make efficient use of all 

available data [Kuncheva, 2014]. Overall results are computed as weighted means of the 

outcomes from the five repetitions. In the verification mode, there are 142 client accesses or 

False Rejection (FR) tests and 1562 impostor accesses or False Acceptance (FA) tests. After 

five runs, the total tests are for false rejection – 710, and false acceptance – 7810. 

3.6.4.5.Experimental results 

It is known that for limited real-world data, the single value error is not a reliable estimation of 

the speaker verification performance [Bengio et al., 2004]. Since this is our case, it was decided 

to apply the methodology for performance estimation of the speaker verification proposed in 

[Bengio et al., 2004]. The verification results are presented as rate ratios – False Rejection Rate 

(FRR), False Acceptance Rate (FAR), and the Half Total Error Rate (HTER). The 
HTERZ -test 

method proposed in [Bengio et al., 2004] is applied to verify whether the given classifier is 

statistically significantly different from another. The minimal verification error (HTER = 

8.42%) for hand-labelled utterances is obtained for the left-to-right HMM with 35 states and 2 

Gaussian mixtures, and this topology is used in all experiments. The HMM speaker verification 

results are shown in Table 3.10– the rates and the confidence intervals for the HTERs. 

 
Table 3.10. HMM speaker verification errors 

No. Endpoint detector FRR, % FAR, % HTER, % 95%CI 

1 Manual 15.63 1.21 8.42 ±0.0134 

2 log-GDMD-E 18.45 0.98 9.71 ±0.0143 

3 LTSD-E 22.25 1.20 11.72 ±0.0153 

4 log-GDMD-H 18.45 1.02 9.73 ±0.0143 

5 LTSD-H 22.53 1.04 11.78 ±0.0154 
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3.7. Conclusions 

Based on the experiments, the following conclusions are made. The first, the log-GDMD-

based endpoint detectors always (in all tests) perform better than the LTSD-based ones. The 

second, in the endpoint detection accuracy tests, the state automaton with the adaptive 

threshold scheme outperforms the hangover scheme for the same features. The third, in 

speaker verification tests for the same features, the state automaton with adaptive threshold 

scheme mostly outperforms the hangover scheme in terms of verification rate, but the 

difference between them is not statistically significant.  

 

CHAPTER 4. VAD algorithms in text-independent speaker identification. 

The experimental study 
4.1. Introduction 
Voice Activity Detection (VAD) is the task of determining the existence of speech fragments 

in the audio stream, and it plays a crucial role in any speech processing system. It is a binary 

classifier. Despite the widespread use of VAD algorithms, no universal algorithm has been 

developed to work in a real-world environment reliably. 

In this chapter, a comparative experimental analysis is carried out of the effectiveness 

of the features proposed in Chapter 2. For each feature (reference or proposed by the author), 

a separate detector is formed, that becomes part of a text-independent speaker identification 

system implemented via the MLP classifier. 

The experimental studies were carried out with two different speech detection 

algorithms - they will be referred to in the text as VAD-1 and VAD-2. The development of two 

separate VAD algorithms is required because in Chapter 2 two types of features are proposed 

– in scalar (VAD-2) and vector form (VAD-1).  

VAD-1 is accepted to use a multilayer perceptron as a classifier, and a binary decision 

is obtained by the output neuron value thresholding. The VAD-2 uses time contours and 

thresholds (similar to the algorithms discussed in Chapter 3), and in this case, the binary 

decision is obtained by the feature contour thresholding. Only speech segments obtained by 

the VADs decisions are sent to the speaker recognition MLP classifier [Kitaoka et al., 2007]. 

In order to validate the performance of the VAD algorithms, two experiments are 

carried out. In the first one, the accuracy is evaluated in terms of frames differences between 

hand-labelled and detected fragments endpoints. The tests are carried out with speech data from 

the following corpora - TIDIGITS [Dan Ellis, online], NOIZEUS [NOIZEUS, online], and BG-

SRDat [Ouzounov, 2003]. In the second experiment, the performance of the VAD algorithms 

in terms of the recognition rate is estimated via an MLP-based text-independent speaker 

identification system. The tests are done with data from the BG-SRDat corpus. 

4.2. Reference features 
In VAD-1 the reference features are Multi-Band Spectral Entropy - MBSE [Misra et al., 2005]; 

Frequency-Filtering parameter (FF) [Macho et al. 2001]; Relative Spectral Difference - RSD 

[Macho et al., 2001] and Index-weighted Mel- Frequency Cepstral Coefficients - IW-MFCC) 

[Ganchev, 2011]. In VAD-2 the reference contours are obtained by Sohn algorithm [Sohn et 

al., 1999] (discussed in Chapter 1 - §1.2.3.1.1) - here its VoiceBox version is used [VoiceBox, 

online]; by Wu algorithm [Wu et al., 2006] and by LTSD algorithm discussed in Chapter 3 

(§3.2.4) [Ramirez et al., 2004]. 

4.3. VAD errors 
The VAD errors are determined by comparing the manually determined speech fragments 

endpoints with those obtained by the corresponding detector. They are used to evaluate the 

properties of different VAD algorithms. Common errors are described in [Davis et al., 2006]. 

They are: Front-End Clipping (FEC), Mid-speech Clipping (MSC), OVER (overhang), Noise 

Detected as Speech (NDS), Back-End Clipping (BEC), Front-end adding (FEA) and Speech 
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Detected as Noise (SDN). The detection accuracy is defined in two ways - correctly recognized 

speech segments or Speech Hit Rate (SHR) and correctly recognized non-speech segments or 

Non-speech Hit Rate (NHR). 

4.4. Performance assessment  

The performance of the voice activity detectors as binary classifiers can be assessed by using 

the ROC (Receiver Operating Characteristics) curves and through the Confusion Matrix (CM). 

Most often, however, scalar values are introduced, to represent in general form the 

characteristics of the ROC-curves and CM. Here, similar values are used - in ROC analysis - 

F-measure and AUC (Area Under Curve) [Fawcett, 2006] and for the CM - Confusion Entropy 

(CEN) [Wei et al., 2010], [Delgado et al., 2019]. 

4.4.1. ROC analysis 

4.4.2. Confusion matrix 

4.5. Text-independent speaker identification 

4.6. Speech detector VAD-1 

4.6.1. Features selection 

In VAD-1, four reference features and two proposed by the author are used. The features 

proposed by the author are - BMD and MMD feature in § 2.1.4.2-3. The reference ones are 

MBSE in § 4.2.2, FF in § 4.2.3, RSD in §4.2.3 and IW-MFCC in §4.2.4. 

4.6.2. Multilayer perceptron 

The MLP is with structure 14-20-1. The network has 20 neurons in one hidden layer and a 

single output neuron. The activation functions of the neurons are hyperbolic tangent function. 

The RProp algorithm with the most typical parameter settings is applied according to the 

recommendation in [Demuth et al., 2009] and [LeCun et al., 2012]. The network is trained in 

batch mode.  

4.6.3. Thresholding 

The binary decision is obtained by thresholding of the output neuron value. It is accepted to 

apply the Otsu’s threshold [Kisku et al., 2014], and its calculation is done separately for each 

file. 

4.6.4. Speech data used for VAD-1 

The speech data for detection are separated into three groups - for training, validation and 

testing. The first group includes 24 files and the second – 12 files. For training 70000 speech 

frames and about 40000 non-speech ones are used. The validation frames are twice smaller. 

Hand-labelled data are used as targets. 

4.6.5. Estimation of detection accuracy 

In Table 4.1, the values of AUC, F- measure, VAD- errors, and VAD-accuracy are shown. 

They are calculated as weighted averages over all 270 tested files. 

4.7. Speaker identification system with VAD-1 

The text-independent speaker identification system includes three modules - pre-processing, 

the MLP classifier, and supra-segments decision scheme. The block diagram of the MLP-based 

speaker identification system with details about VAD-1 algorithm is shown in Fig. 4.3. 

4.7.1. Pre-processing 

The preprocessing module includes two sub-modules – VAD (§ 4.6) and Mel-cepstrum 

extractor, with 14 cepstral coefficients obtained by 24 Mel-filters of equal area. Only frames 

marked as a speech by VAD algorithm are processed. 

4.7.2. Multilayer perceptron 

The number of speakers is 12, and the architecture of the MLP is 14-120-12. The input vector 

size is 14, the number of hidden layer neurons is 120, and the number of output neurons is 12. 

The activation function for all neurons is a hyperbolic tangent. The training is implemented 

using the RProp algorithm in batch mode with most typical parameter settings according to the 

recommendations in [Demuth et al., 2009]. To compensate for the effect of MLP random 
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initialization, the multiple runs scheme is applied and 5x10 scheme is adapted here [Kuncheva, 

2014].  

4.7.3. Speech data 

Speaker recognition data is selected from the BG-SRDat corpus and is divided into three groups 

– for training, validation and testing. It is accepted to use the same number of speech segments 

for each class in the training mode. The number of speech segments from one file is limited up 

to 1300. For each speaker two files or 2600 speech segments are used. These segments are 

obtained by random selection from all speech segments contained in both files. Validation data 

is chosen in a similar way, except that only one speaker file is used (i.e. 1300 segments). 

4.7.4. Decision scheme 

Recognition is accomplished by supra-segment analysis. The length of one supra-segment is 

200 segments (2 seconds). It shifts without overlapping along with the speech segments in the 

test file. The speaker is identified for each supra-segment separately by finding a maximum 

class value in the mean vector obtained by averaging over all MLP output vectors for the given 

supra-segment. 

 

 

 
Fig.4.3. The block diagram of the MLP-based speaker identification system with details 

about VAD-1 algorithm. 

 

MLP VAD-1

MLP Speaker Recognition

training
VAD 

Feature

VAD 

Feature

Speech Data

validation

manual segmented 

data (targets) 

VAD 

Feature
test

MEL

Cepstrum

MEL

Cepstrum

Training

Detection

training

validation

MEL

Cepstrum
test

VAD 

decisions

Speech Data

VAD data

(targets) 

Speech Data

.

.

.

Speaker 1

Speaker Q

Supra-

Segment

Decision 

Scheme

Training

Recognition

Recognized 

Speaker

Utterance 

Histogram 

Analysis &

Otsu 

Thresholding

MLP 

Training

MLP

Training

Trained

MLP

Speech Data

 

 

Trained

MLP 



24 
 

Table 4.1. BG-SRDat – VAD-errors and VAD-accuracy in percentage 

and F-measure and AUC values 

 Features 

No. Errors BMD MMD IW-MFCC RSD FF MBSE 

1 NDS 3.0460 3.0811 5.3943 5.5603 5.4806 7.0924 

2 SDN 1.2672 1.3016 0.1380 0.2218 0.2188 0.4281 

3 FEA 7.3957 7.6403 3.2107 3.4770 3.3037 2.9677 

4 MSC 4.9555 4.6617 8.5554 8.0090 7.8394 11.6752 

5 OVER 4.1887 4.2373 2.5303 2.5641 2.2968 2.7926 

6 FEC 2.8267 2.6551 3.1080 3.1519 3.2129 4.4374 

7 BEC 4.7662 4.5610 4.8369 5.2852 5.3564 6.1939 

 

 Accuracy BMD MMD IW-MFCC RSD FF MBSE 

1 SHR 86.0038 86.6680 83.3382 83.3661 83.3671 77.2084 

2 NHR 81.3985 80.9349 88.0417 87.0674 87.7306 85.6802 

3 F-Measure 0.8753 0.8780 0.8768 0.8745 0.8762 0.8334 

4 AUC 0.9028 0.9043 0.9245 0.9183 0.9221 0.8701 

 

 

4.7.5. Experimental results 

In Table 4.8 the confusion entropy for each feature, for each speaker and its overall values are 

shown. The recognition error is included in the last row of the table. Table 4.8 shows the 

consistency of recognition error and total entropy for the first two and the last two features. 

Notable in this case is the fact that the smallest recognition error and minimum overall CEN 

for BMD and MMD are partly in line with the results obtained in accuracy detection tests, 

namely the maximum values of F- measure and SHR observed in Table 4.1 for the MMD 

feature. 

 
Table 4.8. Overall entropy and entropy for each speaker 

 Features 

No. CEN BMD MMD IW-MFCC RSD FF MBSE 

1 Sp #1 0.1149 0.1378 0.1041 0.1353 0.1997 0.1902 

2 Sp #2 0.1270 0.1229 0.1333 0.1487 0.1835 0.2165 

3 Sp #3 0.0354 0.0321 0.0611 0.0645 0.0710 0.0805 

4 Sp #4 0.2719 0.2903 0.3649 0.2841 0.3849 0.3276 

5 Sp #5 0.2437 0.2874 0.2779 0.2615 0.2724 0.2944 

6 Sp #6 0.2622 0.2962 0.3577 0.3444 0.3613 0.3579 

7 Sp #7 0.1795 0.1592 0.1687 0.1652 0.1667 0.1928 

8 Sp #8 0.1244 0.1373 0.2195 0.2139 0.2008 0.3118 

9 Sp #9 0.1557 0.1663 0.2089 0.2763 0.2802 0.3668 

10 Sp #10 0.2628 0.2690 0.4029 0.4254 0.4195 0.4100 

11 Sp #11 0.1062 0.1340 0.1061 0.1301 0.1233 0.1207 

12 Sp #12 0.0615 0.0448 0.0463 0.0590 0.0749 0.0567 

13 Overall CEN 0.1582 0.1686 0.1917 0.1913 0.2124 0.2191 

14 Recog.Err.[%] 14.46 15.94 18.87 19.63 21.83 25.19 

 

4.8. Speech detector VAD-2 
The VAD-2 algorithm proposed in the paper includes two steps – feature extraction and 

thresholding scheme. 

4.8.1. Feature extraction 

Here three reference features and one proposed by the author are used. A separate speech 

detector is designed for each feature. The feature proposed by the author is - log-GDMD in 

§2.2.4 and the reference ones are  in formula (1.25) - obtained by Sohn’s algorithm in ( )m
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§1.2.3.1.1; SAE feature - by the Wu’s algorithm in §4.2.1 and the LTSD feature described in 

§3.2.4. 

4.8.2. Thresholding scheme 

It is accepted to use thresholds obtained by the algorithms, proposed by the author in §3.4.1 

and §3.4.2 - fixed and adaptive thresholds, respectively. Fixed thresholds are applied to the 

log-GDMD, Sohn and SAE. The LTSD algorithm includes its threshold. The adaptive 

threshold in §3.4.2 is used only for the log-GDMD feature (it is noted separately). 

4.8.3. Speech data used for VAD-2 accuracy estimation 

The speech data used in the VAD-2 accuracy estimation are different from that in the VAD-1. 

The main reason is that VAD-1 is implemented as a classifier and it requires training, validation 

and testing data - that's why it used data only from BG-SRDat. For VAD-2, which has threshold 

logic, it is accepted, except data from BG-SRDat corpus, to use data in English from two 

corpora - Dan Ellis [Dan Ellis, online] and NOIZEUS [NOIZEUS, online]. 

4.8.4. Study of detection accuracy 

The detection results obtained for the NOIZEUS (Table 4.11) show that the maximum AUC 

value is obtained for the log-GDMD feature in four of the eight types of noise. For other four 

types of noise, the maximum AUC value belongs to the LTSD feature. According to the results 

shown in Table 4.12 (Dan Ellis’ corpus), the AUC value is maximum at the log-GDMD feature. 

4.9. Speaker identification system with VAD-2 

The speaker identification system used in VAD-2 analysis is the same as that described in §4.7. 

4.9.1. Speaker identification results 

For analyzed features in Table 4.13 are shown the values of CEN and recognition errors (in 

percentages) for different thresholds (BG-SRDat data). 

 
Table 4.11. Corpus NOIZEUS - AUC values for different types of noise at SNR = 5 dB 

 Features Airport Babble Car Exhibition Restaurant Station Street Train 

1 log-GDMD 0.8011 0.8103 0.8280 0.8492 0.8198 0.8199 0.7890 0.8156 

2 Sohn 0.7806 0.776 0.7603 0.8295 0.8036 0.7703 0.7782 0.7763 

3 Wu 0.7511 0.7885 0.8239 0.8341 0.7996 0.7973 0.7600 0.8016 

4 LTSD 0.8112 0.8119 0.8361 0.8420 0.8228 0.8139 0.7633 0.7944 

 
Table 4.12. Corpus DanEllis – AUC values 

 Features AUC 

1 log-GDMD 0.9068 

2 Sohn 0.8958 

3 Wu 0.7802 

4 LTSD 0.7988 

 
Table 4.13. Corpus BG-SRDat – values of CEN and recognition error in percentages 

No. Features 
fixed1thr 

0.1 0.2 0.3 0.4 0.5 

1 log-GDMD Err 15.19 14.07 13.88 14.00 16.93 

CEN 0.1594 0.1437 0.1436 0.1463 0.1719 

2 Wu Err 19.87 16.38 19.16 18.04 20.74 

CEN 0.1933 0.1718 0.1832 0.1857 0.2026 

3 LTSD + 

HangETSI  

Err 17.79 

CEN 0.2438 

5 log-GDMD + 

adapt1thr 

Err 13.35 

CEN 0.1432 

6 Sohn  fixed1thr 

0.3 0.4 0.5 0.6 0.7 

Err 18.81 19.94 19.07 17.63 17.69 

CEN 0.1860 0.2002 0.1913 0.1831 0.1868 
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4.10. Conclusions 
The following conclusions based on the obtained experimental results are made: 

• VAD-1 - Speaker identification error, as well as CEN has the minimum values for the 

proposed features BMD and MMD. 

• VAD-2 - In most tests, the log-GDMD feature outperforms those based on algorithms of 

Sohn, Wu, and LTSD. It is necessary to note that the LTSD feature is adaptive to the varying 

noise levels, and Sohn’s algorithm included the noise estimation procedure, while log-GDMD 

relies only on the internal robustness of its two components - the modified group delay 

spectrum and the delta spectral autocorrelation function. This robustness is based on the 

properties of the derivatives - negative derivative of the Fourier transform phase and the first 

derivative of the spectral autocorrelation function. 

 

 

CHAPTER 5. BG-SRDat – Telephone speech corpus intended for speaker 

recognition 
5.1. Introduction 
Here the BG-SRDat corpus (Bulgarian language Speaker Recognition DATa) containing 

speech recorded over telephone lines (landline, cellphones, VoIP) and including short phrases, 

reading text and conversations in Bulgarian and only short phrases in English is described. The 

main efforts were to build a corpus with great variety in the characteristics of the 

communication environment, i.e., different telephone lines, different speaker locations, 

different background noise and more. The corpus contains 630 records of different duration, 

collected by 40 male speakers. The initial version of this corpus is described in [Ouzounov, 

2003]. 

5.2. General characteristics of speech corpora for speaker recognition 

5.3. Brief description of popular speaker recognition corpora 

5.4. Description of the BG-SRDat 
According to the type of speech material, the BG-SRDat can be considered as consisting of 

five modules (Speech Data 1, 2… 5), which are: 

 SD1 (BG) - contains reading newspaper text - average record duration of the reading 

text is about 40 seconds. Two types of records of the same text have been made, 

respectively by a microphone (26 speakers with 28 records) and by landline phone (30 

speakers with 60 records) - 26 of the speakers are identical in both type of records; 

 SD2 (BG) - contains a short phrase – there are 373 records from 20 speakers made by 

landline phones and cellphones. The phrase is (with Latin letters): “Zdravei Manolov. 

Kak se chuvstvash dnes?”. Its English meaning is “Hello Manolov! How are you 

today?". The author proposes this phrase mainly for the reason that it contains 

consonants predominantly. The phrase includes 31 phonemes, 10 of which are vowels 

and 21 consonants - this phoneme content makes it difficult to recognize the speakers 

in phone lines; 

 SD3 (BG) - contains reading newspaper texts (different paragraphs) - average record 

duration of the reading text is about 80 seconds. There are 14 records from 10 speakers 

made by landline phones and cellphones. The paragraphs are selected in such a way to 

achieve some degree of lexical diversity; 

 SD4 (BG) – contains conversations (talks about random topics) with a maximum length 

of about 7 minutes. There are 4 records from 4 speakers made by cellphones and VoIP; 

 SD5 (EN) - contains a short phrase in English. There are 150 records from 9 speakers 

made by landline phones. 
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In the corpus description are included four attributes: 1) type of speech (fixed-phrase, reading 

text, etc.); 2) number and time separation of sessions; 3) recording environments; and 4) files 

description.  

5.4.2. Number of sessions and the period between them 

o SD1 - at least two sessions per speaker have been made with only one record per 

session. The interval between sessions is about three months. 

o SD2 - the speech material contains at least ten sessions per speaker with at least two 

records per session. In each session, the records are made in one day, but the calls are 

from phone numbers placed at the different locations in Sofia and the country (for 

landline phones). The interval between sessions is about a week. 

o SD3 - for some of the speakers are made two sessions with one record per each with 

different texts. The interval between sessions is about a week. 

o SD4 - there is only one record per session. 

o SD5 - the procedure is the same as that used with SD2. 

5.4.3. Recording environments 

The main efforts were to build a corpus with great variety in the characteristics of the 

communication environment, i.e., different telephone lines, different speaker locations, 

different background noise, and more. As a result, the speakers make phone calls from different 

places - quiet/noisy office, halls, telephone booths located on noisy streets, and more. When 

the cellphones are used, the calls are made through different model mobile phones and 

speakers, in most cases, move near high-traffic boulevards or highways. 

5.4.4. Files description 

Each file (a record) is formed a metadata structure that contains information as speaker ID, 

speech data type, calling place, phone type, noise type and more. Now, only cellphone data 

structures are gradually entered into MySQL database. 

5.5. Application of BG-SRDat 
The corpus has been used for fixed-text speaker verification, text-independent speaker 

identification, and speech detection. The primary trend in the future development of the corpus 

will be its transformation into a cellphone speech data corpus. 

 

 

 

 

 

Author's contributions to the thesis 
 

Scientific contributions: 
1. A method for so-called delta spectral autocorrelation function estimation by applying a 

delta filter on the spectral autocorrelation function is proposed. The efficiency of this 

filtration, which significantly enhances the harmonic structure of the speech signal in the 

frequency domain has been demonstrated (Chapter 2, §2.1.3). 

2. An approach for speech detection features estimation based on the properties of delta 

spectral autocorrelation function is proposed. Based on this approach three features are 

developed. The first one (MD feature) is in scalar form and is intended for speech detection 

by contour analysis, in contrast the others (BMD and MMD features) which are vectors and 

are intended for speech detection by recognition algorithms (Chapter 2, §2.1.4). 

3. A theoretical analysis of the group delay spectrum for noisy speech signals has been 

performed. This analysis was indirectly done, by examining the arguments of the projection 

distortion measures based on the additive spectral model (Chapter 2, §2.2.3). 
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4. An approach for speech detection features estimation based on the combination of the delta 

spectral autocorrelation function and the modified group delay spectrum is proposed. Based 

on this approach two features (lin-GDMD and log-GDMD) are developed. They are 

intended for speech detection by contour analysis (Chapter 2, §2.2.4). 

5. An approach for short phrase endpoint detection is proposed which includes algorithm for 

adaptive thresholds settings and finite state machine (Chapter 3, §3.4.2-3). 

 

 

Scientific and applied contributions: 
1. A comparative experimental analysis is done for the features proposed in Chapter 2 and 

some reference ones. The comparison is based on the Euclidean distance between Z-

normalized contours calculated for each feature and clear and noisy speech signals (Chapter 

3, §3.3). 

2. Three algorithms for contour-based endpoint detection based on the proposed approach are 

developed (Chapter 3, §3.5).  

3. A comparative experimental analysis of the accuracy of the developed algorithms is 

performed by histogram analysis of the differences between the hand-labelled and detected 

endpoints. The experiments are implemented with noisy speech data in Bulgarian and 

English (Chapter 3, §3.5 and §3.6.3). 

4. A comparative experimental analysis is done for the features proposed in Chapter 2 and the 

reference ones. The comparison is based on the recognition errors obtained in two systems 

for text-dependent speaker verification based on the DTW and HMM algorithms, 

respectively. The used speech data in these experiments are selected from telephone speech 

corpus in Bulgarian (Chapter 3, §3.6.4). 

5. Two algorithms for voice activity detection (VAD-1 and VAD-2) are developed using the 

parameters, from Chapter 2. The VAD-1 uses for speech detection the MLP classifier, 

whereas VAD-2 uses contour analysis (Chapter 4, §4.6, and §4.8). 

6. A comparative experimental analysis is done for the features proposed in Chapter 2 and the 

reference ones used in VAD-1 and VAD-2. The comparison is based on the segment 

detection errors and the binary classification accuracy. The experiments are implemented 

with noisy speech data in Bulgarian and English (Chapter 4, §4.6.5, and §4.8.4). 

7. A comparative experimental analysis is carried out for the features proposed in Chapter 2 

and the reference ones used in VAD-1 and VAD-2. The comparison is based on the 

recognition errors obtained in the text-independent speaker identification tasks 

implemented by the MLP classifier. The used speech data in these experiments are selected 

from the Bulgarian corpus (Chapter 4, §4.7, and § 4.9). 

 

 

Conclusions and ideas for future work 
In the thesis, a method for so-called delta spectral autocorrelation function estimation is 

proposed. This function was obtained by applying a delta filter to the spectral autocorrelation 

function. Five speech detection features based only on its properties from one side, and by 

combining it with the modified group delay spectrum, on the other side, are proposed. These 

features are MD, BMD, MMD, log-GDMD, and lin-GDMD. The proposed features are used 

in ED- and in VAD-algorithms. These algorithms are included in the speech detectors, which 

are parts of the text-dependent and the text-independent speaker recognition systems. The 

performance of these detectors was experimentally compared with that obtained by speech 

detectors with reference features. The comparison was made in two stages. In the first stage, a 

comparison was made using detection accuracy while in the second one by using the 
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recognition errors. In ED-algorithms used in fixed-phrase speaker verification tasks dominant 

in terms of detection accuracy and minimum recognition error is the log-GDMD feature. In 

text-independent speaker identification tasks, the minimum recognition error was obtained 

when using VAD algorithms with BMD and log-GDMD parameters, respectively. 

Future work in speech detection will focus on the development of the hybrid VAD-

algorithms. This involves a fusion of different representations of speech signal, a fusion of 

multiple feature streams in one VAD algorithm, and combination of different VAD algorithms. 

In turn, these VAD algorithms can be built with different classifiers, which give an opportunity 

for greater adaptability of the detection in changed environmental conditions. 
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