
Bulgarian Academy of Sciences

Institute of Information and Communication Technologies

Jens Kohler

Optimizing Query Strategies in Fixed Vertical Partitioned
and Distributed Databases and their Application in

Semantic Web Databases

Doctoral Thesis

Doctoral Program: Informatics

Professional Area: 4.6 Informatics and Computer Science

Supervisor: Prof. Dr. Kiril Simov

Sofia, 2017

Table of Contents

List of Abbreviations 1

Introduction 3

Importance of the Topic . 4

Overview of the Main Results in the Area 5

Goals and Tasks of the Thesis . 7

Contributions of the Thesis . 9

Methodology Used for the Research . 10

Scope and Limitations . 12

Formal Conventions . 13

Structure of the Thesis . 15

1 Problem Definition 16

1.1 Data Set Definition . 16

1.2 Data Access . 17

1.2.1 Selection . 18

1.2.2 Projection . 19

1.2.3 Join . 21

1.2.4 Naming Conventions . 22

1.3 Problem Formulation . 23

1.4 Hypotheses . 26

2 Definition of the FVPD Methodology and its Original Implemen-

tation in the SeDiCo Framework 30

2.1 Fixed Vertical Partitioning and Distribution (FVPD) Definition . 30

2.1.1 Vertical Data Partitioning 31

2.1.2 Correctness of FVPD methodology 34

2.2 Data Distribution: The SeDiCo Approach 41

2.2.1 FVPD Join . 43

i

2.2.2 Row Reconstruction in SeDiCo 44

2.2.3 FVPD CRUD Operations 46

3 Related Work 49

3.1 Data Security and Privacy . 50

3.1.1 Privacy . 51

3.1.2 Implications for SeDiCo 53

3.2 Cloud Computing . 55

3.2.1 Service Models . 57

3.2.2 Deployment Models . 58

3.2.3 Implications for SeDiCo 59

3.3 Object-Relational Mapping (ORM) 60

3.3.1 Impedance Mismatch . 61

3.3.2 Hibernate as an ORM Implementation 63

3.3.3 Implications for SeDiCo 65

3.4 Caching . 65

3.4.1 Middle-tier Database Caching 67

3.4.2 Requirements for a Cache Implementation 68

3.4.3 Cache Workflow . 68

3.4.4 Caching Schemes . 69

3.4.5 Implications for SeDiCo 70

3.5 Database Performance Benchmarking 77

3.5.1 Implications for SeDiCo 77

4 Conceptualization 79

4.1 Query Rewriting Approach . 79

4.1.1 FVPD Join . 81

4.2 Caching Approach . 83

4.2.1 Server-Based Caching . 84

4.2.2 Local Caching . 86

4.2.3 Remote Caching . 88

4.3 SSD-Based Approach . 89

5 Implementation 91

5.1 Query Rewriting Implementation 93

5.1.1 FVPD Join Implementation 94

5.2 Caching Implementation . 95

5.2.1 Server-Based Caching . 97

ii

5.2.2 Local Caching . 99

5.2.3 Remote Caching . 100

5.3 SSD-Based Implementation . 101

6 Evaluation 102

6.1 Evaluation Environment . 102

6.2 Basic Database Performance Evaluation 106

6.2.1 Conclusion . 107

6.3 SeDiCo Framework Performance Evaluation 108

6.3.1 Conclusion . 108

6.4 Query Rewriting Evaluation . 109

6.4.1 Conclusion . 111

6.5 Caching Evaluation . 113

6.5.1 Conclusion . 115

6.6 SSD-based Evaluation . 116

6.6.1 Conclusion . 117

7 Summarization of the Main Results 119

8 Framework Application in Semantic Web Databases 125

8.1 Introduction . 126

8.1.1 RDF . 129

8.1.2 SPARQL . 131

8.2 Problem Formulation . 133

8.3 Formal Definitions . 135

8.3.1 Open and Closed World Assumption 135

8.3.2 Correctness . 136

8.3.3 Complexity . 142

8.4 Related Work . 143

8.4.1 Caching . 146

8.4.2 Benchmarking . 146

8.5 Approach . 147

8.6 Implementation . 151

8.7 Evaluation . 158

8.7.1 Evaluation Environment 158

8.7.2 Local SPARQL 1.0 Evaluation 159

8.7.3 Remote SPARQL 1.0 Evaluation 160

8.7.4 Local and Remote SPARQL 1.1 Evaluation 161

iii

8.8 Conclusion . 162

8.9 Outlook and Future Work . 163

Summary and Outlook 166

Summary . 166

List of Publications Related to the Thesis 168

List of Theses Supervised by the Author 176

Approbation of the Results . 177

Key Scientific and Applied Scientific Contributions 179

Outlook . 181

Declaration of Originality 186

Acknowledgments 187

References 188

Appendix A List of Tables 203

Appendix B List of Figures 205

Appendix C Listings 208

Appendix D SeDiCo Application Screenshots 209

iv

List of Abbreviations

ACID Atomicity, Consistency, Isolation, Durablity

API Application Programming Interface

BASE Basically Available, Soft State, Eventual Consistent

BGP Basic Graph Pattern

CDSA Common Data Security Architecture

CIA Confidentiality, Integrity, Availability

CIMI Cloud Infrastructure Management Interface

CRUD Create, Read, Update, Delete

DBaaS Database as a Service

DSR Design Science Research

eIDAS Electronic Identification and Trust Services Regulation

ENISA European Union Agency for Network and Information Security

ERM Entity Relationship Model

EU European Union

FVPD Fixed Vertical Partitioning and Distribution

HDD Hard Disk Drive

HQL Hibernate Query Language

IaaS Infrastructure as a Service

IDE Integrated Development Environment

I/O Input/Output

IRI Internationalized Resource Identifier

JDBC Java Database Connectivity

JPQL Java Persistence Query Language

JSR Java Specification Request

KEGG Kyoto Encyclopedia of Genes and Genomes

LD Linked Data

LFU Least Frequently Used

LOD Linked Open Data

LRU Least Recently Used

NIST National Institute of Standards and Technology

OASIS Organization for the Advancement of Structured Information Standards

OCCI Open Cloud Computing Interface

OBDA Ontology Based Data Access

OECD The Organisation for Economic Co-operation and Development

1

OGM ObjectGrid Mapper (e.g. Hibernate)

OID Object Identifier

OLAP Online Analytical Processing

OLTP Online Transactional Processing

ORM Object Relational Mapping/Object Relational Mapper

OO Object-oriented

PaaS Platform as a Service

PC Personal Computer

PKI Public Key Infrastructure

QoS Quality of Service

R2RML Relational Database to Resource Description Framework Mapping Language

RAM Random Access Memory

RDB Relational Database

RDF Resource Description Framework

SaaS Software as a Service

SeDiCo A Framework for a Secure and Distributed Cloud Data Store

SLA Service Level Agreement

SPARQL SPARQL Protocol And RDF Query Language

SQL Structured Query Language

SSD Solid State Drive

SSL Secure Socket Layer

TERC Trust, Eco, Risk, Cost

TOSCA Topology and Orchestration Specification for Cloud Applications

TLS Transport Layer Security

TPC Transaction Processing Performance Council

TTL Time to Live

UML Unified Modeling Language

VPN Virtual Private Network

WWW World Wide Web

XML Extensible Markup Language

YCSB Yahoo! Cloud Serving Benchmark

2

Introduction

Storing data in relational databases has a long history since Codd defined the

relational model and its normal forms in (Codd, 1970). Such relational databases

still build the foundation for various applications throughout all application

domains even with todays growing data volumes. It is assumed that, despite a

rapid dissemination of In-Memory or NoSQL databases, relational databases will

keep their important role.

Hence, also relational databases are used as a foundation to store huge volumes

of data and this is exactly where Cloud Computing offers dynamic and scalable

capabilities. Renting such technological assets and capabilities from external cloud

providers is an interesting approach. The pay-as-you-go character of these cloud

offers, promise the usage of computing assets without large initial investments. In

Cloud Computing environments, dedicated services are used for a certain time

and are paid only for the respective usage. Moreover, as there are dedicated

services, the complexity to integrate and use them is considered lower compared

to paradigms like service-oriented architectures.

As there are still open data security and data protection challenges, the

usage of especially public Cloud Computing is far behind the expectations of

e.g. Gartner (Carlton, 2013) and IDC (Gens & Shirer, 2013). Thus in this

thesis, data security and data protection challenges for relational databases

are addressed with the definition and an implementation of a framework for a

SEcure and DI stributed C loud Data StOre, exploiting a fixed vertical

partitioning and distribution (FVPD) scheme. The main contribution of this

work is to show that the proposed framework provides comparable

response times to non-partitioned relational databases using cloud

infrastructures and contemporary hardware devices.

3

Importance of the Topic

An approach that contributes to the broad dissemination of using especially public

clouds is SeDiCo, a framework for a SEcure and DI stributed C loud Data StOre.

The key concept of this approach is to vertically partition relational database

data and store the respective partitions in different databases operated in different

clouds. SeDiCo enables users to define vertical partitions individually, but once a

partition scheme is developed, it is not possible to modify it without defining an

entirely new one. Thus, the partitioning is called fixed vertical partitioning and

distribution (FVPD) scheme in the remainder of this work. The author of this work

firstly proposed this so-called Security-by-Distribution concept in 2012 (Kohler

& Specht, 2012) and developed and implemented it prototypically1 from 2012 to

2014 (Kohler & Specht, 2014a). Although these works proved the technological

feasibility, the approach still suffers from severe performance problems when the

partitioned and distributed data are accessed. These performance issues are in the

focus of this thesis, which aims at investigating, developing and evaluating new

ways of accessing those data. In order to not exceed the limits of this work, this

thesis focuses on the response time. On the one hand, recent analyses of the author

show that the insert, update, and delete operations are also affected (Kohler &

Specht, 2014b) (Kohler & Specht, 2014c). On the other hand, (Krueger et al.,

2010) showed that ∼ 90% of all operations in enterprise databases are queries (i.e.

selects). Hence, the focus of this work is on the response time of a query and the

insert, update and delete performance are considered as key questions of future

work tasks. Above that, it can be stated that the usage of Cloud Computing

capabilities still are a weighing between security and performance and this thesis

aims at minimizing this gap with the definition and the evaluation of adequate

query strategies.

A motivating example of the entire SeDiCo framework is drawn in Figure 1

which illustrates the FVPD (fixed vertical partitioning and distribution) approach

(in the remaining part of the thesis this approach is also referred to as Security-

by-Distribution approach) with a simple CUSTOMER relation.

In this example, there are 2 vertical partitions one containing more sensitive

data (Customer Partition1) and less sensitive data (Customer Partition2). The

1In close cooperation with the theses supervised by the author listed at the end of the thesis.
Moreover, SeDiCo, as well as the query mechanisms developed in this thesis are generally
available under GPL-License at: http://github.com/jenskohler

4

Figure 1: Motivating SeDiCo Example

basic idea is now that an intruder is not able to reconstruct entire CUSTOMER

rows, since the partitioning and distribution scheme is unknown to him. Therefore,

it is of minor importance which data are stored in which cloud (public, private,

community, hybrid) respectively.

Overview of the Main Results in the Area

The presented version of SeDiCo (cf. Chapter 2) was developed and implemented

before the work on the thesis has started. The results of this preliminary work have

shown that the ideas behind SeDiCo are feasible and work in practice. However,

there is still an open question regarding the framework performance in practical

use cases:

• Performance optimization of the SeDiCo approach: Although the

feasibility of the original implementation is empirically shown and formally

proved, the response time (especially for larger data sets, i.e. more than

10K rows) decreased tremendously. Thus, how can the response time for a

FVPD query in practical use cases scenarios be improved, such that it is in

the same order of magnitude as a non-FVPD query?

To the best of the author’s knowledge, no one has followed a vertical database

partitioning approach in the context of data security and privacy yet. Hence, this

thesis conceptualizes, implements and evaluates advanced query mechanisms in

order to improve the overall response time of SeDiCo.

5

Current figures of the initial implementation can be found in the author’s

previously published work, e.g. (Kohler, Simov, & Specht, 2015) (Kohler & Specht,

2014b) and in Chapter 6.3.

All in all, this thesis uses these figures as a basic performance metric and

compares the investigated advanced query mechanisms to it.

Previous works (e.g. (Son & Kim, 2004) (Grund et al., 2011) (Li & Gruen-

wald, 2012) (Rodŕıguez & Li, 2011)) on vertical database partitioning have been

conducted in the context of performance optimization tasks. Here, databases

are (dynamically) vertically partitioned, such that queries do not have to iterate

through entire data sets, but only on e.g. those data, that are used very often.

Hence, these optimization approaches are workload driven, i.e. the approach

depends on the queries issued against the database2. Regarding these approaches,

SeDiCo is different as it follows a fixed vertical partitioning approach, in which

data are partitioned not according to database workloads, but according to security

and privacy related issues. Therefore, in SeDiCo it holds that once a partitioning

scheme is defined, it is not changeable (during runtime) anymore.

Another interesting field of research with respect to the vertical partitioning and

distribution approach is Cloud Computing. The cloud offers dynamically scalable

computing capabilities (i.e. CPU, storage, etc.). It also offers the possibility

to rent capabilities from 3rd party cloud providers, such that no infrastructure

investments are necessary anymore. However, renting resources from an (possibly)

unknown cloud provider requires a great demand of trust. Closely aligned to trust

are data security and privacy issues. These issues are the main reason why the

usage of the cloud is far behind its expectations (e.g. Gartner (Carlton, 2013) and

IDC (Gens & Shirer, 2013)).

With respect to this, the thesis with its FVPD approach proposes the possibility

to partition and distribute data, such that each of a certain amount of different

cloud providers only gets a logically independent data chunk, which is not usable

without the others. Thus, the FVPD approach fosters the usage of (possibly

untrustworthy public) Cloud Computing, which is a promising alternative to huge

investments in IT infrastructures. Furthermore, based on the FVPD approach, the

thesis maps the FVPD approach to the well-known CIA-Principles (confidentiality,

integrity, and availability), defined by (DIN ISO 27000, 2011), and illustrates how

the level of security and privacy is improved.

2which is the main reason why these works are not considered in more detail in this thesis

6

Goals and Tasks of the Thesis

The response time evaluation of the initial SeDiCo implementation (Kohler &

Specht, 2014b) and (Kohler & Specht, 2014c) showed that there is a tremendous

performance loss (factor ∼460 considering the average response time) with the

vertical partitioning and distribution approach. However, with an advanced level

of data security and privacy (Kohler & Specht, 2015a), this approach enables the

usage of public cloud infrastructures. This shows that the SeDiCo approach is

still a weighing between security and performance.

Hence, the objective of this thesis is to find strategies, concepts

and corresponding implementations to improve the response time to

a level that it is in the same order of magnitude as a non-partitioned

and non-distributed approach. This results in a minimization prob-

lem of the required time to retrieve the result set of a certain query

(i.e. the response time) that is issued against fixed vertically parti-

tioned and distributed (FVPD) data.

With respect to this, the hypotheses that are investigated can be formulated

as follows:

Hypothesis 0: The definition of a Fixed Vertically Partitioned Schema (FVPD)

for relational databases improves the level of data security and data pro-

tection by separating (i.e. partitioning) and distributing logically coherent

data to different storage locations.

Hypothesis 1: Query Rewriting improves the response time to a level that is

in the same order of magnitude as a non-partitioned and non-distributed

scenario due to partitioned and parallelized query and join implementations.

Hypothesis 2: Caching data improves the response time to a level that is in the

same order of magnitude as a non-partitioned and non-distributed scenario

due to the usage of In-Memory caches.

Hypothesis 3: Using Solid State Disks (SSDs) as distributed secondary storage

devices for the FVPD data improves the response time to a level that is

in the same order of magnitude as a non-partitioned and non-distributed

scenario due to faster access times of the memory.

Based on the hypotheses, the following tasks are conducted:

7

Task 1: the definition of a methodology for creating an FVPD schema for

relational data and a proof of the correctness of the methodology;

Task 2: the conceptualization of adequate query mechanisms for relational

FVPD data sets;

Task 3: the implementation of these relational query mechanisms in Java;

Task 4: the evaluation of these relational query mechanisms in terms of their

response time;

Task 5: the comparison of all developed relational query mechanisms against

each other and against the initial SeDiCo implementation;

Task 6: the application of the FVPD methodology in the Semantic Web with

Resource Description Framework-based (RDF-based) data.

Tasks 1-5 are performed to either prove or to reject the previously formulated

hypotheses. More specifically, in order to evaluate the response time of the FVPD-

implementing query mechanisms, the response time of a non-partitioned and

non-distributed data set is used as a basic foundation. The overall goal is to find

approaches (i.e. query mechanisms) whose response times are in the same order

of magnitude as the response times based on a non-partitioned and non-distributed

data set. Therefore, these approaches are implemented and evaluated with the

TPC-W benchmark (TPC, 2003) in order to remain comparable with previous

works in the context of SeDiCo (Kohler & Specht, 2015c) (Kohler, Simov, Fiech,

& Specht, 2015) (Kohler & Specht, 2015a) (Kohler, Simov, & Specht, 2015).

Moreover, an overview about all developed query mechanisms and their response

time is presented and compared to a traditional non-FVPD approach.

Task 6 is conducted to show the generic character of the entire SeDiCo

framework and that the basic concepts and approaches are (partly) also viable in

other application domains. With respect to RDF-based data, it must be noted

that the approach illustrated in this thesis is restricted to the so-called closed

world assumption, in which a complete data set is exposed as RDF-based data

and this RDF-based data can be queried via SPARQL (SPARQL Protocol And

RDF Query Language) language. Again, the approach is restricted to SPARQL

queries (analogous to the relational approach), that refer to complete data sets

and to queries that always terminate.

Finally, the expected results can be subsumed as follows:

8

Result 1: a formal correctness proof of the FVPD methodology;

Result 2: ready-to-use FVPD query execution methods;

Result 3: an evaluation of the query mechanisms that acts as a guideline for

their concrete application in different scenarios;

Result 4: a classification of the query mechanisms, which ones are applicable in

which scenarios;

Result 5: a conceptual transfer of the relational FVPD approach to other ap-

plication domains (i.e. the Semantic Web with RDF-based data) to

emphasize the generic character of the approach;

Result 6: a demonstration of how the entire SeDiCo approach can be applied in

the Semantic Web on RDF-based data.

Contributions of the Thesis

With the successful implementation and evaluation of the before-mentioned tasks,

the thesis contributes to the current state-of-the-art with the following aspects.

Contribution 1: Definition of a Security-by-Distribution Principle for Rela-

tional Databases

In this thesis, there is a Security-by-Distribution principle introduced that

uses vertical relational database partitioning to logically separate database

tables into chunks that are worthless without the others, but can be joined

based on the containing primary key. This principle is used in the so-called

SeDiCo framework. The respective chunks are distributed (ideally) across

different clouds and only the user who partitioned and distributed the rows

knows the partitioning distribution scheme of the partitions (chunks). This

increases the level of security and privacy and enables the storage of data

in especially public cloud infrastructures.

Contribution 2: Development of FVPD Query Strategies

The previously mentioned Security-by-Distribution approach requires new

ways of accessing the partitioned and distributed rows, as they have to be

joined, i.e. entirely reconstructed before they are actually accessible. All

9

approaches are conceptualized, implemented and evaluated in the presented

thesis.

Contribution 3: FVPD Query Strategy Integration into the SeDiCo Frame-

work

This thesis is created in the context of the SeDiCo framework development.

As a further result, the approaches conceptualized and illustrated in this

thesis are implemented and positively evaluated ones are integrated into

the framework. This will develop the entire framework to a feasible oppor-

tunity in practical usage scenarios, which will allow further performance

analyses in various application domains, where relational databases build

the foundation for applications.

Contribution 4: FVPD Performance Evaluation and Classification

The developed query mechanisms are evaluated with respect to their re-

sponse time and compared to each other to provide a short but precise

overview about all investigated approaches and their respective response

time.

Contribution 5: Transfer of the FVPD Methodology to other Databases

Here, the entire SeDiCo approach is transferred to a Semantic Web sce-

nario, based on the resource description framework (RDF). Firstly, this

demonstrates the universal application character of the basic approach3 and

secondly, it proves that the approach can be transferred and applied to other

application domains with a clearly stated and demonstrated integration

effort.

Methodology Used for the Research

The overall research focus aims at developing and improving a framework to

demonstrate that using especially public clouds is not per se insecure. Therefore,

the goal of this thesis is to develop query strategies (i.e. so-called artifacts

according to (Hevner et al., 2004)) that considerably increase the performance of

vertically partitioned and distributed databases operated in several clouds, such

3other thinkable application scenarios could involve NoSQL datastores with its four funda-
mental architectures (column, document, key-value stores and graph databases)

10

that the entire FVPD approach becomes comparable to a non-partitioned and

non-distributed one.

An artifact can be defined analogously to (Hevner et al., 2004) as a piece of

software ([...] something that is artificial, or constructed by humans, as opposed

to something that occurs naturally.). Furthermore, artifacts must [...] improve

existing solutions to a problem or perhaps provide a first solution to an important

problem (Hevner & Chatterjee, 2010).

In order to answer the research question, the Design Science Research (DSR)

methodology described by Hevner et al. is used (Hevner & Chatterjee, 2010). The

aim is to extend boundaries of human and organizatorial capabilities by creating

new and innovative artifacts (Hevner et al., 2004). This methodology provides a

7-step framework to transfer research work into concrete (enterprise) applications

and is illustrated in Figure 24.

Figure 2: Design Science Research Cycles

This strategy was chosen because it perfectly targets the framework develop-

ment process of SeDiCo and its applied science character. Based on the results of

this work, further research projects in cooperation with partners from industries

and other research groups in national as well as international contexts should be

acquired.

The entire SeDiCo framework development and its associated research work

are aligned to these DSR Cycles. To illustrate this in more detail, Figure 3 maps

the DSR Cycles to the presented thesis.

4adapted from (Hevner & Chatterjee, 2010)

11

Figure 3: Design Science Research Cycle Mapped to Thesis Chapters

This thesis outlines SeDiCo, a framework that implements the FVPD method-

ology and therefore in the rest of the thesis does not use the term artifact, but

uses query strategy, method or approach in order to stick with the term FVPD

methodology.

Scope and Limitations

The actual SeDiCo framework is developed in a broader sense with funded research

projects (mentioned in the respective author’s publications at the end of the thesis),

and student works, supervised by the author (also mentioned at the end of the

thesis). These other works deal with mechanisms and concepts that abstract from

different cloud or database implementations and encapsulate them in uniquely

accessible interfaces. Other works concentrate on concrete implementation tasks

(e.g. the FVPD partitioning or the join of the FVPD data). In order to narrow

the focus of this thesis down to a concrete specific research question, it focuses on

the improvement of the framework’s response time.

Because of the before-mentioned predominance of analytical database work-

loads (i.e. select queries) the evaluation is restricted to the response time. This

work aims at finding query strategies that are suitable for FVPD data and finding

concepts and approaches that are worth pursuing any further. Therefore, perfor-

mance evaluations that take the response time into consideration are conducted

and the response time of queries is considered as an aspect of greater importance

compared to insert, update and delete operations, especially as ∼90% of all

operations in enterprise databases are queries.

12

Above that, this work aims at providing a basic response time measurement

which acts as a foundation for further investigations. Hence, the theoretical

lower and upper bound for the response time of the entire FVPD approach is

experimentally proved. To achieve this, the evaluation uses a projection query5.

Yet, it can be noted that SeDiCo and all developed query strategies in this work

support the full SQL standard (ISO/IEC, 2011) including further research work

with respect to additional response time optimization opportunities.

A detailed security and privacy evaluation of the entire SeDiCo framework

would be too specific for each application domain and therefore, this task is

postponed to a stage in which the framework is disseminated to a broader public.

Formal Conventions

This section briefly defines the formal conventions for citations, notions, emphases

and the used source code, to facilitate the reading and to understand the usage of

these conventions.

Citations

Direct and indirect citations are written in italic letters directly followed by the

respective reference. Furthermore, the Harvard Style Notation is used throughout

this thesis for the references.

Short references within the text are a combination of the authors or authors

names followed by the year of the publication surrounded by parentheses, e.g.

(Codd, 1970).

The complete reference list can be found at the end of this thesis.

5i.e. SELECT * FROM tablename; As the partitioning and distribution according to the
FVPD approach splits the table based on its attributes, the primary key has to be replicated in
all partitions, such that it can be used afterwards for the join of the partitions. For the sake of
better readability, the presented thesis illustrates the FVPD approach and its corresponding
join with 1 primary key. It further has to be noted that the approach works analogously with n
primary keys (i.e. compound primary keys). In such cases, all primary key attributes must be
replicated in all partitions.

13

Notations

Data, as stated in Oxford Dictionaries is the plural form of datum. Accordingly,

it is also used as a plural noun in English in this thesis (although nowadays also

accepted as singular), unless it is followed by another singular noun, e.g. data set

or data volume.

The plural for indexes is written as indices according to the Oxford Dictionary

recommendation.

Notions that are abbreviated are written in full when they are introduced.

Then the abbreviation is written directly after the newly introduced notion in

brackets, e.g. Secure and Distributed Cloud Data Store (SeDiCo). The complete

list of abbreviations can be found at the beginning of this thesis.

Text Emphases

Text emphases of key concepts or notions of particular importance are written in

italic letters to underline their importance, e.g. SeDiCo. Unlike citations these

notions are neither included in quotation marks nor followed by a reference as

they are formally defined before their actual usage.

Formulas

Mathematical formulas are written as the following example shows:

RS ← Π(a1,...an)R(A)

Source and Pseudo Code

The source code used in this thesis is presented as Java code and the used pseudo

code is a slightly adapted version of Java code. Both kinds of code are presented

as so-called code listings with line numbers at the beginning of each new line.

Thus, lines of particular importance can be referenced in the text more easily, e.g.

14

Listing 1: Example Source/Pseudo Code

1 pub l i c s t a t i c void main (St r ing [] a rgs) {
2 System . out . p r i n t l n (” He l lo World ”) ;
3 }

Structure of the Thesis

This section outlines the entire thesis structure and summarizes its main goals,

the research problem and the expected results. Above that, formal conventions

and the contribution to the state-of-the-art are presented. Chapter 1 covers the

definition of the research problem and notions that are used throughout the work.

Basic definitions are given, the hypotheses are formulated and the expected results

of the investigated query mechanisms are outlined. After that, Chapter 2 defines

the FVPD methodology formally and proves its correctness, afterwards the original

SeDiCo framework implementation without any optimized query strategies is

illustrated. Chapter 3 relates the key topics of this thesis to current state-of-the-

art research works. In Chapter 4, the query strategies are conceptualized and

designed and their implementation is presented in Chapter 5. After all, the query

strategies are evaluated in Chapter 6 which is followed by a conclusion in Chapter

7. Then, Chapter 8 gives an outlook about future application scenarios of the

FVPD approach, where a Resource Description Framework (RDF)-based database

is vertically partitioned and distributed. Finally, the last chapter summarizes

the entire thesis and provides an outlook about interesting and relevant work

concerning the future SeDiCo framework development.

The target group for this thesis is primarily researchers and practitioners

with a strong relation to database systems and architectures, who aim at using

(theoretically unlimited scalable) cloud capabilities for the storage or analysis

of data. It further addresses researchers and practitioners in the field of Cloud

Computing, who aim at finding an approach to store data securely and privacy-

aware in a distributed cloud environment with different deployment and service

models involved.

15

Chapter 1

Problem Definition

This chapter starts with formal definitions of central notions and general concepts

and their adaptions to the context of the presented work. Having outlined the

basic definitions, the research problem and the derived hypotheses are presented

and formalized. After that, the expected results of this work are presented.

1.1 Data Set Definition

This section outlines the formal problem definition of the research problem ad-

dressed in this thesis. Here the main notions used within the thesis are intro-

duced. The starting point is a database table commonly known as a relation

from Codds relational model (Codd, 1970). A relation R with a set of attributes

A = {a1, a2, . . . , an} is denoted as R(A). The ordering of the attributes in the

definition of the relation is important in the context of the thesis. Therefore, the

set of attributes for a relation is an ordered list with a possible repetition of some

attributes. The set of attributes refers to the table headers for the relation1. The

number of attributes n represents the degree of a relation. The relation of degree

n is called n − ary relation. The table representation of a relation is a set of

rows, where each column corresponds to an attribute in the table header. Each

row represents a tuple of values for the corresponding attributes called attribute

values (in the thesis called values). The number of the rows in a relation is called

cardinality of the relation, denoted as |R(A)|. A relational database consists of one

1If there is a set of attributes A represented in two different table headers A′ and A′′, the
two relations R(A′) and R(A′′) are different, although it could be the case that they represent
the same information.

16

or more relations which can share attributes. The concepts of the thesis consider

only one relation for the sake of better readability. These concepts are illustrated

in Figure 1.1.

In Figure 1.1 the first row is the header of the table containing the attribute

names. The degree of the table is n. The cardinality of the relation is j. Each

cell rkl has an attribute value for the attribute k in row l with 1 ≤ k ≤ n and

1 ≤ l ≤ j.

In order to uniquely identify a certain row rl, there is the concept of a primary

key. A primary key Ak is a set of one or more attributes (Ak ⊆ A), such that the

attribute values for the attributes in Ak are unique for every row r in R(A). For

the sake of better readability, this thesis focuses on relations with a primary key

containing just one attribute2.

Figure 1.1: Relational Model

Retrieval of information from a relation is done via a query which is evaluated

with respect to the relation. The results from such a query execution is called

result set RS = {raj,l, ..., rak,l} (with 1 ≤ j, k ≤ n, cf. Figure 1.1). The result set

is a set or subset of the rows in a relation3 that satisfied the conditions stated in

the query.

1.2 Data Access

In order to access data in a relational database, different operators over the

attributes (i.e. projection) and rows (i.e. selection) are performed. Data (rows

2This is not a loss of generality because the algorithms presented in the thesis can be extended
to relations with primary keys that consist of more than one attribute.

3For some queries the rows in the result set are shorter than in the original relation, e.g.
containing no values for some of the attributes

17

in a relation) in the context of the thesis are accessed with queries4. Hence, the

basic operators used throughout the thesis are introduced here.

1.2.1 Selection

Let A = {a1, a2, . . . , an} be a set of attributes and R(A) be a relation. A

selection operator determines which rows meet the criteria ϕ and which are

therefore collected into a result set (depicted as ←). Rows that do not meet

these criteria are omitted. The following selection collects all rows in a result set

RS which meet the selection criteria ω formulated over the relation attributes

ϕ := (ai = ωi, ..., aj = ωj) which is issued against a relation R(A):

RS ← σ(ai=ωi,...,aj=ωj)R(A) (1.1)

with ai as the ith attribute of relation R(A), and 1 ≤ i ≤ j ≤ n. An example of a

selection, based on the CUSTOMER relation from Figure 1 could be stated as

follows:

RS ← σ(name = ’x’ and zip = ’123’)Customer (1.2)

The respective SQL implementation would be as follows:

SELECT * FROM CUSTOMER WHERE name =’x’ and zip = ’123’; (1.3)

Here, all attribute values from tuples in the CUSTOMER relation are in the

result set RS, but only those tuples that have an attribute value ’x’ for the ’name’

attribute and that have a value ’123’ for the ’zip’ attribute. Hence, a selection

results in a horizontal subset of a relation that includes all rows that meet the

selection criteria (Elmasri & Navathe, 2015).

4either with selections or projections. The thesis illustrate the basic concepts of the FVPD
approach with projection queries for the sake of better readability, but it works analogously for
selections (cf. Sec. 1.2.2). In the FVPD approach, the two operators - selection and projection
- are also similar from a performance point of view with respect to the response time, as the
dominating factor for the operators is the reconstruction of the original relation.

18

Moreover, it has to be noted that this work aims at providing a comparable

basic query response time measurement for FVPD data. For the sake of better

readability5, the selection criteria ω are omitted in the following chapters, or

explicitly described where necessary.

1.2.2 Projection

The next operator relevant for the thesis is a projection Π over a relation R(A).

Let A = {a1, a2, . . . , an} be a set of attributes and R(A) be a relation. A projection

is essential for accessing rows in a relation, as it specifies which attributes of the

relation are collected in the result set. Thus, it can be noted that in contrast

to the above-mentioned selection, a projection results in a vertical subset of a

relation (Elmasri & Navathe, 2015).

The following projection Π collects all rows in a result set RS that meet the

attribute list (ai, ...aj) which is issued against a relation R(A):

RS ← Π(ai,...,aj)R(A) (1.4)

with ai as the ith attribute of relation R(A), with 1 ≤ i ≤ j ≤ n. Thus, since not

all attributes are included in this projection, only attributes ai, ..., aj are collected

in the result set RS.

A corresponding example of this projection, based on the CUSTOMER relation

from Figure 1 could be stated as follows:

RS ← Π(name,zip)Customer (1.5)

Hence, only the name and zip6 of the Customers build the result set RS.

The respective SQL implementation would be:

SELECT name, zip FROM Customer; (1.6)

5the SeDiCo framework supports the full SQL standard
6zip codes

19

It has further to be noted that both query operators (selection and projection)

can be combined to restrict the result set accordingly. However, the thesis and

especially the benchmark chapter use projection queries without any further

restrictions7. Indeed, a challenging task is the generality of the queries with the

various possibilities of combining the query attributes e.g. via AND, OR, NOT,

etc. In order to address this challenge, the FVPD approach outlined in this thesis

uses the following two mechanisms:

• Firstly, the primary key attribute is always added to the respective queries8.

This ensures that duplicates in the result set are removed, which corresponds

to the original definition of a projection by (Codd, 1970).

• Secondly, the FVPD approach rewrites the original query to so-called re-

construction queries9 that join the partitioned rows to recreate the original

ones. After this reconstruction step, the original query is issued against the

reconstructed rows to maintain the complex attribute combinations. As the

reconstruction queries recreate the original relation, executing the original

query afterwards, is considered a viable approach10 to be able to generate

an adequate solution for general projections and selections.

Both operators - selection and projection - are used with respect to a single

relation. In addition to this, a join operator focuses on processing two or more

relations. It combines the result sets of several queries into a single result set.

Basically, a join can be performed on n relations, but in concrete database

implementations this results in the sequential execution of a join on two relations.

Therefore, the thesis illustrate the SeDiCo approach with a join on two relations for

the sake of better readability, although a join over n relations works analogously.

7this illustrates the generic character and facilitates the comparison of the measured response
times

8from an implementation point of view, this is done automatically by the framework by
reading the relations’ metadata.

9always including the primary key attribute
10although is leaves room for further optimizations which are considered as future work

challenges

20

1.2.3 Join

The join operator ./ (with Θ as the join condition11) allows the combination of

relations in a sense that each row from a relation R is joined with a corresponding

row in relation S. Hence, a join ./ is defined as follows:

Consider two relations R and S, each with a set of attributes A = {a1, ..., ai}
and B = {b1, ..., bm}: R(A) and S(B). The join of R(A) and S(B) is then defined

in the following way:

R ./a1,...,aiΘb1,...,bm S :={(ra1,k, ..., rai,k)⊕ (sb1,l, ..., sbm,l) |

R(ra1,k, ..., rai,k) ∧ S(sb1,l, ..., sbm,l) ∧

(ra1,k, ..., rai,k) and (sb1,l, ..., sbm,l) meet Θ} (1.7)

where ra1,k is the attribute value for the attribute a1 for some row k of the relation

R, etc., and sb1,l is the value of the attribute b1 for some row l of the relation S.

Accordingly, R(ra1,k, ..., rai,k) denotes the fact that the list of values (ra1,k, ..., rai,k)

is a row in the relation R. Similarly for S(sb1,l, ..., sbm,l).

Here, the ⊕ denotes a special case of a concatenation of the rows in R and

S: based on the equality of the primary key attributes a1 and b1 respectively, the

rows in the relations R and S are merged together.

Thus, Equation (1.7) defines the join of the two relations R and S under the con-

dition Θ. The result set of this join can then be stated as (ra1,k, ..., rai,k, sb1,l..., sbm,l),

such that they meet the condition Θ. A further differentiation between the differ-

ent join types (i.e. theta, natural, and equi join) is not necessary for the developed

concepts of this work, as they just indicate which operators are used for the join

condition Θ12.

As already mentioned above, the FVPD approach requires to have the primary

key (a1) as the common attribute in all FVPD relations. Hence, the equality (=)

11e.g. depending on which condition is used for Θ (possible are: =, 6=, <,>,≤,≥), the join is
further distinguished. If the equality (=) operator is used, it results in a equi join, whereas the
other mentioned operators all result in a non-equi join (Elmasri & Navathe, 2015).

12Further kinds of joins (i.e. inner or outer joins) are not considered any further in this
work and this also holds for other concepts defined in Codds relational model (e.g. referential
integrity constraints). Here the attention is drawn to the relevant literature, i.e. (Elmasri &
Navathe, 2015) (Garcia-Molina et al., 2008). Furthermore, for the sake of clarity this work
describes the FVPD approach with only two relations. However if more relations are involved
the entire approach works accordingly and this also holds for the join of more than two relations.
In this case a so-called multi-way join is performed which is basically a series of a joins on two
relations.

21

operator (natural join) can be used as the join condition Θ on the primary key

(a1) and thus, the FVPD (natural) join is defined as a consequence from Equation

(1.7) as:

R ./a1=b1 S :={(ra1,k, ..., rai,k)⊕ (sb1,l, ..., sbm,l) |

R(ra1,k, ..., rai,k) ∧ S(sb1,l, ..., sbm,l) ∧

(ra1,k, ..., rai,k) and (sb1,l, ..., sbm,l) meet (ra1,k = sb1,l)} (1.8)

Compared to Equation (1.8) a compact notation for the FVPD (natural) join

can be reached if all attributes (that are not important for the join condition) are

omitted and its results are given in the following definition:

R ./a1 S := {(R)⊕ (S)} (1.9)

1.2.4 Naming Conventions

Table 1.1 contrasts the differences between the theoretical relational model and the

common notions used in most practical database implementations. This approach

is also followed in this thesis, where the theoretical parts (e.g. Chapter 1, 3, and

4) use notations from the relational model and Chapter 5, 6, etc. use notations

from the practical database implementation.

Table 1.1: Mapping of Relational Model to Database Implementation

Relational Model Database Implementation
Relation Table

Tuple or Row Row
Attribute Column name

Attribute ai Column name of the ith column
Degree of relation Number of attributes

Result set Result set
Primary key Primary key
Cardinality Number of rows

22

1.3 Problem Formulation

The key approach of this thesis is to create vertical partitions of a relation R(A)

and to distribute them across different clouds. For reasons of clarity, the FVPD

approach described in this thesis focuses on two vertical partitions Sv(B) and

Tv(C). Based on this, the response time of this vertical partitioning approach

(FVPD) is evaluated.

Vertical partitioning suffers from severe performance degrades since the join

to recreate the original relation is very time-consuming. In this join, it has to

be determined which of the attributes belong to which partition and all rows

that share the same primary key attribute have to be collected into the result set.

Another challenge is the fact that the result set of Sv(B) and Tv(C) cannot be

stored at a central location due to security and privacy concerns and it has to be

reconstructed with every new query. Lastly, the relevant rows have to be fetched

directly from the hard disk, as with the usage of different and distributed database

systems, their optimizers, caches, indices, etc. can only improve the response time

for every single database but lack any knowledge about the global query processing.

Again, such a central logic, based on such global information that would be able

to optimize queries would contradict SeDiCo’s Security-by-Distribution principle.

Hence, the research problem of this thesis can be summed up with finding

adequate query strategies that improve the overall response time to a level that

is in the same order of magnitude as a query against a non-partitioned and non-

distributed database setup. A formal definition of this is a minimization problem

of the time t required to generate the joint result set based on FVPD relations

Sv(B) and Tv(C). This can be stated as follows:

mint(RSv query1Sv(B) ./a1 RSv query2Tv(C))

With respect to this minimization problem, a lower bound13 is the time tlower,

required to collect the same result set with a non-partitioned relation R(A):

13note that the complexity is (in the best case) O(n) with n as the number of rows in R, e.g.
if relation R is stored completely in an In-Memory cache,

23

tlower = RSquery(R(A))

An upper bound for the response time is determined by the FVPD query itself:

tupper ≥ (RSv query1Sv(B) ./a1 RSv query2Tv(C))

The lower and the upper bounds are determined by the time complexity of

the FVPD approach. The dominant factor here is the join of the FVPD relations

as defined in Section 1.2.3. Therefore, in a näıve approach, this join results in the

Cartesian Product of the FVPD relations14, which yields to an upper bound of

O(n2) with n as the number of rows in the relations and the exponent indicating

the number of relations. An analogous consideration can also be made for the lower

bound. Again, with the join as the predominant factor for the performance of the

entire FVPD approach, more sophisticated join algorithms are worth considering.

A theoretical lower bound with approaches like the Hash Join15 is O(n + m)

with n as building a hash table of all n rows in relation S and m as hashing the

corresponding rows of relation T against the hash table16. The lower bound for

the Sorted-Merge Join17 can be determined as O(n+m) with n as sorting all n

rows in relation S and merging m rows of relation T against this sorted list18. The

worst-case complexity of the Sorted-Merge Join19, in which none of the relations

are sorted, can be stated as O(n+m+ (n ∗ (log(n) +m ∗ log(m))), as here extra

sorting effort for the 2 partitions has to be considered as well20. Above all, it

is assumed that a query against an FVPD data set cannot be faster than the

same query against a non-FVPD data set (i.e. a single database relation). This

results in an absolute lower bound of O(n), which can be stated as a database

14except that the primary key a1 is not replicated in the result
15introduced in Chapter 4 where this approach is actually used
16note that n and m denote the cardinality of relations S and T and therefore it follows that

n = m
17introduced in Chapter 4 where this approach is actually used
18note that n and m denote the cardinality of relations S and T and therefore it follows that

n = m
19introduced in Chapter 4 where this approach is actually used
20as the relations are sorted based on the primary key attribute, the thesis considers the

best-case complexity in order to be more comparable to the Hash Join

24

query against a relation containing n rows and all these n rows are collected in

the result set.

Both, the lower and the upper bounds could also be determined in concrete

figures in experimental setups in (Kohler & Specht, 2014b) for different numbers

of rows, ranging from 0 to 288K rows per relation. In these experimental setups

the CUSTOMER relation from the TPC-W benchmark (TPC, 2003) was used.

TPC-W is a database benchmark that emulates various transactions that emerge

in a typical web shop, i.e. adding articles to a shopping cart, order articles,

etc. TPC is short for Transaction Processing Performance Council and is a

consortium of various industry partners such as Intel, Mircosoft, Oracle, Red

Hat, Cisco, Dell, etc. The basic performance metric of the benchmark evaluates

the number of performed transactions per second, which indicates the response

time of the web shop. Although the latest benchmark specification is from 2003

and the benchmark is considered deprecated, it is still widely used nowadays

and its data model has great similarities with the current TPC-H (TPC, 2014)

benchmark from 2014. Since the focus of this work is to present an approach

to store data with an improved level of security and privacy in a distributed

cloud database architecture, the approach is illustrated with a relation and two

corresponding vertical partitions (cf. Figure 1.2). Hence, the CUSTOMER relation

is regarded as an ideal experimental data model, as it stores personal data (e.g.

credit card number, date of birth, etc.) for fictional customers.

Above that, this relation has the appealing feature that it can be vertically

partitioned and distributed in various ways, such as e.g. in private (credit card,

date of birth) and public (name, street, zip) data or shop-centric (username,

last login) and personal (name, date of birth) data.

Moreover, this relation contains several different data types for its attributes

(int, string, time stamp, date, etc.) and a single primary key (C ID) which is

considered as an adequate test scenario when different database systems are used.

The entire data model can be found in (TPC, 2003) and the CUSTOMER relation

with its vertical partitions that are relevant for this work is illustrated in Figure

1.2.

25

Figure 1.2: Vertical Partitioned TPC-W Customer Relation

1.4 Hypotheses

To conclude this section, the following hypotheses are derived from the research

problem stated as the minimization of the response time:

mint(RSquerySv(B) ./a1 RSqueryTv(C))

Hypothesis 1: Query Rewriting improves the response time to a level that is in

the same order of magnitude as a non-partitioned and non-distributed scenario

due to partitioned and parallelized query and join implementations.

The approach followed to investigate this hypothesis takes the original database

query and rewrites it such that it corresponds to the fixed vertical partitioning

scheme. Performance gains are expected as the vertical partitions are queried

individually and only the query-matching rows have to be joined for the final

result set. The evaluation of this approach will show if the performance gain is

able to reach the response time of the same scenario with a non-partitioned and

non-distributed data set. Therefore, this syntactic query rewriting is implemented

26

and evaluated (in Chapter 4) with 3 different join algorithms, (i.e. nested-loops,

hash and sorted-merge). All in all, a database query is issued against a non-FVPD

data set and the response time is measured. Then the data set is partitioned

with the FVPD approach and the same query is issued against the FVPD data

set. Consequently, the query is rewritten and the response time is also measured.

Finally, the response times are compared to either prove or reject the hypothesis.

Hypothesis 2: Caching data improves the response time to a level that is in

the same order of magnitude as a non-partitioned and non-distributed scenario

due to the usage of In-Memory caches.

All in all, there are 3 components that are evaluated with respect to this

hypothesis. A basic differentiation is made between the decentralized and the

centralized caching approach. The decentralized approach contains two different

implementations: a server-based and a client-based one. The decentralized server-

based implementation consists of multiple server-based caches (i.e. as many caches

as FVPD partitions). Here, improvements are expected, as query-matching rows

are directly collected from fast cache primary storage devices rather than from

comparatively slower database storages (HDD or SSD). Table 1.2 illustrates all

approaches that are used to test this hypothesis.

Table 1.2: Approaches for Hypothesis 2

Approach Used Name in Thesis
Decentralized Server-Based Caching Server-Based Caching

Local Decentralized Client-Based Caching Local Caching

Remote Centralized Server-Based Caching Remote Caching

Besides that decentralized server-based approach, there are two other imple-

mentations: a decentralized client-based cache, denoted as local cache, where

a cache resides directly at the client and a remote cache, where the cache is a

dedicated server between the FVPD partitions and all clients. In the local one,

the cache is located directly on the client that issues the database query. Hence,

this local cache stores entirely reconstructed rows, performance improvements are

expected. Here, it is viable to cache completely reconstructed rows, as similar to

all other approaches the client is the final place where the rows are reconstructed

eventually.

Yet, a single centralized remote cache, which also stores entirely reconstructed

rows contradicts the Security-by-Distribution principle of SeDiCo. Nevertheless,

27

this approach is also evaluated in case further security aspects to protect this

centralized cache are applied21.

There are also two further analogous cache memory implementations: a file-

based JSON and a local relational database used a cache, evaluated and compared.

These implementations are also evaluated for the sake of comparability against

the In-Memory cache.

The investigation of this hypothesis will show to which extent the response

time can be improved and how this approach performs compared against the

initial SeDiCo implementation and against the other approaches.

Hypothesis 3: Using Solid State Disks (SSDs) as distributed secondary storage

devices for the FVPD data improves the response time to a level that is in the

same order of magnitude as a non-partitioned and non-distributed scenario due to

faster access times of the memory.

The investigations concerning this hypothesis are empirical measurements.

Here, no new query strategies or algorithms are developed, but the original SeDiCo

framework is operated as is with faster hardware capabilities (i.e. SSDs, Solid

State Drives). Thus, the impact of using new technology is measured and the

results will show if the response time can be improved as expected.

The basic assumption is that due to the usage of SSD devices as secondary

storage for the FVPD data the response time is improved. SSDs store data in

so-called flash memory, which is non-volatile and can be accessed electronically

by a storage controller. In contrast to this, a traditional HDD (hard disk drive)

consists of rotating magnetic disks, where so-called heads placed above these disks,

read and write data. Hence, moving the head (mechanically) over the disks is

slower compared to the (completely electronic) storage controller of SSDs. To

evaluate the response time of this approach, no changes of the original SeDiCo

framework are made, except that the FVPD data are stored in databases that use

SSDs as secondary storage. Thus, this approach contains a practical performance

measurement, with no algorithmic considerations. Here, the influence of a new

hardware generation is investigated.

The basic goal of this work is to find query strategies that work on FVPD

data in the same order of magnitude as on non-partitioned and non-distributed

environments. Therefore, the afore-mentioned hypotheses are analyzed with 3

21e.g. place the cache inside a separate network, only accessible via virtual private network

28

corresponding execution methods: a query rewriting, a caching, and an SSD-based

one.

Table 1.3 assigns the analyzed approaches to their corresponding hypothesis

in order to provide a general overview.

Table 1.3: Thesis Approaches Mapped to Hypotheses

Approach Hypothesis Execution Method
Query Rewriting Hypothesis 1 Query Rewriting

Server-Based Caching Hypothesis 2 Caching

Local Caching Hypothesis 2 Caching

Remote Caching Hypothesis 2 Caching

SSD-based Approach Hypothesis 3 SSD-based

During the course of this thesis all approaches will be conceptualized, imple-

mented, and evaluated. Moreover, the evaluation is distinguished in two phases:

a local and a remote one.

Local and Remote Evaluation

In the local evaluation all components are installed on one single machine. The

main reason for this is to avoid typical side-effects in Cloud Computing envi-

ronments (i.e. changing (Internet) network bandwidths, unknown utilization of

physical hosts and virtual machines, etc.). In contrast to the local evaluation, the

remote evaluation uses a (private) cloud infrastructure and a client connected

via local area network (LAN) to reduce the above-mentioned side-effects to a

minimum.

29

Chapter 2

Definition of the FVPD

Methodology and its Original

Implementation in the SeDiCo

Framework

This chapter introduces a formal definition of the FVPD methodology and proves

its correctness. It also illustrates the complete SeDiCo framework development1

that this thesis is based on, and creates a common understanding of it.

2.1 Fixed Vertical Partitioning and Distribution

(FVPD) Definition

This section defines the key elements of the FVPD methodology. The main idea is

that a relation is divided in several partitions in a way, such that each individual

partition contains logically independent tuples. Thus, in order to use FVPD data,

they have to be joined first and this requires mechanisms to separate a relation

in several parts and strategies to query the respective partitions, such that the

join produces an equal result set compared to the original query over the original

relation. In the rest of the thesis it is assumed (without the loss of generality)

that the original relation contains one single primary key attribute and that its

1that was conducted by the author in cooperation with student works listed at the end of
the thesis from 2012 to 2014

30

FVPD partitions as two relations satisfy the necessary and sufficient conditions to

represent the original relation. The presented results of the thesis are also correct

for relations with more than one primary key attribute and more than two FVPD

partitions, as the following sections show.

2.1.1 Vertical Data Partitioning

In this section, necessary notions for the definition of the FVPD methodology are

presented. Furthermore, the correctness of the FVPD methodology is proved. For

this, firstly a non-FVPD relation and then the corresponding FVPD relations are

defined.

Definition 1. Non-FVPD relation

Let A = {a1, a2, . . . , an} be a set of attributes. Let R(A) be a relation R with

attributes A such that a1 is the only key attribute for R(A). Then the relation R

is called a Non-FVPD relation.

In other (more informal) words, any relation R that is a database table with

attributes A, with a single primary key attribute a1, is a Non-FVPD relation.

This is a relation in the original database which will be vertically partitioned

and distributed to different clouds in order to protect the data (tuples) from

impermissible access.

Definition 2. FVPD relations for the non-FVPD relation R(A)

Let A = {a1, a2, . . . , an} be a set of attributes and let R be a non-FVPD

relation with attributes A. Let B and C be two sets of attributes such that:

• B ∪ C = A,

and

• B ∩ C = {a1}

Then, the two relations Sv(B) and Tv(C) are FVPD relations for the non-

FVPD relation R(A), if and only if

• |Sv(B)| = |Tv(C)| = |R(A)|

and

31

• R(A) = Sv(B) ./a1 Tv(C).

The condition B ∩ C = {a1} is called disjointness criterion, because the sets

of attributes in the partitions B and C are disjoint except for the primary key

attribute a1. The condition |Sv(B)| = |Tv(C)| = |R(A)| is called completeness

criterion, because there are one-to-one correspondences from sets of tuples in

Sv(B) to the set of tuples in Tv(C) on the basis of the value of the primary key

attribute a1. The completeness criterion ensures that in Sv(B) and Tv(C) there is

no tuple with a value for the primary key attribute for which there is no tuple in

R(A) with the same value for the primary key attribute.

In other words, relation R(A) is vertically partitioned into 2 disjoint relations

Sv(T) and Tv(C), except for the primary key attribute a1 which is replicated to

both FVPD relations to reconstruct (i.e. join) the original non-FVPD relation.

Because of this join, the number of rows (i.e. the cardinality) in all relations must

be equal (completeness).

The definition for more than two FVPD relations works analogously and

is not pointed out any further for the sake of a better readability. Similarly,

FVPD partitions with more than one primary key attribute are possible, but not

presented, since here, not only one key attribute (a1), but a set of key attributes

must be replicated in all FVPD partitions.

Definition 3. Reconstruction queries

Let A = {a1, a2, . . . , an} be a set of attributes and let R be a non-FVPD

relation with attributes A. Let Sv(B) and Tv(C) be FVPD relations for relation

R(A).

Let Π(ai,...,aj), (1 ≤ i < j ≤ n) be a projection query for R(A), such that

RS ← Π(ai,...,aj)R(A).

Let Πv1(a1,ak,...,al) be a projection query for Sv(B) and let Πv2(a1,am,...,ao) be a

projection query for Tv(C) with 1 ≤ i ≤ k, l,m, o ≤ j ≤ n, such that

RSv1 ← Πv1(a1,ak,...,al)Sv(B) and RSv2 ← Πv2(a1,am,...,ao)Tv(C).

The projections queries Πv1(a1,ak,...,al) and Πv2(a1,am,...,ao) are called reconstruc-

tion queries for the projection query Π(a1,...,aj), if and only if

RS = Π(ai,...,aj)(RSv1 ./a1 RSv2).

32

In other words the two projection queries Πv1(a1,ak,...,al) and Πv2(a1,am,...,ao) are

reconstruction queries for the original projection query Π(a1,...,ai) if the result sets

RSv1 and RSv2 can be joined to the result set RS of the original query Π(ai,...,aj).

The additional projection over the join of RSv1 and RSv2 is necessary because

the primary key attribute a1, which is crucial for the join can be left out in the

attribute list of the original query: (ai, . . . , aj).

Definition 4. FVPD methodology

Let A = {a1, a2, . . . , an} be a set of attributes and let R be a non-FVPD

relation with attributes A. Let B = {a1, a2, . . . , ak} and C = {a1, ak+1, . . . , an}
for 2 ≤ k ≤ n− 1 be two sets of attributes such that:

• B ∪ C = A,

and

• B ∩ C = {a1},

and

• the result sets for the projections on B and C: RSv1 ← Π(a1,a2,...,ak)R(A)

and RSv2 ← Π(a1,ak+1,...,an)R(A) contain no sensitive or relevant information

respectively.

Then, the two relations Sv(B) = RSv1 and Tv(C) = RSv2 are FVPD rela-

tions for the non-FVPD relation R(A).

In addition to this, the FVPD methodology stores the two FVPD relations

in two different locations (i.e. clouds) which improves the level of security and

privacy for the respective data.

With respect to this definition, it is important to note that the data (tuples)

in just one of the FVPD partitions do not contain any security or privacy relevant

data. This is something that has to be determined by the framework user who

knows about security and privacy issues related to the actual data. If it is not

possible to partition data in two FVPD partitions, then the partitioning in three

or more relations is possible analogously, but this is out of the scope of this thesis.

In very rare cases, when each column by itself contains sensitive data with

respect to security and privacy, then this methodology is not applicable.

33

Additionally, in the definition for the sake of better readability it is assumed

that the attributes within the sets B and C are ordered as in the set A. However,

this is not a restriction because the attributes in A can always be reordered such

that they correspond to the ordering in the FVPD partitions.

Having defined the FVPD methodology now, the correctness proof has to

show that the FVPD partitions represent the same data as the original relation.

This is done by showing that for each query for the original relation, there exist

reconstruction queries, and this is done in the next section.

2.1.2 Correctness of FVPD methodology

Theorem 12 states the correctness of the original SeDiCo approach. The proof of

the theorem consists in two steps: (1) presentation of the algorithm for the query

rewriting into the reconstruction queries, and (2) the proof that the two rewritten

queries are in fact reconstruction queries for the original one.

Theorem 1. Let A = {a1, a2, . . . , an} be a set of attributes and let R be a non-

FVPD relation with attributes A. Let Sv(B) and Tv(C) be FVPD relations for

relation R(A).

For each Πω, (ω = (ai, . . . , aj) : 1 ≤ i < j ≤ n), projection query for R(A),

such that

RS ← ΠωR(A),

there exist two projection queries Πv1(a1,ak,...,al) for Sv(B) and Πv2(a1,am,...,ao) for

Tv(C), that are reconstruction queries for the original projection query Πω
3.

Proof for Theorem 1. The basic idea behind this correctness proof is to show

that a result set based on a projection query against a non-FVPD relation is

equal to the result set based on the join of two result sets of the corresponding

reconstruction queries against their FVPD relations. The following proof shows

that for each projection query there exist two reconstruction queries.

2For the sake of better readability, this proof is illustrated with a projection query Π, and
two FVPD partitions but works analogously for all other query types, their combinations, and
for more than two FVPD partitions.

3note that if the primary key attribute a1 is not contained in the original query, it is
automatically added by the framework based on the relation’s metadata. This ensures that the
result set does not contain duplicate rows.

34

Let A = {a1, a2, . . . , an} be a set of attributes and let R be a non-FVPD

relation with attributes A. Let Sv(B) and Tv(C) be FVPD relations for relation

R(A). Thus, for B and C it holds:

• B ∪ C = A,

and

• B ∩ C = {a1},

Let Πω, (ω = (ai, . . . , aj) : 1 ≤ i < j ≤ n), be a projection query for R(A) and

RS ← ΠωR(A).

Then, two projection queries Πv1ω1 for Sv(B) and Πv2ω2 for Tv(C) are con-

structed. The following algorithm proves that they are reconstruction queries for

the query Πω:

Data:

B; /* the set of attributes for partition Sv(B) */

C; /* the set of attributes for partition Tv(C) */

ω = {ai, . . . , aj}; /* the set of query restrictions */

Result:

Πv1ω1 and Πv2ω2 ; /* the reconstruction queries */

begin

ω1 ← {a1}; /* the set of restriction for query Πv1ω1 */

ω2 ← {a1}; /* the set of restriction for query Πv2ω2 */

foreach a ∈ ω \ {a1} do

if a ∈ B then

ω1 ← ω1 ∪ {a};
else

ω2 ← ω2 ∪ {a};
end

end

return Πv1ω1 , Πv2ω2

end
Algorithm 1: The Algorithm For The Creation Of The Reconstruction Queries

Algorithm 1 produces in a finite number of steps (as there are a finite number of

attributes) two sets of attributes ω1 and ω2 and on the basis of them it constructs

35

two projection queries Πv1ω1 for Sv(B) and Πv2ω2 for Tv(C). These queries produce

the result sets RSv1 ← Πv1ω1Sv(B) and RSv2 ← Πv2ω2Tv(C) respectively. The

rest of the proof shows that they are reconstruction queries for the query Πω.

Let Πω, (ω = (ai, . . . , aj) : 1 ≤ i < j ≤ n), be a projection query for R(A) and

let Πv1ω1 and Πv2ω2 be two projection queries constructed by Algorithm 1.

Let RS ← ΠωR(A) and RS ′ ← Πω(RSv1 ./a1 RSv2) be result sets. The goal

of the proof is to show that RS = RS ′.

1. Implication (⇒):

Let tωl = (rai,l, ..., raj ,l) where (rai,l, ..., raj ,l) ∈ RS.

Then there is a row tAm = (ra1,m, ..., ran,m) where (ra1,m, ..., ran,m) ∈ R(A) for

some m such that

∀a.((a ∈ ω ∧ ra,l ∈ tωl ∧ ra,m ∈ tAm)→ ra,l = ra,m)

This follows from the definition of projection query: for each row in the result

set there is a row in the relation, from which the row in the result set is projected.

This is denoted as tωl = Πωt
A
m - applying the projection query on a single row

in the relation R(A). Note that by the definition of a projection (Codd, 1970),

duplicates are not contained in the result set RS, and as the primary key attribute

a1 is always part of the reconstruction queries Πv1 and Πv2, it is also assured that

RS ′ does not contain any duplicates.

For tAm there are two rows tBm = (ra1,m, ..., raq ,m) and tCm = (ra1,m, ..., rap,m)

where (ra1,m, ..., raq ,m) ∈ Sv(B) and (ra1,m, ..., raq ,m) ∈ Tv(C) such that

tAm = tBm ⊕a1 t
C
m

This follows from Definition 2 of FVPD relations. ⊕a1 is the concatenation of

of the two rows on the basis of the values of the key attribute a1 which have to be

the same in both rows and this value is presented just once in the result.

Let tω1
m = Πv1ω1t

B
m and tω2

m = Πv2ω2t
C
m be the projection queries constructed by

Algorithm 1. Then, it follows from Algorithm 1 and Definition 2 of the FVPD

relations:

36

∀a.((a ∈ ω ∧ a ∈ B ∧ ra,l ∈ tωl)→ ra,l ∈ tω1
m)

and

∀a.((a ∈ ω ∧ a ∈ C ∧ ra,l ∈ tωl)→ ra,l ∈ tω2
m)

Therefore

∀a.((a ∈ ω ∧ ra,l ∈ tωl)→ ra,l ∈ (tω1
m ⊕a1 t

ω2
m))

then it follows

∀a.((a ∈ ω ∧ ra,l ∈ tωl)→ ra,l ∈ Πω(tω1
m ⊕a1 t

ω2
m))

In the other direction, it follows that

∀a.((a ∈ ω1 ∧ a ∈ ω ∧ ra,m ∈ tω1
m)→ ra,m ∈ tωl)

and

∀a.((a ∈ ω2 ∧ a ∈ ω ∧ ra,m ∈ tω2
m)→ ra,m ∈ tω2)

Therefore

∀a.((a ∈ (ω1 ∪ ω2) ∧ a ∈ ω ∧ ra,m ∈ (tω1
m ⊕a1 t

ω2
m))→ ra,m ∈ tωl)

from this it follows

∀a.((a ∈ ω ∧ ra,m ∈ Πω(tω1
m ⊕a1 t

ω2
m))→ ra,m ∈ tωl)

.

Therefore for each tωl ∈ RS there is a t′ω ∈ Πω(RSv1 ./a1 RSv2) such that

tωl = t′ω

37

From this follows that

RS ⊆ RS ′. (2.1)

2. Implication (⇐):

Let t′ωl = (rai,l, ..., raj ,l) where (rai,l, ..., raj ,l) ∈ RS ′. Which means that t′ωl ∈
Πω(RSv1 ./a1 RSv2).

Then there is a row tω1,ω2
m = (ra1,m, ..., rak,m), (1 ≤ k ≤ n), where (ra1,m, ..., rak,m) ∈

(RSv1 ./a1 RSv2) for some m such that

∀a.((a ∈ ω ∧ ra,l ∈ t′ωl ∧ ra,m ∈ tω1,ω2
m)→ ra,l = ra,m)

Note that by the definition of a projection (Codd, 1970), duplicates are not

contained in the result set RS, and as the primary key attribute a1 is always part

of the reconstruction queries Πv1 and Πv2, it is also assured that RS ′ does not

contain any duplicates.

For tω1,ω2
m there are two rows tω1

m = (ra1,m, ..., raq ,m) and tω2
m = (ra1,m, ..., rap,m)

where (ra1,m, ..., raq ,m) ∈ RSv1 and (ra1,m, ..., rap,m) ∈ RSv2 such that

tω1,ω2
m = tω1

m ⊕a1 t
ω2
m

This follows from the definition of the join. The two rows tω1
m and tω2

m share

the same value ra1,m for the key attribute a1. Above that, there are two rows

tBm ∈ Sv(B) and tCm ∈ Tv(C) such that tω1
m = Πv1ω1t

B
m and tω2

m = Πv2ω2t
C
m. This

follows from the definition of the two projection queries created by Algorithm

1. The two rows tBm and tCm also share the same value ra1,m for the key attribute

a1 which also follows from the definition of the projection queries created by

Algorithm 1. Therefore, there is a row tAm ∈ R(A) such that tAm = (tBm ⊕a1 t
C
m).

This follows from Definition 2 of FVPD relations.

From all this, it follows

∀a.((a ∈ ω ∧ a ∈ B ∧ ra,l ∈ t′ωl)→ ra,l ∈ tBm)

38

and

∀a.((a ∈ ω ∧ a ∈ C ∧ ra,l ∈ t′ωl)→ ra,l ∈ tCm)

from Algorithm 1. Therefore,

∀a.((a ∈ ω ∧ ra,l ∈ t′ωl)→ ra,l ∈ (tBm ⊕a1 t
C
m))

then it follows

∀a.((a ∈ ω ∧ ra,l ∈ t′ωl)→ ra,l ∈ Πω(tBm ⊕a1 t
C
m))

then

∀a.((a ∈ ω ∧ ra,l ∈ t′ωl)→ ra,l ∈ Πω(tAm))

Let tωm = Πω(tAm). In the other direction, it follows that

∀a.((a ∈ ω1 ∧ a ∈ ω ∧ ra,m ∈ tωm)→ ra,m ∈ tω1
m)

and

∀a.((a ∈ ω2 ∧ a ∈ ω ∧ ra,m ∈ tωm)→ ra,m ∈ tω2
m)

Therefore

∀a.((a ∈ (ω1 ∪ ω2) ∧ a ∈ ω ∧ ra,m ∈ tωl)→ ra,m ∈ (tω1
m ⊕a1 t

ω2
m))

from this, it follows

∀a.((a ∈ ω ∧ ra,m ∈ tωl)→ ra,m ∈ Πω(tω1
m ⊕a1 t

ω2
m))

.

Therefore, for each t′ωl ∈ Πω(RSv1 ./a1 RSv2) there is tωm ∈ RS such that

39

t′ωl = tωm

From this follows that

RS ′ ⊆ RS (2.2)

From 2.1 and 2.2 it follows that

RS = RS ′

This proves the theorem.

Theorem 1 shows that for each projection query with respect to the non-FVDP

relation, there exist two reconstruction queries over the corresponding FVPD

relations. The primary key attribute a1 needed a special treatment in Algorithm 1

because the original projection query Π(ai,...,aj) can be not restricted with respect

to a1: the key attribute is necessary for the join of the result sets from the two

reconstruction queries. In the algorithm, it is therefore added to both sets of

attributes ω1 and ω2. The final projection on the original set ω ensures that the

column corresponding to the key attribute is deleted from the result set if it is

not contained in ω.

This proof verifies hypothesis 0, stating that the FVPD methodology improves

the level of security and privacy in the context of relational databases. As stated in

Definition 4, the approach can be extended to more than two FVPD partitions and

to more than one primary key attribute. Here SeDiCo, as an implementation of

this methodology, not only provides a framework but also showed the technological

feasibility. Nevertheless, it has to be noted that the definition of a secure FVPD

data scheme is in the responsibility of the framework user and that it is not

applicable if a single column of a relation contains security or privacy-relevant

data.

40

2.2 Data Distribution: The SeDiCo Approach

Having outlined the basic principles of the FVPD methodology and its proof, this

section gives an overview about the original implementation of the methodology

in form of the SeDiCo framework.

The basic approach of SeDiCo (A SEcure and DI stributed C loud Data stOre)

is to divide data into several partitions and distribute them across various clouds.

Thus, every cloud provider only gets a chunk of the data that is worthless without

the other parts. Based on this logical and physical data distribution, the level of

security and privacy in the cloud is enhanced.

Figure 2.1 illustrates the Security-by-Distribution approach with a simplified

example based on the TPC-W CUSTOMER relation.

Figure 2.1: SeDiCo Architecture with TPC-W CUSTOMER Data Scheme

Since it is possible to distribute data across various clouds and various database

systems, the entire setup can be regarded as a so-called distributed database system

(Elmasri & Navathe, 2015). Here, (Elmasri & Navathe, 2015) distinguish between

multi-database (with no global data scheme) and federated (with a global data

scheme) database systems. In a so-called multi-database system, the clients

create their required schemes on demand, whereas in a federated database they

rely on a global scheme that unites all involved distributed schemes. However,

(Elmasri & Navathe, 2015) also state that a clear distinction between those kinds

of database systems cannot be made and both types are often subsumed under

41

the notion of a federated database system. According to this, the entire SeDiCo

approach is also regarded as a federated database architecture4, because of the

initial non-partitioned and non-distributed relation.

As data are stored across different clouds, no provider has access to entire

rows. To stick with Figure 2.1, if a public cloud provider is attacked and Cus-

tomer Partition11 is stolen, the data is useless for the attacker without the

corresponding Customer Partition12. In order to realize such a concept, adequate

cloud infrastructures are a crucial point. SeDiCo showed the technical feasibility

of this idea with a Java-based implementation. Here, two different clouds (Amazon

EC2 (Amazon, 2016) as a public and Eucalyptus (Hewlett Packard, 2016) as a

private cloud) and two different databases (MySQL (MySQL, 2016) and Oracle

Express (Oracle, 2016)) were used. The mapping of different database types is

done via Hibernate (cf. Section 3.3.2) and different cloud APIs are encapsulated

with jclouds (Apache, 2016b).

A concluding architectural overview about all these concepts can be found in

Figure 2.2.

Figure 2.2: SeDiCo’s Architectural Overview

The SeDiCo framework targets on database administrators, developers and

architects, who aim at transferring database data into a dynamically scalable

cloud infrastructure. Also, system administrators and architects who intend to use

4even if just one (distributed) database system (e.g. MySQL) is used

42

a cloud-based infrastructure for creating redundant or high availability database

systems are addressed. For these target groups, SeDiCo offers a solution to use

all kinds of cloud deployment models, i.e. public, private, hybrid and community

clouds, for the storage of database data, which is transparently usable for new

but also legacy applications.

Figure 2.2 illustrates the entire SeDiCo framework. SeDiCo is implemented

in Java as the most widely used programming language in nowadays enterprises

(TIOBE, 2016). Basically, there are four central aspects: the user administration,

the distribution logic, the cloud interfaces and the database interfaces. The key

components for this thesis are the distribution logic and the database interfaces. It

is possible to use the SeDiCo framework with different database implementations

(e.g. MySQL, Oracle, MariaDB, etc.). However, although these database systems

implement the SQL standard, the concrete implementation differs from database

system to database system. This requires an additional layer that abstracts

from the concrete database system implementations and this is done in the

database interfaces component with Hibernate (RedHat, 2016) as an ORM (Object-

Relational Mapper)5. Here, Hibernate introduces a high-level query language

(JPQL, Java Persistence Query Language) upon SQL, which is independent from

the concrete underlying database system. Hibernate and its implications for

SeDiCo is introduced in more detail in Section 3.3 and the distribution logic

component of SeDiCo is outlined in the following sections.

2.2.1 FVPD Join

A key element in SeDiCo is the join of rows that match a query. Transferred to

the presented FVPD approach, a join corresponds to joining query matching rows

in order to reconstruct them. Thus, all join algorithms that are described in this

section implement the natural join (cf. Section 1.2.3), and the replicated primary

key attribute a1 appears only once in the respective result set. Thus, for the join

both partitions S and T has to be iterated to find query-matching rows. This

results in a run time complexity (with respect to the response time) of O(n2),

with n indicating the cardinality of S and T .

5An ORM has several advantages: firstly, it bridges the gap between the object-oriented
programming and the relational database paradigms, secondly, it abstracts from a concrete
database implementation, and thirdly, it ensures transaction safety with the usage of a so-called
session, cf. Section 3.3

43

The complexity of this initial FVPD approach (without any optimization) is

summarized in Table 2.1.

Table 2.1: Query Mechanism Complexity

Query Mechanism Join Algorithm Complexity
Initial FVPD approach Nested-Loops Join O(n2)

2.2.2 Row Reconstruction in SeDiCo

The row reconstruction in SeDiCo is performed in 2 steps: a row collection and a

join step. These steps are illustrated in Figure 2.3.

Figure 2.3: Query and Join Approach in SeDiCo

1. Row Collection

First and foremost, the original query Π(a1,...,ai)R(A) is analyzed with respect

to the partitioning scheme, which is defined by the framework user in an

XML file6. The query attributes (a1, ..., ai) are assigned to the respective

6the primary key attribute a1 is also specified in the XML file, so if the original query does
not contain the primary key attribute, it is automatically added by the SeDiCo framework

44

partitions and the original query is rewritten into so-called reconstruction

queries for the corresponding vertical partitions:

Πv1(a1,...,aj)Sv(B)

Πv2(a1,aj+1,...,ai)Tv(C)

with B ⊆ A, C ⊆ A, B ∩ C = {a1}, B ∪ C = A, aj as the jth attribute

from A, j < i, and i as the number of attributes in A.

Subsequently, these reconstruction queries are issued against the respective

partitions and their result sets are collected accordingly:

RSv1 ← Πv1(a1,...,aj)Sv(B)

RSv2 ← Πv2(a1,aj+1,...,ai)Tv(C)

The rows in these result sets are then joined with a natural join on their

primary key into the final result set RSfinal:

RSfinal ← RSv1 ./a1 RSv2

Now, action 4 (Figure 2.3) writes the result set RSfinal (relational paradigm)

to a list of objects List < DomainObject > list (object-oriented paradigm).

Here, Hibernate as the Object-Relational Mapper (ORM) is necessary to

be independent from the underlying database system. This object represen-

tation of the result set abstracts from a concrete database implementation

and enables the framework user to use various systems.

This finishes the first step and if there are filter criteria ωi, the second step

has to be performed.

2. Row Filtering

Now, all rows are entirely reconstructed as objects, and filter criteria ωi

can be applied on the respective attributes. This facilitates the entire row

45

reconstruction step7, as especially the query attribute concatenation with

logical ANDs and ORs is a complex task to distribute into the respective

queries. Therefore, a list of domain objects (mapping the rows to objects)

is built:

List < DomainObject > list = RSfinal

Then, (if there exist) query attributes ω are applied with their respective

combinations (e.g. AND, OR, NOT, etc.) on the objects in this list. If they

match, the respective object remains in the list and if they do not match,

the respective object is removed from the list:

List < DomainObject > list

 remove, if list.objectai /∈ Π(ai)

-, otherwise

In the end, this list contains the final result set of the original query,

represented as a list of objects.

2.2.3 FVPD CRUD Operations

In order to provide an exhaustive overview about the entire SeDiCo approach,

this section now outlines the implementation of the 4 basic database operations:

create, read, updated, and delete (CRUD), based on the FVPD approach.

Figure 2.4 illustrates the implementation of the CRUD operations, based on

Hibernates Interceptor mechanism which uses so-called listeners (RedHat, 2016).

The application logic (here in form of a Java client) uses the ORM which maps the

objects to the corresponding relations. As soon as an object is accessed8 (within a

Hibernate session), a listener intercepts this object call and translates the original

SQL statement into an SQL statement that corresponds to the FVPD scheme.

An example of such a translation can be found in Figure 2.3. After executing the

translated SQL statements against the respective partitions, the ORM is used to

collect the result sets and reconstructs the rows with joining all query-matching

7and the correctness proof in Section 2.1.2
8i.e. created, read, updated, or deleted

46

Figure 2.4: CRUD Operations in SeDiCo

rows on their primary keys. This procedure is analogous for all CRUD operations,

i.e. create (persisting an object to the partitions), read (querying for one or more

rows), update (persisting changes of an object into the partitions) and delete

(removing an object and deleting it from the partitions). Considering the fact that

this approach involves several databases (respective partitions), ideally distributed

across different cloud vendors, another challenging task is to preserve the ACID

(atomicity, consistency, isolation, and durability) criteria in such a distributed

environment. The next section concentrates on the maintenance of the ACID

criteria.

ACID Criteria in SeDiCo

Since the entire approach relies on relational but vertically partitioned data, the

question of how to ensure all ACID criteria emerges. Using Hibernate as ORM

means, that all CRUD operations must be performed within a session in the

Java client (RedHat, 2016). Such a (Java) session object is then used to create a

transaction around the respective CRUD operation and this transaction ensures

all ACID criteria, even in such a FVPD environment. This preserves the so-called

hard consistency throughout the entire SeDiCo framework:

• Atomicity: a transaction (considered as a basic set of database operations)

is either performed entirely (commit) or not at all (rollback)

• C onsistency: the database system is in a consistent state before and after

each transaction

47

• I solation: transactions are independent from each other and cannot access

data that is simultaneously processed by another one

• Durability: data is long-lastingly stored in a database

The presented version of SeDiCo was developed and implemented before the

work on the thesis has started. The results of this preliminary work have shown

that the ideas behind SeDiCo are feasible and work in practice. However, there is

still an open question regarding the framework performance in practical use cases:

• Performance optimization of the SeDiCo approach: Although the

feasibility of the original implementation is empirically shown and formally

proved, the response time (especially for larger data sets, i.e. more than

10K rows) decreased tremendously. Thus, how can the response time for a

FVPD query in practical use cases scenarios be improved, such that it is in

the same order of magnitude as a non-FVPD query?

This section closes the presentation of the entire SeDiCo framework and created

a common understanding of how the approach works. The following related work

with respect to SeDiCo embeds it into a broader state-of-the-art context. Then,

the subsequent chapters conceptualize, implement and evaluate optimized query

mechanisms for the SeDiCo framework.

48

Chapter 3

Related Work

This chapter covers the architectural background for the key concepts of the entire

SeDiCo framework1 and relates them to current research topics. The structure of

this chapter is aligned to Figure 3.12, which gives a general architectural overview

about SeDiCo, its central aspects and illustrates the relation to the structure of

this chapter.

Figure 3.1: SeDiCo Architecture Mapped to Chapter Content

1and therefore implicitly for the query mechanisms developed in this thesis
2note that the user administration component is out of the scope of this work and is not

described in more detail here. Section 3.1 is a central aspect in the distribution logic and in the
database interfaces component and is therefore illustrated twice

49

First, security and privacy challenges are addressed in Section 3.1 with the

Security-by-Distribution approach. This is motivated by the usage of Cloud Com-

puting architectures3 (cf. Section 3.2). The Security-by-Distribution principle

with different database systems demands an abstraction layer that encapsulates

different vendor-specific SQL implementations into a centralized interface. There-

fore, object-relational mappers (ORMs) are in the focus of Section 3.3. Another

key element is the investigation of the related work for the caching approach in

3.4. Last not least, Section 3.5 presents several alternative benchmarks with a

strong focus on databases to evaluate the before-mentioned approaches.

3.1 Data Security and Privacy

With respect to current data security and privacy challenges that emerge with

the usage of Cloud Computing, this section outlines basic definitions and relates

them to the SeDiCo approach.

A basic definition of security is the preservation of confidentiality, integrity

and availability of data (DIN ISO 27000, 2011). This is also known as the CIA-

Principle (Confidentiality, Integrity, and Availability) based on the initial letters

of the three protection criteria:

• Confidentiality: the preservation of confidentiality is to ensure, that data

cannot be accessed by unauthorized entities.

• Integrity: according to the integrity feature, it has to be guaranteed that all

data are correct and complete.

• Availability: is to assure that only authorized entities always have access

and are always able to use data that they are authorized for.

Database security is commonly known as the preservation of the CIA-Principles

in the database community and only systems that address all three dimensions

can be called secure (Bertino & Sandhu, 2005) (Sion, 2007) (Mattsson, 2008)

(Elmasri & Navathe, 2015). Further database-focused security challenges with a

more detailed classification of threats and breaches (e.g. active, passive, direct and

3i.e. SaaS with Database as a Service (DBaaS), PaaS and with a specific focus on IaaS, as it
offers the highest flexibility regarding the software stack, aiming at creating a framework for
the secure and privacy-aware storage of data in especially public clouds. Furthermore, it is also
applicable in private, community and hybrid clouds.

50

indirect attacks, etc.) that would go beyond the scope of this thesis are presented

by (Rohilla & Mittal, 2013).

With respect to the focus of this work, it has to be stated that security relates

to all kinds of data (i.e. general data) that is processed either by cloud consumers

or by cloud providers. Thus, it is a broader definition than privacy, as privacy

only considers personal data that are closely related to an individual or entity

(Pearson, 2013). Above that, (Cloud Security Alliance, 2011) formulated a Data

Lifecycle (Figure 3.24) in order to maintain the CIA (Confidentiality, Integrity,

and Availability) criteria with a concrete definition of each step. It further has to

be noted that data can jump between the single phases without restriction and it

is also possible that data not pass through all mentioned stages.

Figure 3.2: Data Lifecycle

3.1.1 Privacy

In contrast to security, the focus of privacy is on personal data that belong to

or describe a concrete entity, i.e. a person or individual. Moreover, privacy is

the control of data with respect to its collection, usage, disclosure and retention

(Pearson, 2013). Closely aligned to this is the definition of the EU law in Directive

95/46/EC on the protection of personal data, which establishes that personal

data mean any information related to an identified or identifiable natural person.

Accordingly, an identifiable person is one who can be identified, directly or

indirectly, in particular by reference to an identification number or to one or more

factors specific to his physical, physiological, mental, economic, cultural or social

identity.

4adapted from (Cloud Security Alliance, 2011)

51

Accordingly, (Pearson, 2013) states that there is a classification into sensitive

data (e.g. credit card number, health data, financial data, etc.) and others (e.g.

name, surname, address, etc.). On first sight, such a classification seems reasonable,

however, this is considered highly context-dependent. There is no doubt that the

previously mentioned examples of sensitive data are always sensitive data and in

a telephone dictionary, the other data seems not that sensitive. However, for a

thief that waits at the airport for a family that is going on holiday, information

like name and address is critical and highly sensitive. Moreover, the OECD (The

Organisation for Economic Co-operation and Development) Guidelines on the

Protection of Privacy and Transborder Flows of Personal Data (OECD, 2013)

summarized 8 principles (stemming from various different legal regulations of

different countries worldwide) for the control and the management of personal

data. As almost all developed countries have implemented these guidelines, they

are shortly listed as follows:

1. Data Collection Limitation

2. Data Quality

3. Purpose Specification

4. Use Limitation

5. Security

6. Openness

7. Individual Participation

8. Accountability

Currently, concepts of data privacy refer to the right of an individual to be able

to find out and to decide who will be able to collect, use and share which personal

information. In the EU, these principles have been instantiated in the Data

Protection Directive 95/46/EC (European Commission, 1995), which has been

transposed into national law by all member states of the EU, and all EU members

have harmonized data protection laws. Furthermore, this directive is currently

under review and the current draft includes several novel aspects, including a

right to be forgotten, high standards for the creation of personalized user profiles, a

52

mandatory data protection impact assessment and more effective means to impose

sanctions on data protection violations.

Above that, there are anonymity and pseudonymity which refer to the unlink-

ability of private information with an individual or with an artificial identifier (e.g.

a primary key). However, it is challenging to ensure anonymity for relational data

while keeping its usefulness at the same time. Here, data schemes like column,

document, key-value or graph stores provided by NoSQL architectures might help

to implement an advanced level of anonymity and pseudonymity.

3.1.2 Implications for SeDiCo

With respect to the above-mentioned notions of security and privacy, SeDiCo

ensures an improved level of security with its FVPD approach. Data cannot be

used by unauthorized entities (confidentiality) due to the logical distribution of

the partitions. Moreover, as FVPD data have to be disjoint and complete (cf.

Section 1.1), their integrity is ensured. The availability is improved with the usage

of different cloud infrastructures for the FVPD partitions. Regarding the privacy,

it has to be noted that an improved degree of anonymity and pseudonymity

is achieved through the FVPD approach. Although data still are identifiable

through an artificial identifier (e.g. primary key), the distribution scheme of the

partitions is unknown for an intruder and therefore it is not possible to combine

the information that is contained in the FVPD relations. Such a distribution

approach has already been proposed by (Aggarwal et al., 2005), but without

going into further details on the architecture or the location of the different data

storage locations (i.e. server or cloud infrastructures). Moreover, this work used a

single database system, which does not allow to distribute data across different

databases, which is a key feature of the presented SeDiCo implementation.

Additionally, SeDiCo with its FVPD approach offers the possibility to vertically

partition data, such that the anonymity for e.g. queries on the public cloud

partition is preserved (provided that the rows in this partition are only identifiable

by their artificial primary key), while in combination with the other partition the

anonymity is lost. This would allow 3rd parties to create anonymized statistics of

the data without losing or lowering the level of security or privacy.

53

Yet, the level of privacy can be further improved with e.g. data encryption

or with dynamic data schemes (NoSQL), however this is of minor interest in this

work, as the response time should be improved here instead.

Table 3.1: Mapping the CIA-Principles to SeDiCo

Principle Technique SeDiCo Implementation
Confidentiality Encryption of data Defined as future work task

Encryption of communica-
tion channels

Encryption of communication channels
(HTTPS, SSL, TLS, etc.) can be used.

Authentication Database authentication mechanisms can be
used.

Authorization Database authorization mechanisms can be
used.

Partitioning Vertical partitioning is used to preserve confi-
dentiality and privacy through anonymization
and pseudonymization.

Integrity Authentication Database authentication mechanisms can be
used.

Integrity Constraints Defined as future work task

Digital Signatures Defined as future work task

Availability Backup and Recovery Database backup and recovery mechanisms
with replication (in the cloud) can be used.

Isolation Levels Database isolation levels can be used.

Proxy Servers Proxy Servers can be used.

Table 3.2: Mapping the Privacy Principles to SeDiCo

Principle Technique SeDiCo Implementation
Privacy Encryption Defined as future work task

Anonymization and
Pseudonymization

Vertical partitioning is used to preserve confidentiality
and privacy through the distribution of the partitions.
However, unlinking the partitions from their identify-
ing primary key (i.e. artificial identifier) is considered
as a future work task

Finally, it can be concluded that SeDiCo provides an advanced level of security

and privacy features through its Security-by-Distribution principle. This advanced

level comes from the separation of relational data into logical chunks that are

(ideally) distributed across different cloud vendors and are thus anonymized and

pseudonymized to a certain degree.

54

Another appealing feature of FVPD approach, is the anonymization and the

pseudonymization of data (Bertino & Sandhu, 2005). Anonymization as well

as pseudonymization in this context mean the elimination of all semantically

and uniquely identifiable attributes that relate rows to a specific entity (e.g. a

person). Yet, according to (Bertino & Sandhu, 2005) in nowadays web and

cloud architectures, just erasing entity-identifying attributes and storing them at

different locations connected via their primary keys, is not sufficient, as there are

data mining technologies (e.g. statistical analyses) (Sweeney, 2002) (Sion, 2007)

that enables intruders to deduce further sensitive information. This is perfectly

understandable in scenarios where parts of the data are openly accessible for

everybody5, as data mining approaches rely on such additional open data. This

should of course be taken into concern before the actual partitioning in SeDiCo

(if open accessible data are involved6).

3.2 Cloud Computing

Considering huge amounts of data and the need for storing and analyzing them,

renting computing and storage resources from external providers is an auspicious

way to minimize costs. Moreover, for Cloud Computing vendors, the pooled usage

of virtualized resources that abstract from the physical hardware layer promises a

permanent utilization and a stable cash flow. This is basically the idea behind

Cloud Computing, as the following National Institute for Standardization and

Technology (NIST) definition shows.

”Cloud computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider

interaction.” (Mell & Grance, 2011)

Moreover, NIST defined a reference architecture that outlines the key actors

in Cloud Computing as consumer, provider, broker, auditor and carrier. These

actors and their connection with each other are further illustrated in Figure 3.37.

5e.g. in anonymized surveys or statistics
6An application scenario where this is actually an issue can be found in the author’s previously

published work (Kohler, Simov, Fiech, & Specht, 2015)
7adapted from (Bohn et al., 2011)

55

Figure 3.3: Cloud Reference Architecture

Going from left to right, there is the Cloud Service Consumer (short con-

sumer) that buys and uses a service provided by the Cloud Service Provider (short

provider) or by a Cloud Broker (short broker) if the service integration is too

complex for the consumer. A Cloud Auditor (short auditor) assesses services

based on their Service-Level-Agreements (SLAs), which include the monitoring

and the documentation of the service usage. The provider offers services in Cloud

Deployment Models and realizes services on virtualized infrastructure resources,

subsumed as Virtualization Layer in Figure 3.3. Moreover, the provider is able

to offer support for the services, and is able to provide service configuration

opportunities (depending on the service models) and interoperability and porta-

bility interfaces. This is summed up as Cloud Service Management. Located at

provider-side, there are security and privacy issues (cf. Section 3.1, e.g. Identity

Management, Access Management, Encryption, etc.), as the provider is responsible

for them. On the right side, a broker can be used by consumers to integrate

or compose complex services. If a broker is used, it acts like a proxy between

consumer and provider, which eases the service management for the customer. In

the end, a Cloud Carrier (short carrier) acts as a medium of transport for service

requests and the corresponding answers between the consumer and the provider.

Closely related to this reference architecture, NIST identified 5 key character-

istics of capabilities that are offered as cloud resources, cloud services or cloud

capabilities:

56

• On-demand self-service, which enables consumers to use cloud capabilities

fully automatically without any human contact on the provider-side.

• Broad network access, which requests that a consumer has a proper network

bandwidth to and from the cloud.

• Resource pooling, which defines that all cloud capabilities are virtualized and

dynamically allocated from physical (cloud provider) resources on demand

(i.e. multi-tenancy).

• Rapid elasticity, which enables dynamic scalability of the rented cloud

capabilities for the customers.

• Measured service, which determines that the capabilities are automatically

monitored and checked (for the consumers and the providers) according to

their Service-Level-Agreements (SLAs).

3.2.1 Service Models

NISTs reference architecture contains 3 Service Models, in which a cloud service

with the 5 above-mentioned characteristics could be offered: IaaS, PaaS and SaaS.

These are now described in more detail.

Figure 3.4: Cloud Computing Service Models

Figure 3.48 shows that in the basic layer IaaS, the cloud consumer has direct

access to storage, network and the operating system of the virtualized resources,

but not to the underlying physical hardware. As the upper layers depend on this

IaaS layer, the cloud completely abstracts from the underlying physical capabilities

with the usage of virtualization. One layer above, on PaaS the consumer is able

8according to (Mell & Grance, 2011)

57

to directly deploying his applications to a cloud platform. On the SaaS layer, the

consumer is only able to access already deployed applications, mostly provided as

services. This also explains the configuration and administration effort required

for each Service Model from high (IaaS) to low (SaaS). The SaaS layer perfectly

sketches the idea of the so-called Everything as a Service (XaaS) model (Hofmann

et al., 2009). The idea behind XaaS is to provide all cloud resources as services,

according to a service-oriented architecture (SOA), to be able to measure and

compare similar services to each other, towards a standardization of cloud services.

3.2.2 Deployment Models

NIST’s definition also includes the differentiation between public, private, commu-

nity and hybrid clouds as so-called Deployment Models.

Figure 3.5: Cloud Computing Deployment Models

According to Figure 3.59, a private cloud is hosted, provided and operated

inside the internal network, whereas a public cloud does not belong to the internal

network and is managed by a third party. Consequently, a hybrid cloud is a

mixture of both, public and private cloud with an intermediate layer in between.

This intermediate layer10 connects the two physically separated clouds for data and

application integration purposes. Lastly, there is the community cloud, where only

a closed group has access to. Such a cloud might be hosted by one participating

community, but also by an external third party (illustrated as the gap between

the enterprise network and the subsidiary network in Figure 3.5) (Mell & Grance,

2011).

9according to (Mell & Grance, 2011)
10also known as abstraction layer, that encapsulates different APIs into one unique interface

58

3.2.3 Implications for SeDiCo

SeDiCo enables the usage of different clouds in an on-demand self-service manner.

The user of the framework just defines the FVPD partitioning schema, the clouds

that should be used for the storage of the data and the respective user credentials

for the clouds. All other activities, i.e. the partitioning, the data transfer, the

instantiating of the (virtualized) cloud resources, etc. are automatically handled

by the framework. Depending on the concrete amount of data that should be

partitioned and transferred to the clouds, a broad network access as defined as the

second criterion above, is required. Here, the SeDiCo has to rely on the existing

network infrastructure and bandwidth. The framework relies on resource pooling

techniques offered by the respective cloud providers. This depends on the used

cloud Service Model (see below) and whether ready-to-use database instances (e.g.

in a SaaS model) or just hardware (e.g. in an IaaS model) is utilized. This also

holds for the rapid elasticity, as it depends on how fast the cloud provider is able

to scale the rented capabilities. Above that, the monitoring of the used cloud

capabilities (i.e. the measured service criterion) is dependent on the possibilities

and tools that are offered by the provider.

The above-mentioned deployment models clearly illustrate the major drawbacks

of especially public clouds: the unsolved data security and privacy aspects while

using foreign cloud capabilities and the challenging task of integrating different

cloud interfaces, in order to be independent from respective cloud vendors (i.e.

vendor lock-in11).

These challenges (and how they are addressed in SeDiCo) can be subsumed

under the following bullet points:

• Vendor Lock-in

The SeDiCo framework clearly shows how different cloud deployment models

are usable while addressing cloud security and privacy concerns and the

dreaded vendor lock-in. In this context vendor lock-in means that the effort

to change a certain cloud provider is bigger or more expensive in terms of

money than to bear its disadvantages (e.g. higher prices, slower performance,

poor service, etc.) (Binz et al., 2012). (Arora & Gupta, 2012) also define

the vendor lock-in as a major challenge where consumers are enabled to

change cloud vendors easily with little effort.

11also known as provider lock-in

59

• Cloud Abstraction

In order to minimize the effort of developing and encapsulating different cloud

interfaces, SeDiCo relies on jclouds (Apache, 2016b) as a cloud abstraction

framework. (Kaiser, 2013) showed that jclouds is the most suitable frame-

work (among others like libCloud (Apache, 2016e) or deltaCloud (Apache,

2016d)) to handle different cloud APIs. Based on the above-mentioned cloud

abstraction work, it is possible to integrate various different cloud providers

into SeDiCo with little implementation effort. The reason for jclouds was

the support of various cloud vendor APIs (an overview can be found in

(Apache, 2016b)) and the corresponding Java integration capabilities.

• Data Security and Privacy in the Cloud

Generally, state-of-the-art security deals with encryption of data and its

corresponding key management (Steve & Ushar, 2011). Beyond providing

secure access to virtual cloud resources, they aim to encrypt concrete dis-

tributed database data, which is transferred between customers and the

cloud. Concerning data distribution approaches over various clouds including

data distribution, replication and encryption, a well-documented approach

was developed by (Neves et al., 2013). In contrast to this, SeDiCo uses

vertical data partitioning and it supports different database systems. Hence,

it is considered more flexible concerning the underlying IaaS infrastructure

and therefore easier to extend.

3.3 Object-Relational Mapping (ORM)

Object-relational mapping (ORM) is typically used to overcome the gap between

the relational and the object-oriented paradigm, and this gap is of particular

interest in SeDiCo, as it is implemented in Java, as an object-oriented programming

language. In the relational model (Codd, 1970), there are rows with attributes

stored in relations and different relations are connected with each other through

referential integrity constraints, i.e. foreign keys. This is also known as the

persistence layer in software development (Bauer et al., 2007). On the contrary,

there are objects that represent real world behavior. These objects also have

attributes but are created (instantiated) from classes that represent real world

items (or things). Classes are also connected via relationships, i.e. generalization,

inheritance and associations (aggregations or compositions). Although there are

60

similarities between rows, relations and objects and their classes (i.e. attributes

and relationships), their main difference is the fact that rows represent data (a

row is a statement of truth) (Cattell, 1994) that builds the foundation of each

application and objects represent behavior (Ottinger et al., 2015). With respect

to this, the differences between the two paradigms can be summarized as the

well-known Impedance Mismatch, extensively described by e.g. (Cattell, 1994).

Figure 3.612 illustrates this in a simplified architectural overview, where the ORM

layer is located between an application and several databases.

Figure 3.6: ORM Architecture

3.3.1 Impedance Mismatch

(Ireland et al., 2009) categorized and summarized the main challenges of the

impedance mismatch shortly but vividly and proposed a framework to address

the main issues caused by the paradigm mismatch. Their main contribution can

be summarized as follows (Table 3.313):

Table 3.3 shows that in order to overcome the impedance mismatch, ORM

frameworks use mappings (in form of e.g. XML files or programming annotations,

etc.) between classes, relations, rows, and objects. Thus, meta data that describe

relations are used to map relational to object-oriented concepts.

12adapted from (Van Zyl et al., 2006)
13adapted from (Ireland et al., 2009)

61

Table 3.3: Impedance Mismatch Challenges

No. Challenge Object-oriented
paradigm

Relational
paradigm

ORM approaches

1 How to build a class hi-
erarchy?

Class hierarchy (gener-
alization, inheritance,
multiple inheritance)

As there is no hierar-
chy concept or model
to build a hierarchy of
relations, it is not pos-
sible

Multiple approaches:
mapping by single
table, table per class,
one to many, one
to one, many to
many mappings, etc.
(Russell, 2008)

2 How to map the dy-
namic behavior of ob-
jects to static rows?

An object represents
behavior by its meth-
ods and thus the ob-
ject might change its
state during its life-
time

A row is a state-
ment of truth (Cattell,
1994), its values can
be changed but a row
does not have any
methods that belongs
to it

Mapping of object at-
tributes to rows and
use object methods to
change the correspond-
ing rows

3 How to ensure consis-
tency between objects
or between rows?

Information Hiding
(hide object attributes
behind getter and
setter methods)

Referential Integrity,
i.e. primary and
foreign keys, unique
constraints, etc.

Mapping of referential
integrity constraints to
classes, i.e. one to
many, one to one, etc.

4 How to ensure identity
between objects and
rows?

Objects are uniquely
identifiably by their
object id (OID), how-
ever the OID is inde-
pendent of the single
object it identifies

Rows are uniquely
identified by their pri-
mary key, but primary
key must be part of
the row it identifies

Mapping of the pri-
mary key to the cor-
responding object at-
tribute to shift the
uniqueness from pri-
mary key to OID or an-
other dedicated object
attribute

5 How to realize different
ways of accessing rows
and objects?

Objects are instanti-
ated based on classes
and accessed by their
methods

There is a set-based ac-
cess based on SQL as
a query and manipu-
lation language, which
returns rows in sets

Mapping of relational
sets to object-oriented
sets, (i.e. lists, result
sets, etc.)

6 How to manage differ-
ent types of modeling
data?

A class model (e.g.
UML) is designed
specifically for a single
application

A data model (e.g.
ERM) might be the
foundation for various
applications

There are multiple ap-
proaches in the current
state-of-the art: map
one data model to n
class models (1 : n) for
the sake of reusability
or other approaches
such as (Melnik et
al., 2008) create an
n : m relationship be-
tween data and class
model (implemented
as database views),
which enables and fa-
cilitates maintenance
of both models

Another appealing advantage of this mapping is that it abstracts from a

concrete database or SQL implementation. Hence, it hides all relational concepts

and the corresponding SQL and uses object-oriented concepts instead. Because of

this abstraction from concrete databases and their specific SQL implementations,

various different databases can be used without changing the application logic

(even simultaneously in SeDiCo).

62

Besides other advantages of ORMs like rapid prototyping, better maintain-

ability of application logics through convention over configuration, there are

disadvantages like a high learning curve and more important, the previously

described database abstraction (via mappings) causes a big overhead for the

communication between the application logic, the ORM and the databases. This

results in slower performance when an ORM is used (Ottinger et al., 2015).

In summary, it can be noted that using an ORM is twofold: on the one hand,

the database abstraction is the crucial feature and advantage for its usage, but

on the other hand using an ORM means performance degrades for accessing and

manipulating data. However, the SeDiCo framework heavily depends on database

abstraction, as it supports different databases and their specific SQL dialects.

Based on this feature, relations can be partitioned vertically and the partitions

can be stored in different databases. In addition to this, cloud abstraction (cf.

Section 3.2.3) follows the same principle. It encapsulates different cloud application

programming interfaces (APIs) into one unified layer.

Conversely, these database and cloud abstraction advantages suffer from

tremendous performance losses. Firstly, the ORM overhead is responsible, but

secondly, the fact that different databases can be used simultaneously for the

vertical partitions in SeDiCo is another issue that decreases the response time.

Thirdly, there is the network overhead to and from the different clouds. (Van

Zyl et al., 2009) confirmed this when they regarded the ORM as an additional

intermediate layer between databases and applications and therefore, ORMs are

very likely to become a bottleneck in a setup described in Figure 3.6.

After this generic introduction of ORMs, the following section now outlines

Hibernate as a concrete ORM implementation that is used in SeDiCo and gives a

more detailed view on the performance issues (e.g. n+1 selects problem, caching,

etc.) caused by the abstraction mechanisms. The section starts with a short

introduction of Hibernate and discusses some implications, regarding caching and

the Hibernate Query Language (HQL), etc. that have emerged during its usage as

well as possible alternatives.

3.3.2 Hibernate as an ORM Implementation

During the last few years various ORM implementations (Linq (Microsoft, 2016),

Hibernate (RedHat, 2016), SQL Alchemy (SQLAlchemy, 2016), etc.) for the

63

Listing 3.1: HQL n+1 Selects Problem

1 List<Customers> customers = s e s s i o n . c r e a t e C r i t e r i a (
2 Customer . c l a s s) . l i s t () ;
3 f o r (Customer c : customers) {
4 c . getOrders () ;
5 }
6 }

Listing 3.2: Customer Select Query

1 SELECT ∗ FROM CUSTOMER;

plethora of programming languages have been developed. Due to its widespread

usage in industrial and scientific contexts and due to its advanced development,

Hibernate was chosen as an ORM implementation in SeDiCo. Hibernate was

founded in 2002 by Gavin King (Bauer et al., 2007) and is currently the most

used framework (Ottinger et al., 2015).

Above that, Hibernate is used for the evaluation of the implemented query

mechanisms in Section 6. Therefore, a more detailed description of the framework

is given here.

N+1 Selects Problem

This challenging issue comes from the impedance mismatch and refers to the

challenge of access methods (cf. Table 3.3). The following example illustrates the

problem.

Listing 3.1 shows an HQL query that searches for all CUSTOMERs and their

ORDERS in two relations. Now, the Hibernate framework transfers this HQL

query into the SQL query in Listing 3.2.

As soon as all CUSTOMER rows are collected in the CUSTOMERS list (1),

there is a call for every CUSTOMER (2) to retrieve its ORDERS (3).

Accordingly, in (line 3, Listing 3.1) for each CUSTOMER a

Listing 3.3: Order Select Query with Criteria

1 SELECT ∗ FROM ORDERS WHERE customerID = ?

64

Listing 3.4: Customers and Orders Join Query

1 SELECT ∗ FROM CUSTOMERS JOIN ORDERS ON customers . customerID =
orde r s . customerID ;

query is issued against the database. This results in n select statements for

all orders and in 1 select statement to collect all CUSTOMERS, which are n+ 1

selects. In contrast to this, in the relational model, this scenario would have been

realized with a single join query, e.g.

and this results in faster response times.

3.3.3 Implications for SeDiCo

Comparing Listing 3.1 and Listing 3.4 it can be concluded that the SQL in Listing

3.4 is more effective than the Java representation depicted in Listing 3.4. However,

the SQL representation is bound to a specific database implementation14, whereas

the Hibernate’s Java representation is independent from a specific database

implementation. Thus, different database implementations become exchangeable,

or as it is the case in SeDiCo are simultaneously usable for different partitions.

This, besides the widespread usage of Hibernate are the main reasons why SeDiCo

uses Hibernate as the ORM framework.

3.4 Caching

This section introduces caching as an approach to improve the response time

of FVPD data with respect to hypothesis 2 and the caching approach. After a

short overview about cache memory hierarchies and their performance, a general

middle-tier caching architecture is outlined in Section 3.4.1. Then Section 3.4.2

discusses two basic requirements for a caching architecture and the following

section discusses a concrete cache workflow, followed by cache implementations.

After that, different caching schemes are outlined in Section 3.4.4 which also focuses

on the challenging task which data should be cached and which not. Finally,

Section 3.4.5 outlines state-of-the-art caching approaches with a strong focus

14although SQL is a standard, there are different database-dependent implementations (e.g.
MySQL, Oracle, Microsoft, etc.)

65

on data selection and on cache coherence protocols (i.e. cache synchronization,

replication and invalidation).

The presented caching approach in this work is similar to the principle of

CPU caches, where a little amount of memory located besides the CPU increases

the CPU performance with preventing it from constantly accessing the slower

(secondary or tertiary) memory to execute its instructions. (Garcia-Molina et al.,

2008) provide a good overview about the storage components of a system, e.g. a

database server. Figure 3.715 enhances this overview with corresponding memory

access times.

Figure 3.7: Cache Hierarchy

If a CPU finds the requested information in the cache, it reads it directly

from there without accessing slower memory types. This is known as a cache

hit, whereas a cache miss occurs, if the CPU cannot find the information in the

cache. Cache memory is fast but expensive (in terms of money) compared to

other memory types. Yet, it only has a small storage capacity and if the cache is

full, replacement strategies such as first-in/first-out, least recently used or least

frequently used (Davision, 2001) have to be implemented. (Franklin et al., 1997)

define a cache as a ”dynamic form of data replication” (Franklin et al., 1997).

In addition to this, replication is the duplication of data to e.g. different

locations in order to prevent data access failures or server outages (Garcia-Molina

et al., 2008). Multiple copies of the data result in several challenges concerning the

consistency of data (ACID criteria), their distribution and their synchronization.

15adapted from (Garcia-Molina et al., 2008)

66

The focus of this work is on so-called middle-tier database or application-level

caches, as they have proven to solve database bottlenecks in large distributed

database architectures.

3.4.1 Middle-tier Database Caching

Middle-tier database caches are placed between the application and database layer

and that is why they are able to improve the performance of both layers (Ports

et al., 2010). This advantage was also recognized by (Bornhövd et al., 2004), as

caching on database layer allows all upper layers to benefit from its advantages

(e.g. performance, etc.). However, depending on the synchronization strategy they

do not guarantee all ACID criteria, which possibly leads to inconsistencies in the

database (Ports et al., 2010).

The basic idea is to place the cache in the main memory either on a dedicated

server or as a client-based cache between the databases and the clients. There

are several ways of implementing a cache, i.e. as a forward proxy between the

clients and the application logic, as reverse proxy between the databases and

the application logic or as interception proxy directly into the application layer

(Hofmann & Beaumont, 2005). This is further illustrated in Figure 3.8.

Figure 3.8: Cache Positions

Analogous to the above-mentioned CPU cache mechanisms, if a query can be

served from the cache, there is a fast cache hit in contrast to a slow cache miss

that demands loading the requested data directly from the FVPD partitions.

67

3.4.2 Requirements for a Cache Implementation

The introduction of a cache is based on the following two requirements, according

to (Luo et al., 2002):

1. Both, the database schema and the application layer remain unchanged

2. The cache must provide a sound and realistic data manipulation performance,

compared to a database schema that is not partitioned and operated without

a cache

Considering the first aspect, the integration of the proposed middle-tier

database caches (called proxies, cf. Figure 3.8) requires changes in the application

layer (i.e. the SeDiCo client). However, with respect to the aimed performance

improvement, changes are comprehensible, hence the other requirement can be

fulfilled. More requirements as mentioned in (Luo et al., 2002) like high availability,

failover, etc. are not in the scope of this work and therefore not discussed any

further.

3.4.3 Cache Workflow

Figure 3.9 gives a rough sketch of a caching workflow including 4 basic steps that

are involved with the usage of a cache.

Figure 3.9: Cache Workflow

Figure 3.9 shows that if data are loaded into the cache (step 1), clients are able

to directly access them (step 2). This is then a cache hit, whereas data that are

not in the cache produce a cache miss. With respect to data manipulations, data

between the cache and the databases have to be synchronized either time-interval

based, volume-based or user-triggered, etc (step 3). If the cache is full (in terms

of its storage capacity), previously cached data have to be removed (step 4).

68

3.4.4 Caching Schemes

The analysis of a caching mechanism includes 4 different caching techniques,

known as caching schemes16 (Luo et al., 2002). This includes the caching of:

1. an entire table, called table caching

2. only a part of the table data (e.g. in a view), called subset table caching

3. an entire query result, called query caching

4. an intermediary query, called intermediate query caching

Furthermore, (Luo et al., 2002) discuss table caching with respect to cache

hits, cache misses, maintenance, replacement strategies, etc. However, they only

consider table caching in their work. In order to determine an adequate caching

scheme in the context of this thesis, the above-mentioned schemes have to be

investigated in closer detail.

A deeper analysis of these caching schemes shows that query caching and

intermediate query caching can be subsumed under the same approach. Here,

either an entire result set (3) or an intermediate result set (4) is cached. However,

caching query results is heavily dependent on the respective database workload.

On the contrary, there are approaches that load entire tables (1) or subsets of

them (2) into the cache. Especially with small cache memories, subset table caching

becomes a feasible approach. On the one hand, the probability of cache misses

grows the smaller the cache memory is, but on the other hand, loading entire

tables into the cache (cache warming) or updating the cache memory becomes

faster.

To sum up the caching schemes, it can be concluded that

• the focus of this work is to evaluate caching approaches for FVPD data

and to develop a basic performance metric which serves as a guideline for

a great variety of different application scenarios. This performance metric

should not contain any side-effects such as network overhead or overhead

concerning the cache coherence protocols. Also, the aim is to achieve an

easily comprehensible performance metric whose results should be easily

reproducible.

16here, a table relates to a relation according to Codd’s relational model, cf. Table 1.1

69

• subset table caching, query caching, and intermediate query caching would

require adequate data selection strategies that define which data should

be cached and which not. As such strategies are heavily dependent on the

respective use case and application domain, such approaches would restrict

the generalization of the evaluation results.

To sum up this caching section so far, Table 3.4 concludes all mentioned

approaches and relates them to a possible application in the context of SeDiCo.

Table 3.4: Applicable Caching Approaches for SeDiCo

Caching Approach Suitability for SeDiCo
Memory Type Main Memory, because of the current development between

storage capacity and price

Middle-tier
database cache

Implemented as a forwared proxy. As the cache resides in the
main memory, differenced between forward, intermediate, and
reverse proxies are considered minimal and therefore out of the
work’s scope.

Requirements for a
cache implementation

First requirement (database scheme) remains unchanged can be
fulfilled, due to the forward proxy implementation, changes in
the application logic are minimal and the data manipulation
performance is out of this work’s scope.

Cache Workflow SeDiCo follows the workflow depicted in Section 3.4.3: 1. cache
warming, 2. clients operate on cache (cache hit/miss), 3. syn-
chronization, and 4. replacement are out of this work’s scope

Caching Scheme Table caching promises best performance gains according to
analysis in Section 3.4.4

3.4.5 Implications for SeDiCo

Further current state-of-the-art challenges, important not only in the context of

SeDiCo but in all scenarios, where a cache is involved (e.g. client and server-based

caching of web sites or caching frequently used applications in the RAM, etc.) are

now briefly outlined. These challenges are of particular importance for the future

development of the SeDiCo framework and include data selection approaches that

define which data should be cached and which not, cache replacement strategies

that control which data should be evicted in case the cache memory is full and

cache synchronization mechanisms that determine when the cache memory should

be updated.

70

Data Selection for Caching

Closely related to the 4 above-mentioned caching schemes the challenging question

which data to cache and which not is a current state-of-the-art research problem.

This challenge originates from small and expensive main memory storages and

is still relevant to firstly minimizing the required main memory and secondly, to

improving the performance of In-Memory databases.

Caching suitable data, that is potentially used in the near future, depends on

the respective database workload (Podlipnig & Böszörmenyi, 2003), but no one

(to the best of the authors knowledge) has evaluated the caching architectures

mentioned in this work with respect to the FVPD approach. This challenge is

also addressed with the distinction between hot and cold data (Plattner, 2013).

According to this, hot data are current data that are actually used and manipulated.

Therefore, hot data have OLTP character. On the other hand, cold data are data

that have already been processed and that are not very likely to be manipulated

or changed anymore.

A similar but more sophisticated challenge with respect to data security and

privacy, is the distinction between critical data that under no circumstances are

allowed to leave the enterprise network (i.e. private data for a private cloud) and

less-critical data that can be stored in a public cloud. As this challenge does not

directly affect the caching focus of this work, it is considered as a future work

task.

Cache Replacement

(Podlipnig & Böszörmenyi, 2003) present an exhaustive overview about commonly

used cache replacement strategies that are necessary if a cache is full and objects

have to be replaced. In recent years, only little attention was paid to cache replace-

ment strategies. The major reasons (among others) were decreasing storage costs

and increasing storage volumes (Podlipnig & Böszörmenyi, 2003). Nevertheless,

with the upcoming Big Data challenges, these problems become crucial again. For

the sake of brevity, not all strategies, but the most general ones are listed and

explained in Table 3.5.

The investigations in (Podlipnig & Böszörmenyi, 2003) demonstrate that there

is no optimal strategy, that outperforms all others. Moreover, the strategies

71

Table 3.5: Classification of Cache Replacement Strategies

Caching
Classification

Cache Replace-
ment Strategy

Description

Recency LRU The least recently used row is removed.

CLOCK Rows are stored as a ring list with a LRU bit
(R bit), if the R bit is 1, the row was recently
used. Rows with an R bit of 0 are removed from
the cache. A more detailed description can be
found in (Fan et al., 2013)

Frequency LFU The least frequently used row is removed.

Perfect LFU Requests to a row are counted, even if the row
is removed, the counter remains.

In-Cache LFU Requests to a row are counted, if the row is
removed, the counter is also removed.

Size SIZE The row that needs the largest storage space in
the cache is removed.

Costs CERA (Ayani
et al., 2002)

Costs in terms of effort (e.g. response time) for
accessing a row in the cache are compared to
costs for accessing a row in the original database.

Modification Time MRU Most recently used (modified - in contrast to
frequency-based algorithms) rows are removed
from the cache.

Expiration Time TTL A timer (time to live) indicates when a row
should be removed from the cache.

Random Values RAND Rows are removed randomly from the cache.

heavily depend on the underlying database volume and the respective workload

of the clients.

Cache Consistency Models

Basically, there are ACID and BASE also known as strong respectively weak con-

sistency models. It has to be noted that the focus of the two models differ: firstly,

there is ACID which refers to relational databases where data consistency is a key

requirement. Secondly, there is BASE which was introduced with the upcoming

NoSQL database architectures. This model refers to a weaker consistency, as it is

based on Brewer’s CAP-Theorem (consistency, availability, partition tolerance)

which proved that in a distributed system only 2 out of the 3 CAP properties can

72

be fulfilled at the same time (Gilbert & Lynch, 2002). Table 3.6 distinguishes

these 2 consistency models and illustrates their basic differences.

Table 3.6: Cache Consistency Models: ACID and BASE

ACID BASE

Hard consistency Weak consistency

Atomicity: a transaction (considered as a
basic set of database operations) is either per-
formed entirely (commit) or not at all (roll-
back)

Basically available: there will be a response
to any request but data might be inconsistent
(at cost of consistency) or the request might
be delayed e.g. with an error message (at cost
of availability)

C onsistency: the database system is in a con-
sistent state before and after each transaction

Soft state: the state of the system might
change over time even without any user input
due to the eventual consistency property

I solation: transactions are independent from
each other and cannot access data that is
simultaneously processed by another one

Eventual consistency: guarantees that the
system becomes consistent over time, i.e. the
data is sooner or later propagated to all par-
ticipating database nodes

Durability: data is long-lastingly stored in a
database

This consideration shows that the 2 models mutually exclude each other and

a decision for a consistency model has to be made in advance. Especially in data

caching, the decision for a concrete consistency model particularly depends on the

respective use case and on database workload. Hence, no clear recommendation for

a consistency model can be given here. However, as the BASE model is focused on

distributed systems, it can be stated that architectures based on the consistency

model are extendable17 more easily and this extensibility feature is a key factor

for the performance gains when data are accessed and also for the management of

bigger data volumes.

All in all, it can be noted that with respect to a cache implementation, both

consistency models are considered feasible and therefore, concrete implementa-

tions, based on SeDiCo’s Security-by-Distribution approach are necessary to get

comparable performance metrics.

17e.g. with horizontal scaling in which more computing nodes are added to the distributed
system and data are replicated to the nodes automatically

73

Cache Synchronization Strategies

In literature, caching and replication are often used synonymously (e.g. (Olston

& Widom, 2002) (Sivasubramanian et al., 2007) (Garrod et al., 2008)). Basically,

data in a cache are considered as ”dynamic replicas of the original data” (Franklin

et al., 1997). In the same manner, caching and replication are used synonymously

in the remainder of this work. The main goal of caching is to improve the

response time and with respect to replication, to increase a systems availability

and scalability. Essentially, there are two fundamental approaches, how to preserve

consistency across these multiple copies of the data: eager update propagation

that ensures all ACID criteria and lazy update propagation that refers to the

BASE model with its weaker eventual consistency (Pritchett, 2008) (Özsu &

Valduriez, 2011) (Pritchett, 2008) (Özsu & Valduriez, 2011) (Garrod et al., 2008).

Especially in the context of mobile systems, data or cache synchronization

becomes a crucial aspect, as a constant network connection cannot be guaranteed;

here, there are two approaches to keep several distributed data sets up-to-date:

conservative (based on eager) and optimistic (based on lazy) synchronization con-

cepts. However, due to the uncertainty of mobile network connections, conservative

strategies are not suitable for mobile clients (Lutteroth & Weber, 2009).

Another interesting concept, based on master-slave replication comes from

version control systems such as GitHub (GitHub, 2016). Here every client has its

own copy of the data in a local repository. Only data from this local repository

are manipulated and later on committed to the remote (master) repository that

maintains a history of all changes. However, if two clients manipulate the same

data, their changes have to be merged together (i.e. synchronized) manually.

Accordingly, (Lutteroth & Weber, 2009) proposed a concept (PDStore), where

data is synchronized from time to time (i.e. incrementally) based on additional

unique identifiers (GUIDs) for rows.

Cache Coherence Protocols

In order to propagate data manipulations to the original database or to other

caches, generally two propagation concepts can be used. On the one hand, there

is a centralized (Figure 3.10, master-slave replication) and on the other hand a

decentralized (Figure 3.11, decentralized replication) approach.

74

Figure 3.10: Mater Slave Replication

In a centralized or master-slave environment, there is a master that receives

all manipulations. It then propagates the manipulation to the other caches (i.e.

slaves). The slaves cannot receive manipulations, clients can only read data from

them. This results in the following advantages and disadvantages18:

Table 3.7: Master-Slave Replication Discussion

Pros Cons
The propagation logic of data manipulations
is easy, as only the master receives manipula-
tions and forwards them to the slaves.

Master is likely to become the bottleneck be-
cause of the manipulation and synchroniza-
tion effort.

The slaves do not need any synchronization
logic as the master propagates all changes.

The slaves can contain outdated data, if the
master has not propagated changes yet.

It is guaranteed, that at least the master
contains current data.

Master is a single point of failure.

In contrast to the above-mentioned master-slave replication, in a decentralized

replication environment, all caches are allowed to receive and propagate data

manipulations. As illustrated in Figure 3.11, data manipulations are propagated

to the other caches or to the original database from that cache, where the data

were manipulated.

A more detailed analysis of corresponding replication protocols (e.g. Single

Master with Limited Replication Transparency or Primary Copy with Full Repli-

cation Transparency, etc.) that implement the above-mentioned concepts, can be

18adapted from (Özsu & Valduriez, 2011)

75

Figure 3.11: Decentralized Replication

Table 3.8: Decentralized Replication Discussion

Pros Cons
There is no single master that might become
a systems bottleneck.

Different caches are likely to be manipulated
by different clients at the same time.

Fast when realized with lazy synchronization. Eager synchronization can avoid data incon-
sistencies stemming from concurrent updates,
but at cost of performance.

There is no single point of failure. Data might become inconsistent with lazy
synchronization.

found in (Özsu & Valduriez, 2011). These protocols are omitted here in order to

not losing the focus of the thesis.

This closes the presentation of the state-of-the-art with respect to the ap-

proaches to improve the response time of FVPD data. The different approaches,

techniques and strategies illustrate the broad variety of opportunities that are

offered to address the 2nd hypothesis of this work and choosing adequate strategies

for implementing the caching approach becomes the major part of the conceptual-

ization, later in this work.

The next section discusses possible benchmarks that are of particular interest

in such a distributed scenario before the entire state-of-the-art chapter finishes

with a detailed analysis about the current development of the SeDiCo framework.

76

3.5 Database Performance Benchmarking

This section analyses different benchmarking frameworks that might be suitable for

the performance evaluation of this work. In order to get comparable and reusable

results, various current state-of-the-art benchmarks, such as YCSB, SPEC, SPC

and TPC are now investigated and the most suitable benchmarking framework is

chosen.

First, this section defines the notion of a benchmark in order to reach a

common understanding. (Yao & Hevner, 1984) give an appealing explanation of

how benchmarking is commonly understood.

”Benchmarking requires that the systems be implemented so that experiments can

be run under similar system environments. [...] In database benchmarking, a

system configuration, a database, and a workload to be tested are identified and

defined. Then tests are performed and results are measured and analyzed.”

The focus of the following benchmark selection is not on existing bencharking

tools, but more on conceptual frameworks that meet the above-mentioned 4

criteria from Gray. Above that, High Performance Computing (HPC) benchmarks

as presented in (Akioka & Muraoka, 2010) are not in the scope of this work,

as they focus on arithmetic functions such as e.g. LINPACK (Dongarra, 1990).

Furthermore, only benchmarks that focus on relational data models are considered

as the focus of this work is on current existing (and therefore mostly relational)

enterprise databases. Thus, object-oriented database benchmarks, such as e.g.

OO7 (Carey et al., 1993) are also out of the scope of this thesis. The same

holds for benchmarks that address a specific application domain such as e.g. BG

(Ghandeharizadeh & Mutha, 2014) for social networks or RUBIS for auction

systems based on middleware architectures (Cecchet et al., 2003). Accordingly,

hardware storage focused benchmarks such as SPC (SPC, 2013) or SPEC (SPEC,

2016) are not in the scope of the following analysis.

3.5.1 Implications for SeDiCo

Based on the just outlined benchmark overview, there remain two benchmarks

to be analyzed in more detail: the Transaction Processing Council (TPC) (TPC,

2003) and the Yahoo! Cloud Service Benchmark (YCSB) (Cooper et al., 2010).

77

Table 3.9 contrasts the two benchmark frameworks (TPC and YCSB) with respect

to their applicability in SeDiCo (- - very poor, - poor, o neutral, + good, + +

very good), and it justifies the usage of the TPC benchmark for the evaluation of

the query mechanisms in this thesis.

Table 3.9: Benchmark Discussion

Benchmark Criterion YCSB TPC
Design + + + +
Execution o + +
Analysis o +
Relevance + + + +
Portability + + +
Scalability + + +
Simplicity o + +
Relational Database Support + + + +
Partitioning Support o +
Cloud Support + + +

Sum + + + + + + + + + +
+ + + + + + + + + +

+ + + + + + +

This concludes the presentation of the current state-of-the-art and its implica-

tions for the entire SeDiCo framework19.

19and therefore implicitly for the query mechanisms developed in this thesis

78

Chapter 4

Conceptualization

Generally, there are 3 approaches investigated in this thesis in order to minimize

the response time of FVPD data: a query rewriting, a caching, and an SSD-

based one. Previously published works of the author can be found in (Kohler,

Simov, Fiech, & Specht, 2015)1 for the query rewriting in (Kohler & Specht,

2015c) and in (Kohler & Specht, 2015a) concerning the caching approach. The

SSD-based one has not been published or evaluated so far. These approaches are

conceptualized here to optimize the original SeDiCo framework implementation

outlined in Section 2.

4.1 Query Rewriting Approach

The fundamental idea behind this approach is to not only partition and distribute

relations and their rows, but also to partition queries accordingly. This section

formalizes the entire query rewriting approach based on a projection issued against

two partitions Sv(B) and Tv(C). This projection used here is based on two

partitions for the sake of better readability.

RS(A)← Π(a1,...,an)R(A) (4.1)

1This work also demonstrates how additional query filter, join, etc. criteria (previously
denoted as ω) are implemented in the SeDiCo framework. However, they are ommited here as
they are out of the scope and for the sake of better readability.

79

Note that this initial projection is issued against a non-partitioned relation

R(A) and the result of this query is written in the result set RS(A). In the next

step, a query parser analyses the projection to determine which attribute (a1, ..., ai)

belongs to which partition. Here, it is important to state that the primary key

(a1) is duplicated into both partitions Sv(B) and Tv(C) and the attributes of the

projection (a1, ..., ai) are matched against the attributes of the partitions Sv(B)

and Tv(C).

Thus, according to the definitions from Chapter 1, relation R(A) is a non-

FVPD relation and the partitions Sv(B) and Tv(C) are the corresponding FVPD

relations.

Since the partitions are restricted to be disjoint and complete (cf. Section 1.1),

it is ensured that all attributes are matched only once, except for the primary key

(a1) (disjointness) and none of the attributes is omitted (completeness). After this

query parsing, the query is partitioned and issued against the respective partitions,

and the result sets with the matching rows are collected:

RSv1(B)← Πv1(a1,...,aj)Sv(B) (4.2)

RSv2(C)← Πv2(a1,aj+1,...,an)Tv(C) (4.3)

Then, the result sets have to be joined into the final result set RSfinal:

RSfinal = RSv1(B) ./a1 RSv2(C) (4.4)

and due to the completeness and disjointness criteria it is assured that

RSfinal = RS(A).

A nice advantage of this query rewriting is that both projections (4.2 and 4.3)

can be run in parallel so that the corresponding result sets RSv1(B) and RSv2(C)

can be produced simultaneously.

80

Listing 4.1: FVPD Nested-Loops Join Algorithm

1 f o r each row r(a1) in R {
2 f o r each row s(a1) in S {
3 i f (r(a1) = s(a1)) {
4 put r ./a1

s in RSquery

5 }
6 }
7 }

4.1.1 FVPD Join

Basically there are 3 types of join algorithms (Graefe, 2011) (Garcia-Molina et

al., 2008) (Mishra & Eich, 1992) (Elmasri & Navathe, 2015): nested-loops join,

hash join and sorted-merge join. It further has to be noted that previous and

current research works extensively examined the challenging performance aspect

of vertically partitioned relations. However, all these previous and current works

neglect the aspect of FVPD data sets in the context of security and privacy.

In order to improve the performance of the above mentioned approach, this

section outlines the three above-mentioned basic join algorithms briefly, relate

them to the FVPD approach and present required adaptions of them. These

traditional join implementations are used in the thesis to maintain the basic

performance evaluation character of the entire SeDiCo approach and its previous

works, e.g. (Kohler & Specht, 2014a) (Kohler & Specht, 2015a) (Kohler & Specht,

2015c) (Kohler & Specht, 2015b).

Nested-Loops Join The nested-loops join algorithm, as its name already

suggests, uses two nested loops to collect query-matching rows into a result set:

For every row in R and S the join condition is checked and if it matches, the

joined row is put into the result set. As the two loops (line 1 and 2, Listing 4.1)

indicate, the complexity is O(|R| ∗ |S|) or more general O(n2) with respect to the

response time2.

Hash Join The hash join is divided into a probe and a hashing phase.

Joining two relations R and S is performed according to the following steps:

2note that n represents the cardinality of the relations R and S and as they have the same
cardinality, it follows that n = |R| = |S|, (cf. completeness, Chapter 1)

81

Listing 4.2: FVPD Hash Join Algorithm

1 //Phase 1 :
2 d e f i n e hashtab le h
3 /∗ f i n d b igge r r e s u l t set , to hash the sma l l e r one ∗/
4 i f (|R | > | S |) {
5 temp = R
6 R = S
7 S = temp
8 }
9 f o r each row r(a1) in R {

10 put r in h
11 }
12
13 //Phase 2 :
14 f o r each row s(a1) in S {
15 i f (s(a1) = h(a1)) {
16 put r ./a1

s in RSquery

17 }
18 }

In the first phase (line 4-8, Listing 4.2), the smaller relation (smaller amount of

rows) is determined and hashed to save memory3. In the second phase, the bigger

relation is scanned, hashed against the previously hashed values and matching

values are collected in the result set. The complexity (with respect to the response

time) of this hash join is O(hash(R) + |S|), which is building the hash table (i.e.

scanning relation R once) and check for matching rows in S. Generally, this can

be noted as O(n + m), or in the presented special case in which R and S have

the same cardinality n, as O(n+ n).

Sorted-Merge Join The sorted-merge join is also divided into 2 phases:

a sorting and a merging phase. This algorithm relies on already sorted rows to

accelerate the merging phase.

In the general sorted-merge join the sorting costs are O((|R| ∗ log(|R|) + |S| ∗
log(|S|)) and the merge costs are O(|R|+ |S|), which result in an overall cost of

O(n ∗ log(n) +m ∗ log(m)) for the general case. However, the sorting (line 2 and

3, Listing 4.3) in the FVPD approach can be omitted, as the join is performed on

the primary key attribute (a1) and this is indexed and therefore already sorted4.

3note that this step can be omitted in this work, as for the evaluation the relations R and S
have the same cardinality, (cf. completeness, Section 1.1)

4note that the steps in line 7-12, Figure 4.3 can also be omitted, as they are only required
if the relations have a different cardinality, which is not the case in the FVPD approach (cf.
completeness, Section 1.1)

82

Listing 4.3: FVPD Sorted-Merge Join Algorithm

1 //Phase 1
2 s o r t R on r(a1)
3 s o r t S on s(a1)
4
5 //Phase 2 :
6 whi l e (r(a1) in R and s(a1) in S) {
7 whi l e (r(a1) > s(a1)) {
8 next s(a1)
9 }

10 whi l e (r(a1) < s(a1)) {
11 next r(a1)
12 }
13 i f (r(a1) = s(a1)) {
14 put r ./a1

s in RSquery

15 next r(a1)
16 next s(a1)
17 }
18 }

Thus, the complexity for the FVPD sorted-merge join is (similar to the hash join)

O(|R|+ |S|) and therefore, O(n+ n), as the relations have the same cardinality n.

The complexity of the used join algorithms in query rewriting are summarized

in Table 2.1.

Table 4.1: Query Mechanism Complexity

Query Mechanism Join Algorithm Complexity
Query Rewriting Nested-Loops Join O(n2)

Query Rewriting Hash Join O(n + m)

Query Rewriting Sorted-Merge Join O(n + m)

The next query mechanism that is in the focus of this thesis contains three

caching approaches, formalized in the following section.

4.2 Caching Approach

The three caching mechanisms presented in this work can be distinguished as

follows:

• Server-Based Caching

83

These caches are server-based caches (i.e. a cache for every partition,

therefore also called decentralized server-based caching) that are operated

on different servers between the vertical database partitions and the clients.

Every cache only stores tuples from its respective cloud partition and clients

access these caches rather than the actual database partitions. Performance

improvements are expected from faster access of the cache memory but the

actual join of the tuples have to be performed in the clients.

• Local Caching

This is a cache for each client, as there is a 1:1 connection between client and

cache (therefore also called decentralized client-based caching). Here, tuples

are already joined (reconstructed) in the cache, which promises performance

improvements.

• Remote Caching

Firstly, it has to be noted that this mechanism violates SeDiCo’s Security-

by-Distribution approach, because a single central server that stores already

joined tuples is used (therefore also called centralized server-based caching).

However, in order to develop a basic performance metric, this approach is

considered useful in the context of this work for the sake of comparability.

The following section outlines the concrete conceptualization of these ap-

proaches and how cache coherence is implemented. Therefore, all approaches are

formalized and outlined in greater detail, starting with the server-based caching

approach.

4.2.1 Server-Based Caching

Here, every cache stores data from its respective partition. The fact that these

caches are on dedicated physical or virtual machines is very appealing, as it might

become possible to cache the entire partition and to enhance the overall response

time. This could be an approach to avoid the usage of cache synchronization,

replacement and invalidation protocols, as all database operations would be

directly performed in the caches and the databases would only be used for logging,

backup or recovery issues.

84

Figure 4.1: Server-Based Caching

Therefore, in this approach cache coherence protocols (cf. Section 3.4.5) are of

minor importance, as the caches are used by all clients and data manipulations

are directly visible to all of them.

The starting point is a non-partitioned relation R containing attributes A:

R(A). This relation is also vertically partitioned into partitions Sv(B) and Tv(C),

which are disjoint and complete, accordingly.

This is further illustrated in Figure 4.2.

Figure 4.2: Server-Based Caching

In contrast to local caching, there are now several decentralized server-based

caches (Cr
i)5, in fact, there are implemented as many caches as there are partitions6.

The projection query to fill the caches (cache warming) is analogous to local caching,

except that the partitions Sv(B) and Tv(C) are stored in different server-based

caches, i.e. Sv(B) in Cr
1 and Tv(C) in Cr

2 .

5with C = cache, i = number of the cache, and r = remote
6so in the presented approach i = 2

85

4.2.2 Local Caching

In this approach, every client has its own cache, which therefore demands cache

synchronization protocols (i.e. cache synchronization, invalidation and replacement

strategies) that ensure data consistency between the FVPD partitions and the

caches. This is even more important, as the concrete cache implementation is

build on an In-Memory database that uses the Random Access Memory (RAM)

of the client as cache memory7.

Figure 4.3: Local Caching

Similar to the server-based caching approach, the starting point of this approach

is a relation R with attributes A: R(A). The relation R(A) is then vertically

partitioned into 2 partitions Sv(B) and Tv(C). After this partitioning, local client-

based caches (C l)8 come into play. For this, a projection Π on both partitions

without any filter criteria ω is performed in order to collect all rows from the

respective partitions:

RSv1(B)← Π(Sv(B)) (4.5)

7especially on e.g. mobile devices but also on current laptops or desktop computers, where
the RAM is limited

8with C = cache and l = local

86

and

RSv2(C)← Π(Tv(C)) (4.6)

After that, the two result sets RSv(B) and RSv(C) are joined to the final result

set RSfinal and due to the fact that no filter criteria ω were used, all attributes

were selected and all rows of RSv(B) and RSv(C).

Then, RSfinal is stored in the local cache (C l):

C l ← RSfinal (4.7)

These steps are also illustrated in Figure 4.4.

Figure 4.4: Local Caching

As soon as the local cache (C l) contains all rows from (4.7), recall that

completeness and disjointness (cf. Section 1.1) are also prerequisites for this

approach, all queries are issued exclusively against the cache (C l). On the

contrary, data manipulations are only permitted directly on the FVPD partitions

in the context of this work. As soon as a row is modified, the modification is

propagated to all involved caches, i.e. with a so-called write-through strategy9. For

this, a time-based synchronization interval (configurable in milliseconds) between

the FVPD partitions and the caches is used.

In the end, this approach demonstrates that the overall response time is heavily

dependent on the concrete cache implementation (e.g. In-Memory, file-based, etc.),

on the storage capacity of the cache and on the used cache coherence protocols, i.e.

synchronization, invalidation and replacement (cf. Section 3.4). This thesis uses a

master slave replication (Figure 3.10), as the advantages of this approach outweigh

9In this strategy, all manipulations in the cache are directly propagated to the respective
FVPD partitions. This is completely transparent for the client, i.e. it does not know whether it
actually operates on a cache or on FVPD data.

87

the cons10. Namely, the clients do not need any kind of synchronization logic

and it is ensured through the session concept of Hibernate and the write-through

strategy, that the cloud partitions have the most current data and these are

propagated to the respective client-side caches. Another caching approach that is

addressed in this thesis is remote caching, which is conceptualized in the following

section.

4.2.3 Remote Caching

Figure 4.5 illustrates the remote caching approach.

Figure 4.5: Remote Caching

This approach is similar to the local caching approach, except that here a

single centralized server-based cache (Cr)11 is used. All clients operate on this

cache in the same manner as they operate on a decentralized client-based cache.

Therefore, this approach is not conceptualized here again. Advantageous of this

approach is the possibility to use a larger cache memory, more processors, etc.

due to the larger hardware dimensions of a server. Contrarily, the violation of the

Security-by-Distribution principle is a great disadvantage if this server-based cache

is not in a secure network, only accessible via e.g. virtual private network (VPN).

This closes the conceptualization of the caching approach and moves the

SSD-based approach into consideration in the following section.

10even the cons of the decentralized replication (Figure 3.11
11with C = cache and r = remote

88

4.3 SSD-Based Approach

The SSD-based approach is similar to the original SeDiCo approach, depicted

in Section 2.2 and therefore, its conceptualization is outlined very briefly in this

section. Figure 4.6 illustrates the entire architecture to provide a better overview

about the initial FVPD approach.

Figure 4.6: SSD-Based Architecture

Basically, the FVPD approach (cf. Section 2.2) is applied, which can be

described as follows: a relation R(A) is vertically partitioned into partitions Sv(B)

and Tv(C) and these partitions are then distributed across different clouds.

1. A query Π(a1,...,ai)R(A) issued against the original database.

2. The query is rewritten to fit into the FVPD scheme and its reconstruction

queries Πv1(a1,...,aj)Sv(B) and Πv2(a1,aj+1,...,ai)Tv(C) are issued against the

respective partitions Sv(B) and Tv(C).

3. After that, the result sets of the partitions (RSv1(B) and RSv2(C)) are

collected.

4. Then the result sets RSv1(B) and RSv2(C) are joined via natural joins on

their primary key attribute a1: RSfinal = RSv1 ./a1 RSv2.

5. The result set RSfinal is mapped to a list of domain objects and delivered

to the querying client.

89

6. An additional optional step is required if the original query Π(a1,...,ai)R(A)

contains projection criteria ω that indicate with attributes should be part of

the result set. In that case, these criteria have to be applied on the respective

object attributes of the previously created list and query matching objects

are kept in the list, whereas other objects are removed.

The fundamental idea of this approach is that a major performance gain

concerning the collection of the result sets and the join performance can be

achieved with the usage of SSD drives that store the respective partitions.

The complexity of the SSD-based approach is equal to the initial FVPD

approach, as no algorithmic optimization is performed. It is summarized in Table

4.2.

Table 4.2: Query Mechanism Complexity

Query Mechanism Join Algorithm Complexity
SSD-based Nested-Loops Join O(n2)

This concludes the conceptualization of the query mechanisms and based

on these architectural overviews, the following chapter outlines their concrete

implementation.

90

Chapter 5

Implementation

With respect to the formal description of the query rewriting, the caching, and

the SSD-based query mechanisms, this chapter now outlines their concrete im-

plementation. Figure 5.1 gives an overview about the location of the respective

mechanisms and their integration into the SeDiCo framework. Hence, Figure 5.1

is used as an overview about the structure of this chapter which firstly outlines

the concrete query rewriting implementation, secondly, the caching and lastly the

SSD-based approach.

Figure 5.1: SeDiCo Query Mechanism Integration Overview

In order to give a comprehensible description of the query strategies, the Unified

Modeling Language (UML) is used. UML provides a readily understandable and

91

standardized (ISO/IEC, 2005) way how algorithms, software components, etc.

can be described. Here, a total of 14 different UML diagram types (e.g. class, use

case, activity, sequence diagrams, etc.), depending on the view of an algorithm, a

software component, etc. can be used. In the context of this chapter, the UML

sequence diagram provides the most suitable way to present the interaction of the

different components in the respective query strategy, as it models the behavior

of the respective components. Hence, they are used here to illustrate the concrete

implementation of the respective strategy. For an exhaustive overview about

all UML diagrams the reader’s attention is drawn to the relevant literature, e.g.

(Booch et al., 2005) (Omg, 2011).

Fig. 5.2 gives an overview about the key concepts of UML sequence diagrams,

to create a common understanding for the following sequence diagrams in this

chapter.

Figure 5.2: UML Sequence Diagram Key Concepts

Here, different objects (software components, persons, etc. could also be used),

e.g. in an object-oriented program communicate with each other via messages.

The objects send messages and replies to each other to perform a certain task.

Time is running from top to bottom and the ordering of the messages is depicted

92

with the preceding number in the front of each message. Above that, the dotted

line of each object illustrates its lifeline. As messages 1 and 2 show, sending

and receiving messages can be done synchronously or asynchronously. Another

important concept is depicted with the alt and par fragment which state that the

communication within these fragments takes place alternatively1 or simultaneously

in parallel2. In addition to this, there are other fragments (i.e. opt for an optional

communication, or loop for an repeating loop construct, assert for a communication

that is mandatory, etc.). A more detailed introduction can be found in (Booch et

al., 2005) (Omg, 2011), as here only relevant concepts for the thesis are described.

5.1 Query Rewriting Implementation

As already stated in Section 2.2.1, joining query-matching rows from corresponding

result sets based on their primary keys is a key element for the performance

evaluation of the query rewriting approach. The following section picks up the 3

basic join algorithms (nested loops, hash and sorted-merge join) and adapts them

to the SeDiCo approach, but firstly, the optimized query rewriting strategy is

outlined in more detail.

The initial SeDiCo query rewriting approach, depicted in Section 2.2.2, is now

advanced by more sophisticated join algorithms. The initial idea of an XML-based

mapping of the query attributes to their respective partitions is maintained. In

the end, this requires thread synchronization before the natural join can take

place. The UML sequence diagram depicted in Figure 5.33 illustrates this in more

detail.

In contrast to the initial query rewriting approach of SeDiCo, messages4 3-10

are parallelized. Thus, the performance gain is expected through the parallel query

execution and the parallel join of the respective result sets. Figure 5.3 also shows

that the collection and transfer of the result sets (message 6 and 10) requires

synchronization for all collecting threads, as message 11 can only be performed

unless all intermediate result sets have entirely been collected. Otherwise, the

final result set would be incomplete.

1wich would be implemented as an if-else block in a programming language
2which would be implemented with different threads in a programming language
3note that the indices e.g. (a1, ..., ai) in all Figures in this chapter are depicted as (a 1, ...,

a i)
4in UML the respective steps, depicted in the figures are called messages

93

Figure 5.3: Query Rewriting Implementation

As the query rewriting is now completely outlined, a closer look is taken into

message 11, which contains the natural join of the collected result sets.

5.1.1 FVPD Join Implementation

The original relation R(A) is vertically partitioned into Sv(B) and Tv(C). Now, a

natural join on the replicated primary key attribute (a1) is used to reconstruct

rows from the original relation R(A):

R(A) = Sv(B) ./a1 Tv(C) (5.1)

In order to perform this join, the 3 basic join algorithms (nested-loops, hash

and sorted-merge) are implemented and experimentally evaluated.

To sum it up, the evaluation of this approach will show the performance gain

of all 3 mentioned join algorithms, combined with the performance of the query

rewriting algorithm.

94

All in all, messages 12-14 (Figure 5.3) finalize the concrete implementation

and delivers the result set to the querying Java client in form of a list of objects5.

In more detail: after the result set RSfinal is written into the list of domain

objects (message 13), the original query has to be issued against this list once

more (message 14), which ensures that the complex combination of filter criteria

(i.e. query attributes) is maintained for the entire query.

5.2 Caching Implementation

This section presents the caching approach with its three variations: the server-

based and local and the remote approach. Analogous to the previous sections, this

section takes a closer look on their concrete implementations which are subsumed

in the caching approach. This section starts with an introduction of the used cache

coherence protocols and with further common features of all components. At first,

the server-based caching implementation and an overview about its evaluation

goals are described. Afterwards, the local and the remote approaches are outlined

in more detail.

Cache Coherence Protocols With respect to caching, there are two main

differences concerning the cache coherence protocols : firstly, the synchronization

between the caches and the FVPD partitions and secondly, the synchronization

between all the caches. The first synchronization challenge is implemented with a

time interval-based synchronization, whereas the latter one is implemented under

the restriction that row modifications (DML operations) are only performable

directly on the FVPD partitions and never on the caches. This restriction facilitates

the time-based synchronization and easily removes cache coherence challenges.

Cache Memory A further question concerning caching is the implementa-

tion of the cache memory. Here, the author distinguished between four different

cache memory implementations in (Kohler, Simov, Fiech, & Specht, 2015): a

key-value based In-Memory cache, a client-side relational database used as a cache

and two file-based caching solutions, also located at the client that use a JSON

file as cache memory. The author showed in an experimental setup which is also

5because of the Impedance Mismatch between the relational and the object-oriented
paradigms, outlined in Chapter 3

95

used in this thesis, that the In-Memory cache outperforms the other approaches

averagely, if the data set fits entirely into the cache6. However, the usage of

In-Memory databases as caches involves drawbacks due to the volatility of the

storage. As soon as the cache is powered off, all cached data are lost and have

to be re-cached again and this is of particular importance in client-based cache

implementations, as they are turned off and on more often than server-based ones.

Another issue concerns the storage capacity of the cache implementations.

Although In-Memory caches are the fastest ones compared to the other evaluated

ones, RAM storage is more expensive than HDD or SSD storage. Nevertheless, as

this thesis focuses on the performance of the respective approaches, the fastest one

is evaluated in this section. To provide an overview about all four cache memory

implementations, their respective response times are presented in Figure 5.4.

These results are discussed in more detail in (Kohler, Simov, Fiech, & Specht,

2015), thus this section only mentions the key characteristics to understand the

results. Figure 5.4 shows the performance of a key-value based In-Memory store,

a MySQL database locally installed on the client as a cache and a file-based JSON

cache. There are 2 evaluations for the file-based JSON cache: in the first case,

the cache file contains all 88K already joined rows from the FVPD partitions

(depicted as json full). In contrast to this, the cache file in the json approach

contains the respective number of rows in the cache that were actually queried. As

the cache file is smaller, reading the entire file is faster than in the prior approach.

6which is more likely in server-based caching approaches due to larger hardware dimensions
(i.e. cache memory, processor speed, etc.)

96

1,000 15,000 30,000 50,000 88,000
0

500
1,000

2,000

3,000

4,000

5,000

6,000

Tuples

T
im

e
in

m
s

key-value store
local database

json
json full

Figure 5.4: Cache Performance Comparison

The results show that the key-value based In-Memory cache is the fastest one,

if only the response time is considered and the following caching approaches are

all evaluated with such key-value based In-Memory caches.

5.2.1 Server-Based Caching

The first message in this procedure is to fully initialize all caches (cache warming,

messages 1-8). As there is one dedicated cache for each FVPD partition, no

join is performed at that time. It has to be noted that there are various cache

synchronization strategies possible in this scenario. Figure 5.5 shows a time

interval-based approach (messages 1-8), which is implemented with a configurable

time property in milliseconds.

Finding adequate synchronization time intervals is heavily dependent on the

database workload. As the goal of this thesis is the evaluation of a basic response

time, synchronization as well as replication, invalidation and replacement strategies

are not further followed. Due to the distribution of the entire data set across

various caches, cache misses are expected to be reduced compared to centralized

caches that are not able store the entire data set. This will be investigated in future

works in order to not loosing the focus of this thesis, which is the basic evaluation

of query strategies without external influences like minimal cache memory (i.e.

97

Figure 5.5: Server-Based Caching Implementation

cache hits and misses) or workload-driven access patterns (i.e. OLTP versus

OLAP).

As the caches do not store entirely reconstructed rows unlike in the following

local caching approach, the original client query must also be rewritten according

to the SeDiCo approach outlined in Section 2.2 and this is illustrated in messages

9-20 (Figure 5.5). Another advantage of the integration of server-based caches for

the FVPD partitions, is that the caches can also be located in even public clouds,

as they only store the respective FVPD chunks. As data volumes grow, the cache

memory would then easily be dynamically scalable. After the result set RSfinal is

written into the list of domain objects (message 21), the original query has to be

issued against this list once more (message 22), which ensures that the complex

combination of filter criteria (i.e. query attributes) is maintained for the entire

query.

Performance improvements are expected from this cache implementation, as

rows do not have to be fetched from the FVPD partitions, but from faster cache

98

memories. This is assumed to reduce database I/O as the entire data set is cached

in various caches.

5.2.2 Local Caching

In contrast to the server-based implementation, the local one suffers from smaller

hardware dimensions with respect to cache memory. The clients in this setup do

not share the cache memory, every client owns its specific cache and therefore

the required cache memory can be reduced. However, a reduced cache memory

requires advanced cache loading and synchronization strategies to minimize cache

misses. As the data set is not modified for the evaluation in this work, cache

loading, synchronization and replacement strategies are not in the main focus,

but they become important in future work challenges that deal with an efficient

usage of a limited cache memory.

Figure 5.6 illustrates the entire local caching approach in form of an UML

sequence diagram.

Figure 5.6: Local Caching Implementation

Answering a query is depicted in messages 10-15 and the cache loading (i.e.

warming) phase is illustrated in messages 1-9 (Figure 5.67). As the local cache

stores already reconstructed (i.e. joined) tuples (message 5), no query rewriting

has to take place in messages 10-15 (Figure 5.6), as the original query is issued

directly against the cache.

7with (Cl) denoted as (Cˆl)

99

5.2.3 Remote Caching

As already illustrated in Section 4.2.3, the remote approach consists of a com-

paratively insecure server-based cache implementation8. Basically, the process

of answering a query in this approach is illustrated in messages 10-15 (Figure

5.79), which is similar to the local caching approach depicted in Figure 5.6. An

advantage of this cache implementation and the above-mentioned server-based

one, is the fact that caching servers, especially those based on a dynamically

scalable cloud infrastructure can be dimensioned to cache the entire data set of

the FVPD data. Further application scenarios for the usage of FVPD data could

be logging, backup and recovery or high availability setups. Another advantage is

that no client modifications are necessary in these implementations, as various

clients share the same common cache.

Figure 5.7: Remote Caching Implementation

In the end, the evaluation in the next chapter will show, how the performance

differs in the server-based, in the local, and in the remote approaches. As no

modifications in the data sets are performed, the pure cache performance is

evaluated and this serves as a basis for further works that will include cache

synchronization, replication, invalidation and replacement strategies.

8because the tuples are stored already joined in the external remote cache
9with (Cr) denoted as (Cˆr)

100

5.3 SSD-Based Implementation

This implementation has a strong empirical character, as no new algorithms or

query strategies are developed. Here, the influence of new hardware capabilities in

form of Solid State Drives (SSD) is measured and this will show to which extent

new technological developments are able to improve the FVPD approach.

Figure 5.8: SSD-Based Implementation

As illustrated in Figure 5.1, the key concept of this approach is the usage

of SSDs as secondary storage for the database partitions in their corresponding

clouds. The UML sequence diagram in Figure 5.8 outlines the implementation in

more detail and illustrates the interplay of the involved components.

The 15 messages in Figure 5.8 illustrate the entire SeDiCo approach in its

concrete implementation.

In summary, the evaluation of the SSD-based approach compares the analysis

of the response time to the initial SeDiCo implementation and to the other query

strategies in order to determine the performance gain.

101

Chapter 6

Evaluation

This chapter now covers the evaluation of the 3 previously described query

mechanisms. Firstly, the evaluation environment, i.e. the data set and structure,

the entire hardware environment and the database management systems used

to measure the response time of the query mechanisms are described. Secondly,

a basic performance metric is developed in order to compare the response time

against non-partitioned and non-distributed settings (Section 6.2) and against the

initial SeDiCo approach (Section 6.3). Then, all query mechanisms are evaluated

in the rest of this chapter. At the end, there is a conclusion that summarizes

the respective results. A final summary of the main results that compares and

interprets all results can then be found in Chapter 7.

6.1 Evaluation Environment

The data set for the evaluation is derived from the CUSTOMER table of the

TPC-W benchmark (TPC, 2003). This CUSTOMER table is partitioned and

distributed according to Figure 6.1.

102

Figure 6.1: FVPD TPC-W CUSTOMER Table

In order to achieve a better comparability throughout all previous works of the

author and this thesis, all evaluations are performed with a data set that ranges

from 0 to 288K randomly generated rows, which result in an overall database size

of:

Table Size in MB
CUSTOMER (R(A)) 147

Table 6.1: Data Set Size of Relation R(A)

Tables Size in MB
CUSTOMER p1 (Sv(B)) 56
CUSTOMER p2 (Tv(C)) 113

Table 6.2: Data Set Size of Vertical Partitions Sv(B) and Tv(C)

In this scenario, the sum of Sv(B) and Tv(C) (169 MB) is greater than the

size of the original table (R(A)). This refers to the duplication of the primary

keys (a1) into both partitions, which is 11 MB per partition (169 MB − 147 MB

= 22 MB for both partitions). Other optimization techniques such as indices or

local database caches are not used due to their locally focused optimization scope.

103

It has to be mentioned that the figures in this section are only excerpts of the

evaluation because of the great variation in the response times from 1 to 288K

tuples. Hence, the figures only illustrate the response times from 1K to 88K tuples,

which is considered the best trade-off between informational value and readability.

Local Evaluation Environment All performance measurements are con-

ducted on a single physical machine with the following hardware dimensions:

• CPU: 2.4 GHz AMD Dual Core

• RAM: 8 GB

• SSD/HDD: 250 GB

• Software: CentOS 6, Java 1.7 79 64Bit, MySQL 5.6, Oracle Express 11g

On first sight, this local setup contradicts the distributed cloud computing

scope of this work, but it has the advantage of comparable and reproducible

measurements, due to the following reasons:

• In a distributed Cloud Computing environment, a virtualized infrastructure

based on physical hardware is used as a basic technology in order to abstract

from the concrete physical systems. Due to this so-called multi-tenancy

setup where several cloud users share the same physical resources, separated

through a virtualization layer, the overall utilization of the underlying

physical systems is optimized. However, this additional virtualization layer

decreases the performance by ∼ 7%, as (Grund et al., 2010) showed in their

study.

• Closely related to these virtualization issues, is the challenging reproducibility

of performance measurements in such an environment. Here, the problem

of the unknown overall utilization (esp. in public clouds) comes into play.

Consider a setup with two virtual machines m1 and m2 in a virtualized

cloud on the same physical machine that use the entire available physical

resources where m1 is used for an evaluation task and m2 is an unknown

machine that belongs to someone unknown. At time t0 the utilization of m1

is 90% and m2 has 10%. So, the overall utilization of the physical hardware

is 100%1. Then later at time t1 the same evaluation task is performed on

1the hypervisor and other virtualization overhead is neglected here for the sake of clarity

104

m1, but this time the utilization of m2 is 90%, and there are only 10%

left for m1. Both, the overall utilization and the utilization of m2 cannot

be influenced by the owner of m1 and transferred to a public cloud with

various virtualized resources and no possibility to influence or monitor the

overall utilization of the underlying physical hardware systems, such a setup

is regarded inappropriate for comparable and reproducible measurements.

Moreover, the usage of the same physical hardware systems, only divided

by a software-based virtualization layer (which may include bugs), can be

regarded as insecure with respect to data privacy and security.

All in all, it can be concluded that the latter two arguments could be solvable

with Service Level Agreements (a detailed consideration can be found in (Kohler &

Specht, 2014c)) and a precise definition of the rented cloud capabilities (e.g. CPU-

time, RAM, HDD, network bandwidth, etc.). However, besides the cost-intensive

and time-consuming definition, the network overhead would be another challenge,

as all rows would have to be transferred via Internet and its unpredictable network

bandwidth behavior to and from the cloud providers. Another consideration would

be the usage of a private cloud setup, which is described in more detail in the

following section.

Remote Evaluation Environment The unknown overall utilization, the

virtualization overhead and the network overhead lead to the local setup on 1

physical machine as described above to achieve a basic performance metric. It

further has to be noted that the initial response time in (Kohler & Specht, 2014a)

contains a local and a remote evaluation. This remote evaluation was performed

in a private cloud environment, to which only the author of this thesis had access

to. This private cloud infrastructure was built on the following hardware:

• CPU: 2.4 GHz AMD Dual Core

• RAM: 2 GB

• SSD/HDD: 250 GB

• Network: 1Gbit

• Software: CentOS 6, Java 1.7 79 64Bit, MySQL 5.6, Oracle Express 11g

105

Based on this these capabilities, two private cloud infrastructures (Eucalyptus

3 (Hewlett Packard, 2016) and CloudStack 3.2.2 (Apache, 2016a)) with à 5

computing nodes (1 cloud management server and 4 cloud nodes) were set up.

Thus, the above-mentioned cloud challenges could be avoided. Accordingly, the

evaluation results in (Kohler & Specht, 2014a) show that the remote setup did

have remarkable impacts compared to the local setup, which is averagely ∼ 60%-∼
90% faster.

It also has to be noted that the Oracle database system is remarkably slower

(with datavolumes ≥ 50K tuples) compared to the MySQL database. This is

because of the used Oracle Express Edition 11g Release 2, which is restricted to

the usage of 1 processor and 1 GB RAM (Oracle, 2016) in its publically available

version. Contrarily, MySQL is not restricted at all, but recent evaluations with

other database systems (MariaDB, PostgreSQL) show similar results. To remain

comparable to the other previously published works (listed at the end of the

thesis), this evaluation continues with the measurement of MySQL and Oracle

databases. Above that, the original motivation for those two systems was their

wide distribution in industrial environments.

It further has to be noted that the following performance evaluations also

include the measurements of a simultaneous usage of both database systems. This

is the so-called combined response time. As the SeDiCo framework offers the

possibility to use both database systems for partitions at the same time, it is

possible to store one FVPD partition in an Oracle and the other in a MySQL

database (or vice versa).

6.2 Basic Database Performance Evaluation

This initial performance measurement serves as a basic performance metric for all

following evaluations. All performance measurements were conducted three times

and the average times of all measurements are listed in the figures of this chapter.

With this approach, unreproducible side-effects like Java’s Garbage Collector or

changing host utilization could be reduced to a minimum.

Figure 6.22 presents the response time of a locally and remotely installed, non-

partitioned and non-distributed database. As the data set is neither partitioned

2cf. (Kohler & Specht, 2014b)

106

nor distributed, it basically measures the pure response time of the ORM (i.e.

Hibernate). So, the hypotheses (cf. Section 1.4) can be confirmed, if the average

response time for the FVPD data is equal or even smaller compared to the average

response times of Figure 6.2.

1,000 15,000 30,000 50,000 88,000
0

2,000

4,000

6,000

8,000

10,000

Tuples

T
im

e
in

m
s

MySQL Local
Oracle Local

MySQL Remote
Oracle Remote

Figure 6.2: Initial Response Time

6.2.1 Conclusion

Considering the average response time of Hibernate, based on a non-distributed

and non-partitioned data set, these results show that querying a MySQL database

requires averagely ∼1,6 seconds and an Oracle database which is nearly similar

requires ∼1,7 seconds. These values stem from a local environment where all

components are installed on one single physical machine. Although this is not

applicable in real world scenarios, these figures provide a basic performance metric.

In a remote setup (i.e. a client-server environment), querying a MySQL database

requires ∼2 seconds and an Oracle database needs ∼3 seconds to answer the

query averagely. Hence, it can be concluded that the network overhead is ∼0.3

seconds (MySQL) and ∼1,4 seconds (Oracle) and this is insofar interesting as the

following performance measurements will show, how this network overhead affects

the Security-by-Distribution approach of the SeDiCo framework.

107

6.3 SeDiCo Framework Performance Evaluation

Similar to the previous section, this evaluation is also divided into a local and a

remote measurement and the following sections present the response time of the

initial SeDiCo Security-by-Distribution approach without any optimizations.

1,000 15,000 30,000 50,000 88,000

0

2 000 000

4 000 000

6 000 000

8 000 000

Tuples

T
im

e
in

m
s

MySQL Local
Oracle Local

MySQL Remote
Oracle Remote

Combined Local
Combined Remote

Figure 6.3: Initial SeDiCo Response Time

The figures from the local and from the remote evaluation in Figure 6.3 show

that the average response time of the FVPD data is considerably slower compared

to the initial implementation in Figure 6.2. The average response time for non-

partitioned and non-distributed data compared to the average FVPD response

time is ∼1,6 seconds for MySQL and ∼1,7 seconds for Oracle in the local setup and

∼2 seconds for MySQL and ∼3 seconds for Oracle in the remote setup. Compared

to the FVPD setup in the initial SeDiCo approach, the response times are ∼257

seconds for a MySQL and ∼1,100 seconds for an Oracle database (local) and ∼465

seconds for MySQL and ∼2,200 seconds for Oracle in a remote setup.

6.3.1 Conclusion

Based on these figures, it has to be noted that the SeDiCo approach as is,

unfortunately is not usable in practical usage scenarios. Above that, the response

time for the combined measurement of MySQL and Oracle in Figure 6.3 shows

interesting results, as both, the local and the remote values, are similar to the

108

results of the Oracle database. Therefore, the bottleneck in combined scenarios is

always the slower database.

Comparing the local against the remote setup of this section shows that with

a 1 Gbit Ethernet broadband connection between the components, the network

causes another performance degrade by factor ∼2 averagely. This is caused by

the client/server protocols of the used database systems and has the following

reasons:

• Data being sent from a MySQL database through the network is encrypted

via SSL (MySQL, 2016) and the same holds for Oracle databases (Oracle,

2016).

• Data that have to be transferred via network are split into packets, where

MySQL uses 16 MB (MySQL, 2016) and Oracle uses 32 MB (Oracle, 2016)

for each packet in its standard configuration, and this configuration was

maintained throughout all evaluations in order to produce reproducible

results.

This section concludes the pure SeDiCo framework performance evaluation

and determines the upper bound for the response time of this work (cf. Section

1.4). Now, Section 6.4 evaluates the 3 join mechanisms, which are built to reduce

the response times measured in this section such that they are in the same order

of magnitude as the initial evaluation in Section 6.2.

6.4 Query Rewriting Evaluation

In this section, the response time of query rewriting with its 3 FVPD join algo-

rithms (nested-loops, hash and sorted-merge join) is evaluated.

The following figures (Figure 6.4 - Figure 6.6) illustrate the respective join

implementation for the FVPD partitions in the local as well as in the remote

environment.

109

1,000 15,000 30,000 50,000 88,00088,000

0

2,000

4,000

6,000

Tuples

T
im

e
in

m
s

MySQL Local
Oracle Local

MySQL Remote
Oracle Remote

Combined Local
Combined Remote

Figure 6.4: FVPD Query Rewriting Nested-Loops Response Time

1,000 15,000 30,000 50,000 88,00088,000

0

2,000

4,000

6,000

Tuples

T
im

e
in

m
s

MySQL Local
Oracle Local

MySQL Remote
Oracle Remote

Combined Local
Combined Remote

Figure 6.5: FVPD Query Rewriting Hash Join Response Time

110

1,000 15,000 30,000 50,000 88,00088,000

0

2,000

4,000

6,000

Tuples

T
im

e
in

m
s

MySQL Local
Oracle Local

MySQL Remote
Oracle Remote

Combined Local
Combined Remote

Figure 6.6: FVPD Query Rewriting Sorted-Merge Join Response Time

6.4.1 Conclusion

Similarly to (Kohler & Specht, 2015b), the query rewriting evaluation showed

that the hash join and the sorted-merge join produced almost similar results.

As expected, both outperformed the nested-loops join (Figure 6.4 - Figure 6.6)

considering the average performance.

All join algorithms benefit from the fact that the rows are collected in sorted

order based on their primary key values from the underlying FVPD database

partitions. This reduces the join phase (join, probe or merge phase), as e.g. the

inner loop of the nested-loops join can stop as soon as the first matching row is

found. The same holds for the probe phase in the hash join and for the merge

phase in the sorted-merge join.

Taking a closer look at the hash and the sorted-merge join, which both

produced almost similar response times, it can be noted that collecting query

matching rows from the FVPD partitions (i.e. the build and the sort phase) are

similar. Both algorithms only differ in their join (i.e. their probe and merge)

phases. The total response time of both algorithms depicted above show that the

collection phase heavily predominates the join phase and that the join phase is an

exceptionally small part of the total response time. Thus, even if the probe phase

111

(hash join) outperforms the merge phase (sorted-merge join) by factor ∼2, the

overall response times of both algorithms are almost similar.

Regarding the nested-loops join performance in Figure 6.4, the results show

a remarkable performance gain compared to the initial SeDiCo implementation

depicted in Figure 6.3. Moreover, the hash and the sorted-merge join achieved

even greater performance improvements as Figure 6.5 and Figure 6.6 show.

Another aspect with respect to the FVPD data, also mentioned in (Kohler &

Specht, 2015b) is skewness of data. This phenomenon might emerge during the

collection of the query matching rows from the FVPD partitions. Here, it might

be the case that one partition contains a lot of query matching rows, whereas the

other contains only few. Hence, heavily skewed data are advantageous especially

for join algorithms. Figure 6.73 illustrates an evaluation of an extreme case in

which one partition contains 288K and the other only 1 tuple. In this case the

tuple fetching4 phase dominates the overall performance, as only one tuple has to

be joined.

1,000 15,000 30,000 50,000 88,000

500

1,000

1,500

Tuples

T
im

e
in

m
s

Nested-Loops Join
Hash Join

Sorted-Merge Join

Figure 6.7: FVPD Query Rewriting Skewed Join Response Time

For this, the query was adapted such that it only returns 1 tuple for the first

and 288K tuple for the second partition. The query issued against the FVPD

MySQL data is as follows:

3For the sake of clarity, this evaluation was conducted in a local setup with a MySQL
database.

4or build in hash join, or sort in sorted-merge join

112

Listing 6.1: FVPD Query for Skewed Data

1 SELECT ∗ FROM Customer WHERE C FNAME = ’gV ; 0 { ∗ : uxrXGˆM’ and
C YTD PMT <=0;

Compared to these figures, Listing 6.15 shows faster collection times, as just

one, particularly the larger partition with 288K rows has to be collected and not

both. This explains the almost equal performance of all three join algorithms in

the case of heavily skewed data. Above that, there is only one matching row that

needs to be joined for the final result set. The results further show that the join

phase is 1ms for all 3 algorithms. Surprisingly, the row collection phase is also

equal in all 3 cases, which proves that the bottleneck is the database here. Further

database measurements by the author proved that the overall performance in

Figure 6.7 is exactly the time that is required to collect the 288K rows from one

database partition.

This finally concludes the evaluation of query rewriting and now the next

section deals with the performance measurement of caching with its centralized

and decentralized implementations.

6.5 Caching Evaluation

In this section, caching with respect to its response time is evaluated.

This evaluation shows, how the performance differs in the server-based and

in the local and remote caching approaches. As no modifications in the data set

are performed, the pure cache performance is evaluated. This serves as a basis

for further works that include cache synchronization, replication, invalidation and

replacement strategies. As no tuple modifications occur during the evaluation, the

respective caches can be filled with the entire data set which is known as warming

up the cache and hence the cache contains the entire data set the underlying

database system can be neglected. This also means that there are no cache misses

and thus there is no distinction between MySQL and Oracle required in this

section. In order to warm the cache, different approaches (e.g. SSD-based or the

query rewriting) can be used. Therefore, this section only covers the pure cache

5This query further illustrates the randomly generated row values for the FVPD CUSTOMER
table, described in Section 6.1.

113

performance and neglects the cache warming phase, as these values can be derived

from the previous evaluation sections (Section 6.6 or Section 6.4).

This section starts with the evaluation of the server-based caching implemen-

tation, which is followed by the local and the remote one.

Server-Based Caching As in this implementation every partition has its

own cache, none of these reside at the client. Thus, there is only a server-based

evaluation for this implementation. Yet, this evaluation distinguishes between

a lazy and a parallel row fetching strategy, which fetches rows from the caches

either partition-wise or simultaneously in different threads. This is also outlined

in more detail in Section 5.2.

1,000 15,000 30,000 50,000 88,000
1,000

5,000

10,000

15,000

20,000

25,000

30,000

35,000

Tuples

T
im

e
in

m
s

Local Parallel Fetch
Remote Parallel Fetch

Local Lazy Fetch
Remote Lazy Fetch

Figure 6.8: FVPD Server-Based Parallel and Local Response Time

Local and Remote Caching The results of the local and the remote

caching approach are illustrated in Figure 6.9

114

1,000 15,000 30,000 50,000 88,000
0

200

400

600

Tuples

T
im

e
in

m
s

Local Cache
Remote Cache

Figure 6.9: FVPD Local and Remote Caching Response Time

6.5.1 Conclusion

Considering the pure cache performance without the cache warming phase, both,

the local and the remote implementations outperform the server-based one. This

is not surprising, as in the local and remote caches, the rows are already joined

and thus this is comparable to traditional non-partitioned and non-distributed

database caching approaches.

This evaluation showed that the local and the remote implementations also

outperform the query rewriting and the SSD-based approaches. However, taking

the cache warming phase into consideration, the figures above get relativized and

then query rewriting outperforms caching again.

The cache warming phase is neglected in this evaluation because it only has

to be performed once, e.g. at the start of the SeDiCo client. Once the cache is

warmed, all queries can be run against the cache (cf. Section 5.2. In addition

to this however, updating the cache (e.g. regularly time-based, user-triggered,

via cache invalidation, etc.) is another requirement, which is not considered in

this evaluation. This is also too dependent on the specific database workload and

regarded as a future work task in concrete application domains, where the SeDiCo

framework will be integrated.

Moreover, considering the decentralized implementation it can be concluded

that the parallel fetch outperforms the lazy fetch by factor ∼2 (local fetch) and

115

by factor ∼7 (remote fetch). However, the concrete fetch strategy is heavily

dependent on the database workload and if the partitioning scheme is defined

such that most queries can be answered with only the values of a single partition,

the lazy fetch outperforms the parallel fetch, even if the partitions are accessed

simultaneously there. To sum it up, the results confirmed the assumption that

collecting rows form the cache memory is faster that directly from the FVPD

partitions and this is the case for the entire caching approach.

6.6 SSD-based Evaluation

This section now covers the evaluation of the SSD-based implementation. As

recent personal computer (PC) hardware and price developments show, SSDs are

the most prominent and promising successors for traditional HDDs (i.e. secondary

storage). In order to achieve performance improvements, the SeDiCo client and

the database systems are operated on such SSDs and the response time of this

setup is evaluated in this section in a local and in a remote environment.

Basic SSD-based Performance Evaluation Analogous to the previous

evaluation sections in this work, firstly, a basic SSD performance metric with a

non-distributed and non-partitioned data set is measured (Figure 6.10) and then

the FVPD data set (Section 6.1) based on SSDs is evaluated in Figure 6.11.

116

1,000 15,000 30,000 50,000 88,000
0

2,000

4,000

6,000

8,000

Tuples

T
im

e
in

m
s

MySQL Local
Oracle Local

MySQL Remote
Oracle Remote

Figure 6.10: Initial Non-FVPD SSD-Based Response Time

1,000 15,000 30,000 50,000 88,000

0

50 000

100 000

150 000

200 000

Tuples

T
im

e
in

m
s

MySQL Local
Oracle Local

MySQL Remote
Oracle Remote

Combined Local
Combined Remote

Figure 6.11: FVPD SSD-Based Response Time

6.6.1 Conclusion

The initial SSD performance measurement in the local and in the remote envi-

ronment (Figure 6.10 compared to Figure 6.2), showed that indeed the SSD as

secondary storage improves the response time by ∼30% in a local MySQL, by

117

∼20% in a local Oracle, by ∼60% in a remote MySQL, and by ∼32% in a remote

Oracle environment (Figure 6.10). These are promising results; however, they

show the improvements based on a non-partitioned and non-distributed data set.

Transferred to a FVPD data set, the performance gains are depicted in Figure

6.11 for the local and for the remote evaluation environment. Compared to the

initial SeDiCo framework evaluation (Figure 6.3), these values show a significant

performance gain by factor ∼50 (MySQL local), by factor ∼68 (Oracle local), by

factor ∼34 (MySQL remote) and by factor ∼52 (Oracle remote).

Analogous to these figures are the measurements for the combined usage of

MySQL and Oracle. Here again, the slower database system is the bottleneck, but

the SSD-based approach improved the combined response time by factor ∼64 for

the local and by factor ∼41 for the remote setup. To sum up this chapter, it can

be concluded that although the usage of SSDs yields to a remarkable performance

gain, the SSD-based approach is still not feasible in practical usage scenarios.

118

Chapter 7

Summarization of the Main

Results

With the conclusions in Chapter 6, where every query strategy was compared

against the initial SeDiCo implementation, this chapter now deals with the

analysis of the query mechanisms and contrasts their evaluation results against

the hypotheses formulated in Chapter 1. This chapter ends with a conclusion

about all approaches and their strengths and weaknesses.

First of all, the hypotheses are either verified or rejected.

Hypothesis 0: The definition of a FVPD Methodology ...

This hypothesis can be verified. It was formally proved in Chapter 1. In

addition to this, the SeDiCo framework as a concrete implementation of the

FVPD methodology showed its technological feasibility.

With respect to the hypotheses 1-3, Table 7.11 states the aimed average

response times of the non-partitioned and non-distributed data set, which was

queried with Hibernate as the used ORM. The average response times used

throughout this chapter are the average response times of the presented figures in

the evaluation in Chapter 6, ranging from 1 - 288K tuples.

Hypothesis 1: Query Rewriting ...

This hypothesis can be verified. Surprisingly, the average performance of query

rewriting and its corresponding join algorithms mostly outperforms the basic

1As these measurements are conducted on a non-FVPD data set, a combined measurement
with both databases simultaneously was not possible.

119

Table 7.1: Average Hibernate Response Time for a Non-FVPD Data Set in ms

Secondary
Storage

MySQL Local Oracle Local MySQL
Remote

Oracle
Remote

HDD 1,626 1,701 2,050 2,991

SSD 1,253 1,415 1,267 2,256

performance metric (Table 7.1). Accordingly, Table 7.2 shows the performance

values of all query mechanisms with the best achieved values in bold font.

Table 7.2: Average FVPD Response Time in ms

Approaches MySQL
Local

Oracle
Local

MySQL
Remote

Oracle
Remote

Combined
Local

Combined
Remote

Initial
SeDiCo 257,346 1,177,436 465,972 2,266,895 1,178,949 2,287,508a

Query
Rewriting
Nested-
Loops Join

955 1,093 1,094 2,339 1,323 2,567

Query
Rewriting
Hash Join

600 755 716 1,944 979 1,959

Query
Rewriting
Sorted-
Merge
Join

609 766 729 1,946 993 2,255

Server-
Based
Caching
Parallel
Fetch

2,020 N/Ab 2,094 N/Ab N/Ab N/Ab

Server-
Based
Caching
Lazy Fetch

4,186 N/Ab 14,323 N/Ab N/Ab N/Ab

Local
Caching 146c N/Ab 365 N/Ab 254 N/Ab

Remote
Caching 229 N/Ab 434 N/Ab 324 N/Ab

SSD-Based 5,160 17,255 13,656 43,119 18,219 55,116

anote that this is the upper bound tupper defined in Section 1.3
b As the queries are directly issued against the cache, the underlying database can be

neglected. Therefore, only MySQL was used for this evaluation.
cnote that this is the lower bound tlower defined in Section 1.3, because here the local cache

stores the already reconstructed relation R(A)

120

The results in Table 7.2 further show that the hash and the sorted-merge join

have almost similar performance improvements. Yet, further evaluations with

a larger data set (up to 1 million tuples) show that with more rows involved,

the sorted-merge join outperforms the hash join, as the sort phase relies on the

indexed primary key and is therefore faster than building the hash table2. Table

7.33 illustrates this in more detail.

Table 7.3: Comparison of Hash and Sorted-Merge Join with Larger Data Sets in
ms

#Tuples Hash Join Sorted-Merge Join
Build Probe Sort Merge

1M 30,207 6,097 339 3,895
750K 10,167 1,671 578 3,859
500K 6,491 1,357 375 3,831

Average 15,621 3,042 431 3,852
Total 18,063 4,283

The figures depicted in Table 7.2 and Table 7.3 show that query rewriting

is absolutely applicable in practical usage scenarios. Hence, the entire SeDiCo

framework becomes a viable approach with respect to security and privacy in

especially public cloud environments.

Hypothesis 2: Caching ...

This hypothesis can be verified. For this evaluation, only the pure cache

performance is important and thus Table 7.2 only focuses on the local, remote

and server-based cache performance without the cache warming phase.

These values show that the pure cache performance of a local outperforms

all other evaluated approaches. Although these values get relativized with the

consideration of the cache warming, update and synchronization logic, these values

are promising for the further SeDiCo framework development, where such cache

coherence protocols will be developed.

Moreover, this evaluation showed that the remote caching approach is also

viable in practical usage scenarios, if additional security and privacy preserving

measures to secure the cache (e.g. VPN connections to and from the cache), that

stores entirely reconstructed rows are taken into consideration.

2Basically, the sort phase is not required here, and the merge and the probe phases are equal.
3This short evaluation is based on a local MySQL installation.

121

The measurements in Table 7.2 clearly show that the average response time

of the server-based cache4 is also in the same order of magnitude as with a non-

partitioned and non-distributed setup. However, this only holds for the parallel

fetch strategy, where the FVPD partitions are queried in parallel. Especially, the

remote lazy fetch in the evaluated setup was considerably slower (∼10) compared

to the non-FVPD setup. Yet, it has to be mentioned (cf. Section 5.3, and (Kohler

& Specht, 2015a)) that both partitions have to be queried, in order to reconstruct

all tuples. In practical scenarios, it might be the case that only one partition

must be queried and that tuples from the other one might not be required at all5.

Then, the lazy fetch is even able to outperform the parallel fetching strategy.

Although the server-based caching implementation was outperformed by the

local, by the remote caching and by the query rewriting approach (Table 7.2), it is

applicable in practical usage scenarios. However, considering the evaluation results,

it has to be mentioned that here also cache warming, update and invalidation

mechanisms become crucial in scenarios where not the entire data set can be

cached. Nevertheless, this implementation is a viable alternative with respect

to the remote cache, concerning security and privacy aspects. As there exists

one cache for every partition, the Security-by-Distribution principle is maintained

and the caches can even be put into a public cloud infrastructure, which enables

larger and dynamically scalable cache memories. In the end, this means that

it is possible to cache entire data volumes in server-based caches, which is an

interesting alternative for larger databases.

The results of the SSD-based approach are concluded accordingly and this

refers to hypothesis 3.

Hypothesis 3: Using Solid State Disks (SSDs) ...

This hypothesis must be rejected. Although the response time gains achieved

with SSDs were significant (cf. Section 6.6), the performance did not reach the

same order of magnitude6 as queries based on non-FVPD data sets. Nevertheless,

the achieved performance values are listed in Table 7.2.

Although the average results are promising, the evaluation showed that es-

pecially for larger data volumes (i.e. ≥ 10K tuples) the response time loss in

4decentralized server-based cache
5if data is partitioned accordingly
6except for the local MySQL measurement

122

absolute values is not bearable in practical usage scenarios. This is the main

reason for the rejection of this hypothesis.

Hence, with the confirmation of hypotheses 1 and 2 it can be concluded that

query rewriting and the caching significantly contribute to the applicability of the

SeDiCo framework in practical usage scenarios. Moreover, this work showed that

every developed query mechanism has its raison dtre, as every approach realized

remarkable performance gains compared against the original SeDiCo framework.

The evaluation further showed that every query mechanism has pros and cons

and therefore, no clear recommendation can be given here. Table 7.4 summarizes

these advantages and disadvantages.

Considering the fact that the build (hash join) and the sort phase (sorted-merge

join) are predominant in the total response time, parallelizing these steps would

bring further performance improvements. Here, an implementation similar to the

parallel fetch of the decentralized server-based caching cloud be possible.

Taking this thought one step further, the integration of the query rewriting

approach into the caching approach could also be useful. As outlined in Table 7.4

a major drawback of caching is the (possibly long-lasting) cache warming phase.

Hence, using query rewriting for warming the cache (and also for updating it),

this disadvantage could be weakened. Accordingly, it would be possible to use

faster cache memories with comparatively low cache coherence overhead.

This summary shows that query rewriting and caching proved the hypotheses

of this work. Although the hypothesis concerning the SSD-based approach has to

be rejected, even this approach promises performance improvements, however, the

improvements were not as big as expected. Finally, it can be concluded that the

results of query rewriting and caching are promising to further following SeDiCo’s

vision of creating a secure and distributed cloud data store where the performance

is in the same order of magnitude as traditional relational non-partitioned and

non-distributed databases.

123

Table 7.4: Query Mechanism Summary

Query
Mech-
anism

Preserves
Security-

by-
Distribution

Pros Cons

Query
Rewrit-
ing

yes Fast response times Large amount of client RAM
memory necessary for the join
algorithms (when large data
volumes with many query
matches are applied)

Applicable in practical usage
scenarios

Advantages of parallel fetch
can only be applied on clients
that have multiple cores (i.e.
as many cores as there are par-
titions)

Caching Fast response times Additional cache coherence
protocols, that affect the re-
sponse time or the data con-
sistency are required

Applicable in practical usage
scenarios

Server-
Based

yes Dynamically scalable cache
memories

Slower response times com-
pared to query rewriting and
local and remote caching

Local yes Fastest response time com-
pared against the other ap-
proaches

Cache warming required at ev-
ery start of the client (the more
data, the more time-consuming
is the cache warming)
Cache requires large amount of
client RAM (with large data
volumes)

Remote no Cache warming must only be
performed once at server start

Cache requires additional secu-
rity and privacy measures

Dynamically scalable cache
memories

SSD-
Based

yes No conceptual, algorithmic or
architectural SeDiCo frame-
work changes required

Comparatively slow response
times

Inapplicable in practical usage
scenarios because of the slow
response times

124

Chapter 8

Framework Application in

Semantic Web Databases

This chapter describes a concrete application scenario for the FVPD approach

in which it is transferred to Resource Description Framework (RDF)-based data.

RDF is a standard for describing various kinds of resources in todays Semantic

Web applications.

The introduction to the chapter outlines the history of the Semantic Web

and its development. It further introduces basic notions and standards used

in the Semantic Web and gives references to them in order to provide a basic

knowledge about the used concepts. This is followed by the problem formulation in

Section 8.2 that addresses data security and privacy in Semantic Web applications

with a strong focus on RDF. Moreover, it formulates the hypothesis that the

FVPD approach is applicable for both, a relational and a RDF-based data set at

comparable response times. This is then followed by an outline of related works

concerning distributed RDF-based data and the access to them via SPARQL

Protocol and RDF Query Language (SPARQL) in Section 8.4. After that, the

FVPD approach is conceptually transferred to RDF-based data in Section 8.5.

Section 8.6 outlines the concrete implementation of the presented approach. This

implementation is then evaluated in Section 8.7 and the evaluation results are

discussed in the following Section 8.8. In the end, Section 8.9 covers a detailed

view on further optimization strategies and challenges concerning federated RDF

data stores based on FVPD relational data.

125

8.1 Introduction

In recent years there has been a development originating form the World Wide Web

(WWW, or Web 1.0) where information was made available with standardized

markup languages (XML, HTML, etc.) over standardized protocols (HTTP)

towards a Web of Participation (Web 2.0) with social networks, blogs wikis, etc.

and corresponding feedback and recommendation possibilities. Nowadays, broader

network bandwidths and the easy access to information at any place and at any

time (with e.g. mobile devices) lead to an information overload in which finding

relevant information is becoming increasingly difficult and inefficient. The main

research focus of the Semantic Web (Web 3.0) is to find approaches to structure

information such that they can even automatically be processed and understood

by machines. Actually, there are standards (or at least recommendations) from

W3C for structuring information in the Semantic Web. At the moment, there

is the Resource Description Framework (RDF) (Manola et al., 2014) based on

XML that not only structures information as triples (subject, predicate, object)

but also connects information with each other in form of links (predicates).

Technologically, such triples are encoded as International Resource Identifiers

(IRIs)1. Another standard relevant in this context is the SPARQL Protocol and

RDF Query Language (SPARQL) (Harris & Seaborne, 2013) inspired by the SQL

from relational databases which is one possible way2 to access information in the

Semantic Web.

Basically, RDF and SPARQL are examples that show that all Web 3.0 standards

and their technological implementations rely on concepts (e.g. XML, HTTP, URIs,

etc.) from the first version of the WWW (Web 1.0). SPARQL as the common

query language to access RDF data is inspired by the well-known and exhaustively

investigated SQL standard. Figure 8.13 illustrates this with an adaption of the

Semantic Web Stack, and yet there are Ontology Based Data Access (OBDA)

frameworks that create a mapping between relational data sources and their

RDF-based representations and expose relational data as SPARQL endpoints.

Semantic Web frameworks (e.g. Virtuoso (Virtuoso, 2016), Apache Jena

(Apache, 2016c), Sesame (Sesame, 2016), GraphDB (Ontotext, 2016), etc.) pro-

1IRIs are a superset of URIs which contain more Unicode characters. Further information
can be found in (Duerst & Suignard, 2005)

2another possibility to access information is to browse through RDF data and follow the
links between them with Semantic Web browsers, examples can be found at (W3C, 2016b)

3adapted from (W3C, 2007)

126

Figure 8.1: Adapted Semantic Web Stack

vide different storage engines for RDF data and corresponding SPARQL imple-

mentations to access them. Figure 8.2 gives a generic architectural overview about

current storage engines and their interplay with the clients that issue SPARQL

queries.

Figure 8.2: General Semantic Web Framework Architecture

127

The big advantage of describing and structuring heterogeneous data in a

standardized way has been fostering the dissemination of RDF and corresponding

data stores in recent years. Yet, with the usage of RDF, the underlying data

stores have also experienced remarkable growth rates. This data growth can be

summarized as Linked Data (LD) which not only benefits from the structured

character of RDF but also from the possibility to connect data through links in

form of RDF predicates. Moreover, Tim Berners-Lee published 5 star criteria

that define how data should be published in the Semantic Web in order to be

classified as Linked Open Data (LOD) (Berners-Lee, 2009). Again, these criteria

show the usage of standard Web 1.0 technologies such as availability on the web,

in machine-readable form (non-proprietary formats) using W3C standards like

RDF and SPARQL and data should be connected with each other and set into

context. A prime example of LOD is DBPedia (DBPedia, 2016) which connected

∼7 billion RDF triples (DBPedia, 2016) in April 2015. These statistics show that

storing and processing such data in a single central repository is becoming more

and more impractical. This is a challenging task that the W3C addressed to

some extent with SPARQL version 1.1 that enables so-called federated queries

over several repositories respective SPARQL endpoints (Harris & Seaborne, 2013).

Besides these growing RDF data volumes, the possibility to provide data with

SPARQL endpoints also fosters the dissemination of these endpoints. Hence, with

a larger number of endpoints the demand to query them in a standardized way

also increases and this was another reason for the support of federated SPARQL

queries in the standard (Rakhmawati et al., 2013). Accordingly, as all data are

stored as RDF triples, no additional layer to merge different resources, data types

or formats (like ORMs in relational databases) are required (Görlitz & Staab,

2011).

These are all promising issues that draw the attention to federated RDF stores,

however on the contrary it has to be noted that distributing data requires joining

them again when they are accessed. This challenging task is similar to the join

challenge in distributed databases outlined in Section 2.2 which decreases the data

access performance significantly. Another issue that emerges with an increasing

number of different SPARQL endpoints refers to the usage of different SPARQL

versions. Here, it is a challenging task if an endpoint does not support SPARQL 1.1

but only its predecessor SPARQL 1.0. This restricts the language features, as e.g.

the SERVICE keyword cannot be used then. Hence, SPARQL 1.1 queries issued

against SPARQL 1.0 endpoints may not return any results (even if there were)

128

or a respective error message. Thus, it will be interesting how future standards

handle this issue of backward compatibility.

Then, there is an ongoing discussion in the scientific community whether

federated RDF stores and SPARQL endpoints are practical and viable approaches

or not (Wu et al., 2014) (Görlitz & Staab, 2011) (Rakhmawati et al., 2013) (Haase

et al., 2010) (Betz et al., 2012) (Betz, Hose, Sattler, 2012)4.

Considering these aspects, the transformation of SeDiCo’s FVPD approach to

new Semantic Web technologies is considered both, a viable approach to foster

security and privacy-aware design considerations as well as an approach to use it

as a concrete application scenario for further evaluation and dissemination tasks.

Since the basic technological foundation (XML, HTTP, etc.) of the Semantic Web

is well-investigated, only relevant aspects, namely RDF and SPARQL, for the

adaption of the SeDiCo framework are outlined in more detail in the following

sections.

Above that, as technologies related to the Semantic Web are a huge area of

research, they cannot be extensively covered in this thesis. Hence, this chapter

concentrates on RDF-based data that are based on relational data.

8.1.1 RDF

An exhaustive introduction about RDF is provided by the W3C in (Manola et al.,

2014). Thus, this work only describes central aspects of RDF which are then later

required for the implementation and the proofs of the approach. In RDF, all data

are stored in form of triples denoted as subject, predicate and object; moreover,

such triples can be visualized as a directed graph.

Figure 8.3: General RDF Triple

4For the interested reader, the mentioned literature here points to interesting advantages
and disadvantages of single central and multiple federated repositories.

129

Listing 8.1: CUSTOMER RDF Triple Encoded in Turtle Syntax

1 . . .
2 @pref ix vocab : <http :// k o h l e r j e n s . de :10001/CUSTOMER/ re sou r c e /

vocab/> .
3 . . .
4
5 <http :// k o h l e r j e n s . de :10001/CUSTOMER/ re sou r c e /CUSTOMER/1>
6 a vocab :CUSTOMER ;
7 r d f s : i sDef inedBy <http :// k o h l e r j e n s . de :10001/CUSTOMER/ data /

CUSTOMER/1> ;
8
9 vocab :CUSTOMER C ID 1 ;

10 vocab :CUSTOMER C EMAIL ”Cust@email . de” ;
11
12 . . .

In this graph (or RDF statement), every node and the predicate are imple-

mented as IRIs5 that describe a resource which can be anything (e.g. real-world

objects like documents, numbers, persons, etc.) (Manola et al., 2014). Transferred

to the motivating SeDiCo example stated in the introduction of this thesis, such

an RDF triple which states that a customer has a certain email address could be

illustrated as follows.

Figure 8.4: RDF CUSTOMER Triple

Figure 8.4 shows that a CUSTOMER (subject) is identified by its unique IRI.

Then the predicate states the relation between this CUSTOMER and its email

address (denoted as the object which is also an IRI).

Moreover, RDF triples are technically storable in various serialization formats,

e.g. JSON, XML, Turtle, etc. and most of the standard formats are derived from

XML (Manola et al., 2014). Listing 8.1 illustrates the RDF triple from Figure 8.4

in Turtle syntax, shortened to the relevant aspects.

Listing 8.1 starts with the definition of the SPARQL endpoint as the vocab

variable. Hence, it can be used in the entire RDF as an abbreviation for a better

readability (line 9 and 10). Line 7 shows the reference to the schema (analogous

5The subject and the object can also be blank nodes or literals which is not relevant in this
context, and therefore, more information can be found in (Manola et al., 2014).

130

to an XML schema) for the concrete definition6 of the RDF. Furthermore, this

RDF defines a single CUSTOMER with its id (CUSTOMER C ID) (line 9) and

its email address (CUSTOMER C EMAIL) (line 10).

This triple representation leads to a great flexibility, as structured as well as

unstructured data can be described in an uniform way (Duan et al., 2011) and so,

huge RDF data silos like DBPedia (DBPedia, 2016) which collects and structures

data from Wikipedia in RDF-based form have been implemented. Currently, there

is a W3C recommendation for RDF version 1.1 (Manola et al., 2014) that extends

RDF 1.0 with more data types, serialization formats and other details (Wood,

2014).

However, not only is it important to structure data and transform them in

machine-readable and understandable form, it is also crucial to have a standardized

query language to access RDF data in an uniform way. Thus, SPARQL was

developed and also recommended (in version 1.1) by W3C (Wood, 2014).

8.1.2 SPARQL

In order to access RDF data via SPARQL Protocol and RDF Query Language,

they have to be exposed as so-called SPARQL endpoints. SPARQL queries are

then issued against these endpoints and the results (if there are) are returned.

For the sake of brevity a detailed discussion about SPARQL and its language

constructs the interested reader is guided to (Harris & Seaborne, 2013). This

section only covers those language constructs necessary for implementing SQL

equivalent SPARQL queries in the context of the FVPD CUSTOMER scenario.

A generic SPARQL query that retrieves all RDF data can be states as follows:

Listing 8.2: Generic SPARQL Query

1 @pref ix pre : <http :// k o h l e r j e n s . de/CUSTOMER/ resource>

2 SELECT ∗ WHERE { ? s u b j e c t ? p r e d i c a t e ? ob j e c t .}

This can be regarded as semantically equal to an SQL query that queries for

all rows of a certain relation as depicted in Listing 8.3.

Listing 8.3: Generic SQL Query

1 SELECT ∗ FROM <table name>

6and e.g. for the validity check of the RDF

131

Listing 8.2 compared against Listing 8.3 illustrates fundamental differences as

well as similarities of SPARQL and SQL:

• A SPARQL query is always formulated as a query for triples, so the WHERE

clause must always contain a triple statement in form of subject, predicate

and object.

• The semantic meaning of WHERE (Listing 8.2) and FROM (Listing 8.3) is

equal. In SPARQL, the endpoint is usually defined as a prefix and queries

are usually issued against a single endpoint that contains all relevant data.

Indeed, the FROM keyword in SPARQL can be used to query different

endpoints, however this is advanced in SPARQL 1.1 (Harris & Seaborne,

2013) where the SERVICE keyword is introduced.

• Both, SPARQL and SQL return unordered sets as result sets, containing

sets of triples or sets of tuples respectively.

• Most of the SQL keywords (e.g. ORDER BY, DISTINCT, LIMIT, etc.) can

also be used in SPARQL and have the same semantic meaning.

• The close relation between SPARQL and SQL is also elaborated in more

detail in (Cyganiak & Cyganiak, 2005) where SPARQL is reduced to Codds

relational model (Codd, 1970) which is also the foundation for SQL.

In order to not losing the scope of the chapter, further SPARQL language

constructs (i.e. DESCRIBE, CONSTRUCT, ASK or further data manipulation

constructs) are not discussed here. For this, the interested readers attention is

drawn to (Harris & Seaborne, 2013).

The goal here is to transfer the FVPD approach to the architecture depicted

in Figure 8.2. With respect to this, the FVPD CUSTOMER data set (cf. Section

6.1) is exposed as SPARQL endpoints (one endpoint for each partition) in order to

provide a security and privacy-aware access to the data. Above that, the response

time of this setup is compared against a non-partitioned and non-distributed

CUSTOMER data set, also exposed as a single SPARQL endpoint. In order to

remain comparable to the previous evaluation in Chapter 6, the same data set

from the TPC-W benchmark and the same physical evaluation infrastructure

is used. This chapter shows how the response time is affected when relational

data are exposed as SPARQL endpoints in RDF-based form and how the FVPD

approach influences the response time.

132

The integration of the FVPD approach in such a federated architecture has

several implications and raises various research questions which are outlined in

the following problem formulation in more detail.

8.2 Problem Formulation

The author of this work proposes to include security and privacy into to context

of linked data (LD). Generally, as the name LD suggests, data should be linked.

However, it might not be clear at first sight which data are confidential or sensitive

or even worse, which data might become confidential and sensitive when they

are combined with other data. Hence, the proposed FVPD approach to increase

the level of security and privacy might also become viable in the context of LD.

Furthermore, in relevant literature no approach has dealt with security and privacy

in this context so far. Above that, it is worth mentioning that not even one of the

W3C standards or recommendations considered security, privacy or performance

in LD. Indeed, there are 2 papers (Rakhmawati et al., 2013) and (Betz et al.,

2012) that mention copyright, data ownership and security, but only in a small

section. Therefore, the challenge of privacy and security is considered as neglected

so far. To substantiate the FVPD approach for LD, the following 4 best practices

(Berners-Lee, 2006) are worth mentioning:

• IRIs (or URIs) to uniquely identify LD resources should be used

• HTTP as the basic protocol for the WWW (and therefore also for the

Semantic Web) should be embedded in the IRIs

• LD resources should be published with standard protocols, i.e. RDF and

SPARQL

• resources should be linked with each other.

This chapter introduces the FVPD approach for RDF-based data in order to

improve the level of security and privacy and it measures how this approach affects

the response times of the FVPD RDF-based data. This results in a comparison

between the different SPARQL versions, namely version 1.0 and 1.1, and between

a FVPD and a non-distributed and non-partitioned RDF data set, based on the

TPC-W benchmark.

133

The architecture of the approach is illustrated in Fig. 8.5 and in Fig. 8.6.

Here, relational data (i.e. CUSTOMER data) are exposed as SPARQL endpoints

(via OBDA mappings), and thus, SPARQL query engines (e.g. Jena, Sesame, etc.)

become able to query these relational data.

Figure 8.5: TPC-W
CUSTOMER Table as
SPARQL Endpoint

Figure 8.6: FVPD TPC-W CUSTOMER
Partitions as SPARQL Endpoints

In contrast to federated RDF-based data stores, in the approach of this chapter,

there is no knowledge required which data (i.e. triples) are stored in which RDF

data store. In this approach, a SPARQL query is issued against a SPARQL

endpoint and the framework determines (via SPARQL query rewriting) which

private SPARQL endpoints are required to collect the queried triples. Thus,

the actual storage location of the triples remains hidden, and authorized clients

are able to query the endpoints without knowing their exact location or their

addresses, etc. To the best of the author’s knowledge this approach has not been

followed so far.

From a security and privacy point of view, it must be considered that (besides

the private SPARQL endpoints) the SPARQL endpoint for the original client

queries should also not be publicly available; it should represent an internal

endpoint, because of security and privacy-relevant data. On first sight, this is

contrary to the LD principles, but adapting the LD principles to private data

might be also a promising aspect.

Finally, this chapter is driven by a hypothesis that is stated as follows:

134

Relational data, with respective mappings exposed as RDF data and published

via SPARQL endpoints are vertically partitioned and distributed according to the

FVPD methodology. Thus, the FVPD approach improves the level of security

and privacy through physical and logical data distribution at comparable response

times which are in the same order of magnitude as in a non-partitioned and

non-distributed data set.

8.3 Formal Definitions

Before the actual formalization, the correctness proof and the complexity analysis,

a short remark concerning the Open and Closed World Assumption has to be

given, to illustrate that the described RDF-based data distribution approach does

not affect the semantic gap between incomplete data (Open World Assumption)

and its standard query language SPARQL, which operates under the assumption

that the underlying data is complete (Closed World Assumption).

8.3.1 Open and Closed World Assumption

This differentiation is outlined in greater detail in (Darari et al., 2014). In their

work, they refer to a previous work (Darari et al., 2013) where they add meta

data to their RDF-based data source that describe the data as either complete

or incomplete. Thus, they are able to describe the retrieved triples as either

certain, complete, or possible answers to the respective SPARQL queries. This is

an interesting and promising approach to bridge the semantic gap between RDF

and SPARQL. Moreover, this approach shows that the Open or Closed World

Assumption depends on the underlying data source and as the FVPD approach

focuses on the equality of the retrieved result sets (see above) and neither the

query nor the underlying data set are changed, the semantic gap is left untouched

here.

Hence, it has to be stressed that the focus of this chapter relies on complete

data sets (closed world assumption). SPARQL queries which refer to incomplete

data sets (open world assumption) are considered as a future work task.

135

8.3.2 Correctness

For the correctness proof, the following definitions are developed (analogous to

Section 2.1.2 for the relational approach) and proved in the following sections.

The definitions are based on the distinction between a non-FVPD data set and 2

corresponding FVPD data sets7. Therefore, the notion of the different kinds of

data sets has to be defined first.

The following formal notations are based on the seminal work of (Pérez et al.,

2006) and many subsequent works use these formalisms as well.

Definition 5. Triple

A triple t is defined in form t(subject, predicate, object) ∈ ((I ∪ B)× (I)×
(I ∪B ∪L)), with I as International Resource Identifies (IRIs), B as blank nodes,

and L as literals.

IRIs, represented as strings, are a superset of Uniform Resource Identifiers

(URIs) and they contain more Unicode characters to uniquely identify a resource

(e.g. a document, a web page, an image file, a video file, etc.) in the World Wide

Web.

A blank node denotes a resource for which a concrete IRIs has not been

established yet. Basically, it can be regarded as a placeholder for a IRI that has

to be defined (in the near future).

Lastly, a literal is a string representation of a concrete value for a triple (e.g.

a name, a date, a number, etc.). It is also possible to determine corresponding

data types (strings, integers, dates, etc.) for the value that the literal denotes.

Note that according to (Manola et al., 2014) a subject can either be an IRI or

a blank node. A predicate can only be an IRI and an object can either be an IRI,

a blank node or a literal.

In the thesis, the focus is on RDF data sets which corresponds to relational

database.

Definition 6. RDF data set for a relational database (RDB).

7the approach with more than 2 FVPD partitions works analogously

136

Let A be a set of attributes A = {a1, ..., an}, for a relation R(A) with a key

attribute a1. This attribute schema and the relation are converted into a RDF

data set with the following representation8:

• Class

An RDF schema class prefix:R is defined by the triple t(prefix:R, rdf:type,

rdfs:Class)9. The class prefix:R is called PKClass — primary key class.

• Properties

For each attribute ai ∈ A, 1 ≤ i ≤ n, there is a property prefix:ai defined

by the triple t(prefix:ai, rdf:type, rdf:Property)10. Each property prefix:ai is

therefore called attribute property.

• Row data set

Each row {rk1, rk2, ..., rkn} ∈ R(A) is represented as sets of triples in the

following way:

– t(prefix:rk1, rdf:type, prefix:R)

With respect to Definition 5, the subject of this triple contains the

primary key attribute value (ri1). Hence, it is called a PKInstance —

the primary key instance for the row in R(A).

– {t(prefix:rk1, prefix:ai, rkj) | 1 ≤ j ≤ n}, where the (row) value rkj is

considered as a literal — represented as a string.

The rest of the rows in relation R are represented according to triples in the

above-mentioned form.

The entire relation R(A) is represented as a union of the triples for all sets

defined above, denoted in the following way:

RDF(R(A)) = { t(prefix:R, rdf:type, rdfs:Class) } ∪

{ t(prefix:ai, rdf:type, rdf:Property) | ai ∈ A, 1 ≤ i ≤ n } ∪
8Note that in RDF it is allowed that IRIs are abbreviated with prefix definitions for the

corresponding namespaces. In the following formalization the IRIs namespace for all the triples
is simply denoted as prefix.

9The rdf:type property is usually used to state that a resource is an instance of a class. The
prefix rdf: is a namespace for <http://www.w3.org/1999/02/22-rdf-syntax-ns#>. The prefix
rdfs: is a namespace for <http://www.w3.org/2000/01/rdf-schema#>; rdfs:Class defines all
RDF Schema classes.

10rdf:Property denotes the class of all RDF properties.

137

{ t(prefix:rk1, rdf:type, prefix:R) | ∀{rk1, rk2, ..., rkn} ∈ R(A) } ∪

{ t(prefix:rk1, prefix:ai, rkj) | ∀{rk1, rk2, ..., rkn} ∈ R(A) and

1 ≤ j ≤ n }

Hence, RDF(R(A)) is called RDB RDF data set based on A and R(A).

For the sake of better readability, it is called D in the following sections.

Table 8.1 summarizes the mapping accordingly.

Relational Model RDF
Table Class

Attribute Property
Attribute name Object

Row value Literal

Table 8.1: Mapping between Relational Model and RDF

Each D can be divided into two conceptional sets corresponding to the concep-

tual schema of relation R(A) which in Semantic Web is called Ontology; Firstly,

an instance set containing the primary key instances and secondly, a value set

containing triples for the properties from the conceptual set with concrete values

for the corresponding rows.

The rest of the chapter deals with relational database data exposed as RDF

data sets. Here, each row in R(A) can be depicted as a graph like in Figure 8.7.

Figure 8.7: Graph for Primary Key Instance for a Row in R(A)

Definition 7. SPARQL RDB Selection

Let A be a set of attributes A = {a1, ..., an}, for a relation R(A) with a key

attribute a1. Let D be the RDB RDF data set based on A and R(A).

138

A SPARQL query of the form:

SELECT {?objecti | for all i, 1 ≤ i ≤ n}

WHERE { {?x prefix:ai literali . | for some i, 1 ≤ i ≤ n} ∪

{?x prefix:ai ?objecti . | for all i, 1 ≤ i ≤ n}

}

determines the set of all tuples that satisfy the conditions stated by the set of query

patterns { ?x prefix:ai literali . | for some i, 1 ≤ i ≤ n }.11

A SPARQL query of this form is called SPARQL RDB Selection query.

The result set of such a query is denoted by the following formula:

RS ← [[QSELECT {?objecti | for all i, 1 ≤ i ≤ n} WHERE { GraphPattern}]]D

where

GraphPattern = {?x prefix:ai literali . | for some i, 1 ≤ i ≤ n} ∪

{?x prefix:ai ?objecti . | for all i, 1 ≤ i ≤ n}.

Using a SPARQL RDB Selection query, tuples that correspond to PK Instance

having the PK Instance as subject are selected. The statements in {?x prefix:ai

literali . | for some i, 1 ≤ i ≤ n} impose restrictions on this PK Instance. Then,

the statements in {?x prefix:ai ?objecti . | for all i, 1 ≤ i ≤ n} retrieve all values

related to the PK Instance. The result set produced by this kind of query is

similar to the result set produced by the relational database selection query (cf.

Section 1).

Definition 8. SPARQL RDB Projection

Let A be a set of attributes A = {a1, ..., an}, for a relation R(A) with a key

attribute a1. Let D be the RDB RDF data set based on A and R(A).

A SPARQL query of the form:

SELECT {?objecti | for some i, 1 ≤ i ≤ n}
11More exact the result is a set of tuples, where each tuple is a singleton containing a primary

key instance.

139

WHERE { {?x prefix:ai ?objecti . | for some i, 1 ≤ i ≤ n}

}

determines a set of tuples formed by each of the variable in the list of variables in

the query: {?objecti | for some i, 1 ≤ i ≤ n}.

A SPARQL query of this form is called SPARQL RDB Projection query.

The result set of such a query is denoted by the following formula:

RS ← [[QSELECT {?objecti | for some i, 1 ≤ i ≤ n} WHERE { GraphPattern }]]D

where

GraphPattern = {?x prefix:ai ?objecti . | for some i, 1 ≤ i ≤ n}.

Such a SPARQL RDB Projection query only retrieves a set of tuples. The

values in the retrieved tuples correspond to the attribute properties used in the

GraphPattern. A SPARQL RDB Projection query is denoted in the following

way:

ΠSPARQL
(ai,...,aj) D

where 1 ≤ i < j ≤ n. Furthermore, the abbreviated form ΠSPARQL
ω D, where

ω = (ai, . . . , aj), 1 ≤ i < j ≤ n is used for the sake of better readability. The

result set is defined as:

RS ← ΠSPARQL
ω D.

Definitions 7 and 8 show that the basic difference between SPARQL RDB

Selections and SPARQL RDB Projections are the way the filter conditions (i.e.

literals or objects) are formulated. In both cases the result set is a set of tuples.

Hence, the FPVD approach is applicable for both kinds of queries, but for the

sake of better readability, the rest of the chapter is based on SPARQL RDB

Projections. SPARQL RDB Selections work analogously. When it is clear from

the context, SPARQL Projection or Projection will be used instead of SPARQL

RDB Projection.

140

Definition 9. FVPD and non-FVPD RDF data sets

Let A be a set of attributes A = {a1, ..., an}, for a relation R(A) with a key

attribute a1. Let D be the RDB RDF data set based on A and R(A), and let two

RDB RDF data sets Dv1 and Dv2 be defined, such that

• D = Dv1 ∪ Dv2

indicating that the union (i.e. the join) of the triples in Dv1 and Dv2 result

in the original non-FVPD data set D,

and

• Dv1 ∩ Dv2 =

{ t(prefix:R,rdf:type,rdfs:Class) } ∪

{ t(prefix:a1, rdf:type, rdf:Property) | a1 ∈ A } ∪

{ t(prefix:rk1, rdf:type, prefix:R) | ∀{rk1, rk2, ..., rkn} ∈ R(A) } ∪

{ t(prefix:rk1, prefix:a1, rk1) | ∀{rk1, rk2, ..., rkn} ∈ R(A)}

Then, Dv1 and Dv2 are called FVPD data sets for the non-FVPD data

set D.

It is easy to show that Dv1 and Dv2 are the RDB RDF data sets based on lists

of attributes B and C such that A = B ∪ C and two relations Sv1(B) and Tv2(C)

according to Definition 6. Above that, the definition for more than two FVPD

data sets works analogously and is not given here.

Definition 10. Reconstruction queries

Let A be a set of attributes A = {a1, ..., an}, for a relation R(A) with a key

attribute a1. Let D be the RDB RDF data set based on A and R(A) — a non-FVPD

data set. Let Dv1 and Dv2 be two FVPD data sets for D.

Let ΠSPARQL
(ai,...,aj) , (1 ≤ i < j ≤ n) be a projection query for D such that

RS ← ΠSPARQL
(ai,...,aj) D.

Let ΠSPARQL
v1(a1,ak,...,al)

be a projection query for Dv1 and let ΠSPARQL
v2(a1,am,...,ao) be a

projection query for Dv2 with 1 ≤ i ≤ k, l,m, o ≤ j ≤ n, such that

RSv1 ← ΠSPARQL
v1(a1,ak,...,al)

Dv1 and RSv2 ← ΠSPARQL
v2(a1,am,...,ao)Dv1.

141

The projections queries ΠSPARQL
v1(a1,ak,...,al)

and ΠSPARQL
v2(a1,am,...,ao) are called reconstruc-

tion queries for the projection query ΠSPARQL
(a1,...,aj) , if and only if

RS = Π(ai,...,aj)(RSv1 ./a1 RSv2).

Note that in the last equation the projection is over a table which represents

the result from the join operation. Similarly to the relational database case (cf.

Section 1) this last projection is necessary if the the property for the key attribute

is not part of the conditions for the SPARQL Projection query.

Regarding all definitions above, it can be stated that the FVPD methodology

(see Definition 4) is applicable in this restricted case where RDF data have a

corresponding representation of relational data: in a sense that the representation

of an RDB RDF dataset in several partitions does not contain any security or

privacy relevant data.

The correctness of the approach is stated in Theorem 2.

Theorem 2. Let A be a set of attributes A = {a1, ..., an}, for a relation R(A)

with a key attribute a1. Let D be the RDB RDF data set based on A and R(A) —

a non-FVPD data set. Let Dv1 and Dv2 be two FVPD data sets for D.

For each ΠSPARQL
(ai,...,aj) , (1 ≤ i < j ≤ n) projection query for D, such that

RS ← ΠSPARQL
(ai,...,aj) D,

there exist two projection queries ΠSPARQL
v1(a1,ak,...,al)

for Dv1 and ΠSPARQL
v2(a1,am,...,ao) for

Dv2, that are reconstruction queries for the original projection query ΠSPARQL
(ai,...,aj) .

The formulation of the algorithm for the creation of the two reconstruction

queries and the proof of the theorem are a straightforward application of the

approach taken for Theorem 1 given in Section 1.

8.3.3 Complexity

The reconstruction queries only iterate through the triples of each FVPD data set

and if there are matches with other partitions, the triples are reconstructed, i.e.

joined. As the reconstruction queries only have to iterate through every FVPD

data set, this results in an overall complexity of nm, with n as the number of

triples and m as the number of partitions. Furthermore, as m as the number of

142

partitions typically is rather small12, the approach seems applicable in practical

use case scenarios13.

8.4 Related Work

The problem of querying federated SPARQL endpoints has emerged with a constant

data growth (Quilitz & Leser, 2008). With respect to this, (Haase et al., 2010)

developed requirements for an efficient way of querying several RDF repositories

at once, which can be summarized as follows:

• The selection of the data repositories:

– Which repositories are able to answer the query and which ones can

be neglected?

– How are the results handled if big repositories return a lot of results?

– How often is data in a repository changed and how does that affect the

query results?

• The lifecycle of a federation:

– How long is a certain federation able to provide reliable, current, etc.

results?

• The federated queries:

– Are they short (easy) or long (complex) running queries?

– Is it allowed to manipulate data in repositories?

– What happens if a repository provider permits manipulations and

another one forbids them?

• The endpoint definition:

– How is the problem of different SPARQL and RDF versions dealt with?

• The Service Level Agreements (SLAs):

– How are SLAs between client and provider negotiated?

12in the outlined approach of this chapter: m = 2
13although further evaluation with real world use cases have to be conducted as future work

tasks

143

– What kind of SLAs are available and how are different SLAs managed?

These considerations show the challenging character of federated queries over

several endpoints. RDF uses serializable formats for storing these heterogeneous

data. This is contrary to the relational character of traditional databases and

as most of current applications use relational databases as their foundation, it is

considered unlikely that these relational data are all transferred to RDF-based

formats. Hence, there are different approaches, called Ontology Based Data

Access (OBDA) frameworks to expose relational data as SPARQL endpoints. A

current W3C recommendation defines Relational Database to Resource Description

Framework Mapping Language (R2RML) (Das et al., 2012) as a mapping language

for relational data to RDF. This recommendation defines a mapping that transfers

relations to RDF graphs and implementing Semantic Web frameworks are then

able to expose these data as SPARQL endpoints. Hence, exposing relations as

SPARQL endpoints can be implemented in basically two ways (Rodŕıguez-Muro

& Rezk, 2015):

• On the one hand, relational data are mapped to RDF and these RDF triples

are then stored in a native tuple store. Thus, the relational data remain

untouched, however, loading and serializing relational data into RDF may

require long lasting loading phases and the challenge of data consistency

between the relations and the triples is complex to solve.

• On the other hand, relational data mapped to RDF and the OBDA frame-

work translates the SPARQL queries according to the mapping into tradi-

tional SQL queries. This approach is also known as building a virtual RDF

graph. It avoids the previously mentioned disadvantages at cost of perfor-

mance and at cost of a complex query rewriting procedure from SPARQL

to SQL.

These two approaches demonstrate the challenging question of implementing

a single RDF repository (first approach) or dealing with several federated ones

(second approach). As the introduction of the FVPD approach contradicts the

single repository approach, the federated one is addressed in the remainder of

this chapter. However, although the SPARQL 1.1 standard includes federated

queries, their optimizations are still open research challenges and this is also the

case for efficient transformations from SPARQL to SQL queries. In their empirical

144

study (Arias et al., 2011) the authors determined that in SPARQL queries the join

operator is mostly used, besides the SELECT operator which is used in 99% of

all queries14. Therefore, optimizations for the join of federated RDF data (similar

to the join in the FVPD approach, cf. Section 2.2) still promises performance

improvements. With respect to this, (Görlitz & Staab, 2011) give an exhaustive

summary of possible join algorithms (e.g. remote join15, mediator join16 and

further improvements of them) for queries over federated RDF repositories.

Summarizing these approaches results in attempts to find optimized query

execution plans to improve the overall response time, i.e. the response time which

includes the collection of the result sets, their join and their transport to the client.

On the contrary, (Schmidt et al., 2011) claim that optimized query execution

plans might be of limited usage especially in federated RDF data stores. They

pointed out that such strategies mainly rely on the respective SPARQL endpoints

meta data (repository size, response time or other SLAs) and that it cannot be

predicted if a certain repository is suitable to answer a query or not. This is

different compared to relational database scenarios and especially when the FVPD

approach is applied where it is clear which relations are containing the respective

results and where it is known which partitions are required to answer the query.

Despite the fact that a central repository is faster compared to a federated

one, various Semantic Web frameworks support both approaches. However, it has

to be noted that there is a trend to remove the support for exposing relational

data as SPARQL endpoints because of the severe performance issues (Apache,

2015) (Sesame, 2015). This contradicts the W3C R2RML standard as well as the

challenging fact that data volumes steadily increase. In contrast to this, there are

approaches that further pursue the idea of federated data stores, like (Wu et al.,

2014) (Harris et al., 2009) (Harth et al., 2007) where data are partitioned across

several computing nodes aiming at answering SPARQL queries more efficiently

(e.g. in parallel), as only smaller result sets have to be joined. Interestingly, (Wu

et al., 2014) identified In-Memory hash join as the most commonly used join

algorithm in federated RDF scenarios like applied in Section 5.1 for the relational

FVPD data set.

14besides e.g. ASK, CONSTRUCT or DESCRIBE operators
15joins are processed instantly on the respective remote repository (if possible) and only the

result sets are transferred to the client
16a central instance (mediator) collects all result sets and joins them in a central location

145

8.4.1 Caching

Other approaches concerning federated SPARQL queries use query caching. Here,

(Martin et al., 2010) present a caching architecture analogous to traditional

relational database caches (also depicted in Section 5.2) that keeps RDF triples

in the cache as long as the subject, predicate or object is not manipulated. They

were able to improve the response time by factor 10 with repositories that contain

more than 1 million triples. However, this approach is more complex compared to

relational database caching (i.e. relation or subset relation caching), as SPARQL

always queries for concrete triples and if a query changes, the results cannot be

collected from the faster cache memory, as they have not been cached yet (Martin

et al., 2010). Hence, query caching is only considered applicable in scenarios where

queries do not change very often.

8.4.2 Benchmarking

Related works concentrate on benchmarking the response time of single or federated

RDF repositories. In recent years, there has been a discussion about the usage

of artificial or real-world SPARQL queries (Morsey et al., 2011) (Qiao & Özsoyo,

2015) which influenced the benchmark development considerably. With respect to

this, the following list mentions benchmarks (without being exhaustive) which

are widely adopted and used throughout academic research as well as in industry

projects:

• Berlin SPARQL benchmark (BSBM) (Bizer & Schultz, 2001)

BSBM uses an e-commerce scenario in which customers post reviews about

products offered by various vendors. This is an interesting benchmark as it is

also considered viable to measure the response time based on relational data

(Morsey et al., 2011). However, the data scheme shows that the customer

scheme only contains three attributes (name, country, mbox sha1sum) and

this is not comparable to the previously used TPC-W benchmark in Section

6.1 of this work.

• DBPedia SPARQL benchmark (DBPSB) (Morsey et al., 2011)

DBPSB focuses on unstructured Wikipedia data that is stored in RDF

triples. Unfortunately, it lacks the structured character of relational data

146

exposed as SPARQL endpoints. Moreover, no further similarities with the

TPC-W benchmark could be found.

• Leigh University Benchmark (LUBM) (Guo et al., 2005)

LUBM uses an university scenario with students and professors, and no

further similarities with the TPC-W benchmark scenario and its customer

relation could be found.

• SP2 Benchmark (SP2) (Schmidt et al., 2009)

SP2 is based on the Digital Bibliography Library Project (DBLP) (DBLP,

2016) which manages authors and their publications at conferences, in

journals, etc. Hence, here also no similarities with the TPC-W benchmark

could be determined.

• RBench (Qiao & Özsoyo, 2015)

RBench also uses the DBPedia data set, but in contrast to SP2 it uses

real-world queries instead of artificially generated ones which the previously

mentioned benchmarks do. Hence, here also no parallels in the data set to

the TPC-W benchmark could be found.

• FedBench (Schmidt et al., 2011)

FedBench was defined for the usage in federated environments to measure

the respective response time. It also uses various data sets from DBPedia,

GeoNames (GeoNames, 2016), KEGG (Kanehisa Laboratories, 2016), etc.

Again the lacking similarities with the TPC-W data set are the cause for

not considering this benchmark any further in the context of this work.

These are reasons, beside the main reason which is the comparability with

the previous chapters of this work, why the TPC-W benchmark was transferred

to an RDF scenario where the CUSTOMER relation was exposed as one (single

repository implementation) or more (federated repository scenario) SPARQL

endpoints. Accordingly, it will be interesting to compare the results of the

evaluation outlined in Chapter 6 with the response times of this chapter.

8.5 Approach

The general approach to expose relational data as RDF triples according to R2RML

(Das et al., 2012), offers two possibilites. Firstly, data not only can be exposed as

147

RDF triples (and stored internally as relational data), but secondly, also converted

into RDF triples. This conversion has the advantage that it abstracts from the

underlying triple store and various tiple store (e.g. GraphDB (Ontotext, 2016),

etc.) implementations can be used to store these triples. However, the approach

in this chapter uses the first approach that exposes relational data as SPARQL

endpoints in order to remain comparable to the previous chapters, especially to

the evaluation in Chapter 6.

This approach benefits from the long history of relational databases and

their optimizations, and this section contributes to the idea of transferring these

concepts and exploiting them with RDF-based data. This leads to the hypothesis

that traditional optimization techniques can be applied to RDF stores in order to

benefit from performance improvements. This hypothesis was initially elaborated

by (Sequeda & Miranker, 2013), but the authors were not able to clearly confirm

it (their results only provide hints to support it). Moreover, they regarded

commercial database systems with advanced optimization capabilities compared

to Open Source implementations. They also stated that the optimizer is not always

able to choose the best query optimization strategy (e.g. cost-based, rule-based,

etc.). They concluded that a lot of optimization potential could be achieved

by improving federated join operations, which have already been elaborated by

mentioned works in Section 8.4.

Since there are Semantic Web frameworks that support exposing relational data

as SPARQL endpoints, it is an interesting question how these frameworks perform

when the FVPD approach is applied to the underlying relational databases.

For this, the SPARQL query engines listed in (W3C, 2016a) were taken into

consideration and analyzed for their suitability based on the criteria mentioned

in Table 8.2. Here for the sake of clarity, only the most prominent query engines

with a strong focus on their current development states and their maintainability

are analyzed any further.

• FedX (FluidOperations, 2016)

FedX, an Open Source implementation, is able to query federated SPARQL

endpoints. It also provides full SPARQL 1.1 support in its latest version.

On the one hand, it has to be mentioned that FedX is based on the Sesame

framework for accessing various kinds of RDF data stores. On the other hand,

FedX abstracts from Sesame and integrates federated query capabilities (e.g.

148

Table 8.2: Semantic Web Frameworks Analysis

Criteria
/ Query
Engine

Currently
Developed
and Main-

tained

SPARQL
1.1

Support

Open
Source
Imple-

mentation
Available

SPARQL
Endpoint
Access

Support
for

Relational
Data

Stores
FedX Yes Yes Yes Sesame Yes

Apache
Jena

Yes Yes Yes Jena Deprecated

Sesame Yes Yes Yes Sesame Yes

D2RQ Yes No Yes Jena,
Sesame,
and others

Yes

Virtuoso Yes Yes Limited ver-
sion

Jena, Sesame
and othersa

Yes

Ontop Yes Preliminary Yes Sesamea Yes

Blazegraph Yes Preliminary Yes Sesamea No

GraphDB Yes Yes Limited ver-
sion

Sesame,
Jenaa

No

DARQ Noa No Yes Jena Yes

adenote the exclusion criteria for the further analysis of the framework

SPARQL 1.1) which are the main reason why this framework is also taken

into consideration for the implementation and evaluation.

• Apache Jena (Apache, 2016c)

This prominent Open Source implementation considered the support for

relational databases as RDF triple stores deprecated because of the significant

performance gains of native RDF triple (e.g. In-Memory or file-based) stores

(Apache, 2015). However, due to its wide distribution, its support for

SPARQL 1.1 and its Open Source character, it is used as a foundation

for various Semantic Web frameworks (e.g. Ontop, FedX, etc.). These

are the main reasons why this framework (in particular the API to access

SPARQL endpoints) is used for the implementation and evaluation tasks in

the following sections.

• Sesame (Sesame, 2016)

This Open Source Java framework is specially designed for the manage-

ment of RDF-based data. Especially the parsing and querying capabilities

of this framework are promising. However, the support for exposing re-

149

lational database data as SPARQL endpoints is deprecated in the latest

versions (Sesame, 2015). Therefore, only the Sesame API to access SPARQL

endpoints is used in the following implementation and evaluation section.

• D2RQ (Cyganiak, 2016)

This Open Source framework enables a read-only access to relational data

exposed as virtual RDF graphs. Thus, no loading or transformation phase

to transform relational data to RDF is required. As relational data can be

exposed as SPARQL endpoints, these endpoints can be accessed with every

SPARQL query engine. A disadvantage is that it only provides preliminary

support for SPARQL 1.1, but the possibility to expose relational data as

SPARQL endpoints perfectly fits into the FVPD scenario and therefore this

framework is used as a foundation for all implementation (cf. Figure 8.5

and Figure 8.6) and evaluation tasks in the following sections.

• Virtuoso (Virtuoso, 2016)

Virtuoso, which is only partially Open Source, is able to integrate various

different data sources like relational databases, file-based storages, etc.

However, the integration capabilities are restricted to the commercial version

of the framework (Virtuoso, 2016). Above that, Virtuoso as a Universal

Server (Virtuoso, 2016) only provides access to the data via other APIs

like e.g. Jena or Sesame. Therefore, this framework is not considered any

further.

• Ontop (Ontop, 2016)

A promising feature of this Open Source framework is that it already

supports R2RML as the mapping language from relations to their RDF-

based representations. Moreover, it includes various optimization strategies

concerning the join of federated RDF data (Rodŕıguez-Muro & Rezk, 2015)

(which amongst other techniques e.g. concentrate on the concrete join

ordering or the removal of unnecessary joins based on table meta data)

and it offers preliminary support for SPARQL 1.1 queries. However, in

order to exploit these features, a mapping (either OBDA or R2RML) of the

RDF-based data to the relational data is required. Moreover, for accessing

a SPARQL endpoint, Ontop also heavily relies on the Sesame framework

and therefore the implementation and evaluation of Sesame also holds for

Ontop.

150

• Blazegraph (Systap, 2016)

Blazegraph is also an Open Source implementation of a Semantic Web

framework. It also relies on Sesame and offers support for SPARQL 1.1

queries. Similar to FedX is abstracts from Sesame with its own API and

this is a promising architecture for further improvements. Hence, this is also

considered in the implementation and evaluation in the following sections.

• GraphDB (Ontotext, 2016)

GraphDB (formerly called OWLIM) is also available as an Open Source

implementation. However, the publically available version is restricted to

only two simultaneous SPARQL queries. The API of GraphDB shows that

this framework can be used with Sesame as well as with Jena for publishing

and accessing RDF data. Hence, the implementation and evaluation of

Jena and Sesame can easily be transferred to GraphDB and the respective

measurements also hold for GraphDB. Hence, this framework is neither

implemented nor evaluated separately.

• DARQ (Quilitz, 2006)

DARQ, as another Open Source implementation, also unites various resources

(e.g. databases, files, In-Memory stores, etc.) and gives the impression of

working with a single centralized repository. However, the last update was in

2006 and there are no plans to continue or even maintain the implementation

(Quilitz, 2006). Hence, this framework is also not considered any further.

More information about the above-mentioned frameworks can be found at

their respective websites and a more exhaustive analysis and comparison can

be found in (Rakhmawati et al., 2013). Finally, this brief overview lead to the

analysis of D2RQ as the basic OBDA mapping and Jena, Sesame, FedX and

Blazegraph with respect to their response time in FVPD and in non-partitioned

and non-distributed scenarios. Figure 8.5 and Figure 8.6 illustrate the entire

approach based on the TPC-W CUSTOMER relation for the FVPD as well as for

the non-partitioned and non-distributed setup.

8.6 Implementation

The following example according to (Das et al., 2012) gives an overview about the

concrete transfer of the relational approach to the RDF-based one. The relational

151

table17 CUSTOMER is stated as follows and for the sake of better readability,

illustrated with three rows (i.e. three customer instances).

Table 8.3: CUSTOMER Table with 5 Columns

C ID C FNAME C LNAME C BALANCE C DISCOUNT
1 Homer Simpson 10 10
2 Marge Simpson 20 20
3 Bart Simpson 30 30

Based on the R2RML mapping, this results in the following RDF triples:

Listing 8.4: R2RML CUSTOMER RDF Mapping Example

1 PREFIX vocab : http :// k o h l e r j e n s . de/d2rq customer1 / r e sou r c e /vocab/

2

3 <http :// k o h l e r j e n s . de/ d2rq customer1/1> rd f : type vocab :CUSTOMER .

4 <http :// k o h l e r j e n s . de/ d2rq customer1/1> vocab :C FNAME ”Homer” .

5 <http :// k o h l e r j e n s . de/ d2rq customer1/1> vocab :C LNAME ”Simpson” .

6 <http :// k o h l e r j e n s . de/ d2rq customer1/1> vocab :C BALANCE ”10” .

7 <http :// k o h l e r j e n s . de/ d2rq customer1/1> vocab :C DISCOUNT ”10” .

8

9 <http :// k o h l e r j e n s . de/ d2rq customer1/2> rd f : type vocab :CUSTOMER .

10 <http :// k o h l e r j e n s . de/ d2rq customer1/2> vocab :C FNAME ”Marge” .

11 <http :// k o h l e r j e n s . de/ d2rq customer1/2> vocab :C LNAME ”Simpson” .

12 <http :// k o h l e r j e n s . de/ d2rq customer1/2> vocab :C BALANCE ”20” .

13 <http :// k o h l e r j e n s . de/ d2rq customer1/2> vocab :C DISCOUNT ”20” .

14

15 <http :// k o h l e r j e n s . de/ d2rq customer1/3> rd f : type vocab :CUSTOMER .

16 <http :// k o h l e r j e n s . de/ d2rq customer1/3> vocab :C FNAME ”Bart” .

17 <http :// k o h l e r j e n s . de/ d2rq customer1/3> vocab :C LNAME ”Simpson” .

18 <http :// k o h l e r j e n s . de/ d2rq customer1/3> vocab :C BALANCE ”30” .

19 <http :// k o h l e r j e n s . de/ d2rq customer1/3> vocab :C DISCOUNT ”30” .

A SPARQL query that retrieves all CUSTOMERS can be formulated as:

Listing 8.5: Non-FVPD SPARQL CUSTOMER Query

1 PREFIX vocab : http :// k o h l e r j e n s . de/ d2rq customer / r e sou r c e /vocab/

2

3 SELECT ? customerID ?fname ? lname ? balance ? d i scount

4

5 WHERE {
6 ?x vocab :CUSTOMER C ID ? customerID .

7 ?x vocab :CUSTOMER C FNAME ?fname .

17the table is shortened for the sake of better readability

152

8 ?x vocab :CUSTOMER C LNAME ?lname .

9 ?x vocab :CUSTOMER C BALANCE ? balance .

10 ?x vocab :CUSTOMER C DISCOUNT ? di scount .

11 }

The partitioning approach analogous to the one in Chapter 6, can be repre-

sented as follows (Table 8.4 and Table 8.5):

Table 8.4: Partition 1 of CUSTOMER Table with 5 Columns

C ID C FNAME C LNAME
1 Homer Simpson
2 Marge Simpson
3 Bart Simpson

Table 8.5: Partition 2 of CUSTOMER Table with 5 Columns

C ID C BALANCE C DISCOUNT
1 10 10
2 20 20
3 30 30

Accordingly, Listing 8.6 and Listing 8.7 depict the RDB to RDF representation

of the FVPD partitions.

Listing 8.6: R2RML CUSTOMER Partition 1 RDF Mapping Example

1 PREFIX vocab : http :// k o h l e r j e n s . de/d2rq customer1 / r e sou r c e /vocab/

2

3 <http :// k o h l e r j e n s . de/ d2rq customer1/1> rd f : type vocab :CUSTOMER .

4 <http :// k o h l e r j e n s . de/ d2rq customer1/1> vocab :C FNAME ”Homer” .

5 <http :// k o h l e r j e n s . de/ d2rq customer1/1> vocab :C LNAME ”Simpson” .

6

7 <http :// k o h l e r j e n s . de/ d2rq customer1/2> rd f : type vocab :CUSTOMER .

8 <http :// k o h l e r j e n s . de/ d2rq customer1/2> vocab :C FNAME ”Marge” .

9 <http :// k o h l e r j e n s . de/ d2rq customer1/2> vocab :C LNAME ”Simpson” .

10

11 <http :// k o h l e r j e n s . de/ d2rq customer1/3> rd f : type vocab :CUSTOMER .

12 <http :// k o h l e r j e n s . de/ d2rq customer1/3> vocab :C FNAME ”Bart” .

13 <http :// k o h l e r j e n s . de/ d2rq customer1/3> vocab :C LNAME ”Simpson” .

Listing 8.7: R2RML CUSTOMER Partition 2 RDF Mapping Example

1 PREFIX vocab : http :// k o h l e r j e n s . de/d2rq customer2 / r e sou r c e /vocab/

2

153

3 <http :// k o h l e r j e n s . de/ d2rq customer2/1> rd f : type vocab :CUSTOMER .

4 <http :// k o h l e r j e n s . de/ d2rq customer2/1> vocab :C BALANCE ”10” .

5 <http :// k o h l e r j e n s . de/ d2rq customer2/1> vocab :C DISCOUNT ”10” .

6

7 <http :// k o h l e r j e n s . de/ d2rq customer2/2> rd f : type vocab :CUSTOMER .

8 <http :// k o h l e r j e n s . de/ d2rq customer2/2> vocab :C BALANCE ”20” .

9 <http :// k o h l e r j e n s . de/ d2rq customer2/2> vocab :C DISCOUNT ”20” .

10

11 <http :// k o h l e r j e n s . de/ d2rq customer2/3> rd f : type vocab :CUSTOMER .

12 <http :// k o h l e r j e n s . de/ d2rq customer2/3> vocab :C BALANCE ”30” .

13 <http :// k o h l e r j e n s . de/ d2rq customer2/3> vocab :C DISCOUNT ”30” .

Based on the original query (Listing 8.5), the FVPD framework creates the

separation into 2 reconstruction queries. This can be stated as follows:

Listing 8.8: Reconstruction SPARQL 1.0 TPC-W CUSTOMER Queries

1 # Query 1 :

2 PREFIX vocab : http :// k o h l e r j e n s . de/ d2rq customer1 / r e sou r c e /vocab/

3 SELECT ? customerID ?fname ? lname

4

5 WHERE {
6 ?x vocab :CUSTOMER C ID ? customerID .

7 ?x vocab :CUSTOMER C FNAME ?fname .

8 ?x vocab :CUSTOMER C LNAME ?lname .

9 }
10

11 # Query 2 :

12 PREFIX vocab : http :// k o h l e r j e n s . de/ d2rq customer2 / r e sou r c e /vocab/

13

14 SELECT ? customerID ? balance ? d i scount

15

16 WHERE {
17 ?x vocab :CUSTOMER C ID ? customerID .

18 ?x vocab :CUSTOMER C BALANCE ? balance .

19 ?x vocab :CUSTOMER C DISCOUNT ? di scount .

20 }

The actual construction of the reconstruction queries is analogous to the

approach outlined in the relational approach and illustrated in Figure 8.8.

An XML-file based mapping defines which properties (i.e. attributes in the

relational approach) are stored in which FVPD data store. From this XML

mapping file, the location of the data stores and the distribution of the properties

is derived to create the reconstruction queries which are then issued against the

154

Figure 8.8: Mapping A SPARQL Query to its Corresponding Reconstruction
Queries

private SPARQL endpoints (cf. Figure 8.6). Thus, the private endpoints remain

hidden as they are encoded in a configuration file in the SeDiCo framework.

With respect to the comparability of these SPARQL 1.0 queries against a

SPARQL 1.1 query, the semantically equal federated SPARQL 1.1 query (with

the newly introduced SERVICE keyword) can be stated as follows:

Listing 8.9: Reconstruction SPARQL 1.1 TPC-W CUSTOMER Query

1 # Query 1 :

2 PREFIX vocab1 : http :// k o h l e r j e n s . de/ d2rq customer1 / r e sou r c e /vocab/

3 PREFIX vocab2 : http :// k o h l e r j e n s . de/ d2rq customer2 / r e sou r c e /vocab/

4

5 SELECT ? customerID ?fname ? lname ? balance ? d i scount

6

7 WHERE {
8 SERVICE <http :// k o h l e r j e n s . de/ d2rq customer1 / sparq l> {
9 ?x vocab1 :CUSTOMER C ID ? customerID .

10 ?x vocab1 :CUSTOMER C FNAME ?fname .

11 ?x vocab1 :CUSTOMER C LNAME ?lname .

12 }
13

14 SERVICE <http :// k o h l e r j e n s . de/ d2rq customer2 / sparq l> {
15 ?x vocab2 :CUSTOMER C ID ? customerID .

155

16 ?x vocab2 :CUSTOMER C BALANCE ? balance .

17 ?x vocab2 :CUSTOMER C DISCOUNT ? di scount .

18 }
19 }

Both queries are evaluated in the following section but it has to be mentioned

that Listing 8.8 contains 2 queries and the join of the resulting RDF triples

has to be performed in the client application logic after the results have been

collected. In contrast to this, these steps in Listing 8.9 are already included in

the query. In Listing 8.8 it would have been possible to query both endpoints in

parallel (e.g. with different programming threads) to improve the overall response

time. However, for the sake of comparability with the query in Listing 8.9, this

opportunity was neglected.

To illustrate the challenging join of federated RDF-based data sets, the trans-

formation from a SPARQL to an SQL query is now briefly illustrated based on a

simplified query similar to the previous listings. Such a SPARQL query could be

stated as follows:

Listing 8.10: SPARQL to SQL Query Example

1 PREFIX vocab : http :// k o h l e r j e n s . de/ d2rq customer1 / r e sou r c e /vocab/

2

3 SELECT ? customerID ?fname ? lname

4

5 WHERE {
6 ?x vocab :CUSTOMER C ID ? customerID .

7 ?x vocab :CUSTOMER C FNAME ?fname .

8 ?x vocab :CUSTOMER C LNAME ?lname .

9 }

This query results in a query tree as depicted in Figure 8.918.

18adapted from (Rodŕıguez-Muro & Rezk, 2015)

156

Figure 8.9: SPARQL to SQL Example - Query Tree

Here in this nave representation, the challenging character of the join can be

derived, as for every matching triple (basic graph pattern, BGP) Ti a join has to

be performed. Hence, this results in the following SQL query19

Listing 8.11: SPARQL to SQL Query Example - The SQL Query

1 SELECT DISTINCT

2 T1 CUSTOMER. C ID ,

3 T2 CUSTOMER.C FNAME,

4 T3 CUSTOMER.C LNAME,

5

6 FROM

7 CUSTOMER AS T1 CUSTOMER,

8 CUSTOMER AS T2 CUSTOMER,

9 CUSTOMER AS T3 CUSTOMER,

10

11 WHERE (

12 T1 CUSTOMER. C ID = T2 CUSTOMER. C ID AND

13 T1 CUSTOMER. C ID = T3 CUSTOMER. C ID AND

14 T2 CUSTOMER.C FNAME IS NOT NULL AND

15 T3 CUSTOMER.C LNAME IS NOT NULL

16)

This results in a join for every BGP or in other words for every triple that is

defined in the SPARQL query. Therefore, current optimization strategies focus on

optimizing the order of the joins (e.g. smaller relations first to avoid joins, etc.).

19The query tree for the other partition that contains the balance and the discount is
analogously and therefore not illustrated. Eventually, this query tree also would have to be
executed and the results of both trees would have to be joined for the final result set.

157

8.7 Evaluation

As now the theoretical background and the implementation for the entire approach

is outlined, the evaluation measures the response time in concrete numbers in the

following section.

8.7.1 Evaluation Environment

For the evaluation of the before-mentioned Semantic Web frameworks and the

underlying FVPD approach, the same evaluation environment as outlined in

Section 6.1 was used. Accordingly, the same data set, namely the TPC-W

CUSTOMER relation with a maximum of 288K rows was applied. Exposing this

data set as SPARQL endpoints result in the transformation of this data in virtual

RDF graphs through OBDA mappings. As the CUSTOMER relation contains 19

attributes the virtual RDF graph contains 5,472 million (288K rows * 19 attributes)

as a maximum number of triples. Compared to average LOD repositories like

DBPedia which contains ∼7 billion triples this is a relatively small number.

However, it illustrates the scalability of FVPD RDF-based data and facilitates

the direct comparison against traditional relational database implementations.

The central metric for this evaluation is also similar to the evaluation in Section

6.1 and similarly, all queries were executed 3 times and the average response time

is denoted in the tables of this section. The response time in this section also

includes an iteration through the result sets, as they are transferred to the client

as data streams (unlike in e.g. JDBC which uses Java objects) and this stream

has to be written (deserialized) in the corresponding Java objects in order to

remain comparable to the ORM-based evaluation in Chapter 6. Additionally, this

approach is also used in other benchmarks such as e.g. in (Haase et al., 2010).

Furthermore, all endpoints were accessed via SPARQL queries embedded in

their corresponding Java APIs. Another issue that deals with the evaluation of

accessing data in federated RDF repositories is the distinction between a local

and a remote federation. This is also similar to the evaluation setup in Chapter 6.

Accordingly, in LOD scenarios this is a challenging task when RDF-based data

are stored in dynamically scalable Cloud Computing architectures. Not only the

network overhead (available bandwidth and network latency over the Internet,

etc.) and unknown endpoint implementations with different SPARQL or RDF

versions but also frequently changing data (e.g. DBPedia which uses Wikipedia

158

as foundation) lead to unpredictable behaviors (Montoya et al., 2012). Hence,

in real-world scenarios with different SPARQL endpoints involved, it might not

be clear which endpoint supports which SPARQL or RDF version, neither is it

transparent which endpoint defines which SLAs (e.g. maximum amount of triples

returned per query, etc.) and how they are negotiated between the endpoint

provider and the querying client (Buil-Aranda et al., 2014).

Transferred to the federated character of the FVPD approach, these factors

also become crucial when different cloud vendors, implementations and SLAs are

involved. Hence, evaluations based on remote environments have to be considered

carefully, as their reproducibility might not be given. In order to minimize these

factors, the same experimental setup as in Section 6.1 with a local and a remote

implementation (with private clouds to which only the author has access to) is

used in this evaluation. This differentiation can also be found in other benchmark

papers such as e.g. in (Schwarte et al., 2012). Now, the following tables illustrate

the respective response times starting with measuring the local environment which

is then followed by the remote one.

8.7.2 Local SPARQL 1.0 Evaluation

This section illustrates the measured values for the local non-FVPD (Figure 8.10)

and the FVPD-based (Figure 8.11) evaluation.

1,000 15,000 30,000 50,000 88,000

20,000

40,000

60,000

80,000

Tuples

T
im

e
in

m
s

FedX
Jena

Sesame
Blazegraph

Figure 8.10: Local Non-FVPD OBDA Framework Evaluation

159

1,000 15,000 30,000 50,000 88,000

20,000

40,000

60,000

80,000

Tuples

T
im

e
in

m
s

FedX
Jena

Sesame
Blazegraph

Figure 8.11: Local FVPD OBDA Framework Evaluation

8.7.3 Remote SPARQL 1.0 Evaluation

Accordingly, this section illustrates the measured values for the remote non-FVPD

(Figure 8.12) and the FVPD-based (Figure 8.13) evaluation.

1,000 15,000 30,000 50,000 88,000

20,000

40,000

60,000

80,000

100,000

120,000

Tuples

T
im

e
in

m
s

FedX
Jena

Sesame
Blazegraph

Figure 8.12: Remote Non-FVPD OBDA Framework Evaluation

160

1,000 15,000 30,000 50,000 88,000
20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

Tuples

T
im

e
in

m
s

FedX 1.0
Jena

Sesame
Blazegraph

Figure 8.13: Remote FVPD OBDA Framework Evaluation

8.7.4 Local and Remote SPARQL 1.1 Evaluation

This section illustrates the local and the remote measurement of the SPARQL 1.1

query, illustrated in Listing 8.9. Here, the measurements of the previous sections

are repeated, except that a SPARQL 1.1 query was used. It has to be mentioned

that currently, FedX is the only framework that has the SPARQL 1.1 standard

implemented yet and therefore the other frameworks could not be investigated

here.

1,000 15,000 30,000 50,000 88,000

300,000

620,000

Tuples

T
im

e
in

m
s

FedX 1.1 Local
FedX 1.1 Remote

Figure 8.14: Local and Remote FVPD OBDA SPARQL 1.1 Framework Evalua-
tion

161

8.8 Conclusion

To conclude the evaluation, it can be noted that the results measured in (Haase

et al., 2010) could not be confirmed. Surprisingly, the response time for the local

setup over the evaluated federation is similar (except for FedX) compared to the

single endpoint implementation with a non-partitioned and non-distributed data

set (Figure 8.10 compared to Figure 8.14). Although, in the remote setup the

average response time degrades by factor ∼2 (Figure 8.12 compared against Figure

8.13), it can be noted that the federation does not have such an high impact on

the average performance as it was elaborated in (Haase et al., 2010). However, it

has to be mentioned that in this evaluation a comparatively small data set was

used compared to e.g. DBPedia (∼7 billion triples) or ∼110,000K triples in (Haase

et al., 2010). Moreover, the evaluation in this section focused on an federation

of only 2 different SPARQL endpoints, whereas the evaluation in (Haase et al.,

2010) focused on 12 different endpoints. Hence it must be assumed that with a

growing number of triples and a growing number of partitions (or federations)

the performance degrades will also increase. Here, further measurements that

take a problem-driven data distribution (with respect to the number of vertical

partitions), a corresponding number of different endpoints and a use-case driven

data volume into consideration are necessary.

(Haase et al., 2010) determined that complex queries are more effected by

performance losses (averagely by factor ∼3) than simple queries. This could be

confirmed in this evaluation with the separated view of SPARQL 1.0 (simple

queries) and SPARQL 1.1 (complex queries). Here, the figures above show that

the simple SPARQL 1.0 queries outperform the complex SPARQL 1.1 queries

averagely by factor ∼10 for both, the local (Figure 8.11) and the remote (Figure

8.13) setup. Finally, the response time for the SPARQL 1.1 query does not

depend on the number of queried triples: it is almost constant in Figure 8.14.

It is dependent on the size of the entire data store, i.e. the search space. This

means that the query first reconstructs the entire data store and then after this

reconstruction, the query parameters are evaluated. Hence, the reconstruction

phase can be identified as the crucial factor for the performance degrade and so,

especially complex queries could benefit from further optimizations with respect

to this expensive operation.

Comparing the measured RDF-based results against the SSD-based TPC-W

benchmark results in Section 6.6 shows that the average response time degrades

162

by factor ∼22 in the local non-FVPD setup. Interestingly, in the local FVPD

setup, the performance degrades only by factor ∼5. Moreover, the measurements

for the remote setup are almost similar with performance degrades by factor ∼28

for the non-FVPD and by factor ∼4 for the FVPD data set. Thus, on the one

hand, compared to a traditional database access via JDBC or via ORM, there is

a significant performance loss that has to be considered in real-world scenarios.

On the other hand however, accessing RDF-based data offers a schema free and

more flexible way of querying data or even finding unknown relations, links or

other information between data with the usage of inference engines.

Contrasting the local and the remote figures above, it can be concluded that

although the integration of the FVPD approach decreases the response times by

averagely factor ∼2 (in the remote setup)20, it is a viable approach if further

optimizations are taken into consideration. Such optimizations could involve

strategies and techniques depicted in Section 4.2 and Section 4.1 of this work,

namely caching or query rewriting. Transferring such concepts to the proposed

FVPD approach results in both, faster response times and a privacy and security-

aware way of storing such data in RDF-based form.

To sum up the conclusion with respect to the hypothesis expressed in the

problem formulation of Section 8.2, it can be stated that it can be verified. Finally,

the response times are in the same order of magnitude as the results in this section

show. Hence, for the given scenario the FVPD approach with data exposed as

SPARQL endpoints is a feasible approach with respect to the response times.

Above that, the FVPD approach applied to RDF-based data offers the same data

security and privacy-enhancing capabilities (Security-by-Distribution) as already

shown in Section 2.2.

8.9 Outlook and Future Work

The evaluation results depicted in the previous section show that there is an

enormous performance improvement potential for querying FVPD RDF-based

data based on relational databases as storage engines. Here, advanced approaches

like caching triples (e.g. with NoSQL In-Memory architectures) as proposed in

(Martin et al., 2010) or in (Cudre-Mauroux et al., 2013) or as applied in Section 5.2

of this work are promising. However, caching triples requires new cache coherence

20whereas in the local setup the performance is similar

163

protocols, especially for the invalidation of triples. Such approaches could benefit

from the long history of caching. However, only real implementations and their

evaluation in real-world scenarios will prove the feasibility of such triple-based

cache coherence protocols. With further respect to this (Cudre-Mauroux et al.,

2013) conducted an evaluation of the 4 basic NoSQL architectures (key-value,

column, document and graph stores), but an architecture that clearly outperformed

all others could not be determined. Interestingly, they elaborated that all NoSQL

architectures are able to compete against native RDF stores with respect to their

response time. However, it has also to be mentioned that manipulating RDF data

(and the corresponding caches) was not part of their experiments, and moreover,

the application of the FVPD approach on native triple stores is also an interesting

future work task.

Closely aligned to caching, in particular to the cache warming phase is prefetch-

ing data. Here (Lorey & Naumann, 2013) demonstrated an interesting approach

based on previously issued SPARQL queries. Transferring this approach to the

RDF-based FVPD setup might be a promising future work task.

Another approach which is taken into consideration in the future development

of this RDF-based FVPD approach is Result Ranking (Görlitz & Staab, 2011).

Although SPARQL (like SQL) returns results in unordered sets (unless ORDER

BY is used), triple ranking algorithms like (Franz et al., 2009) (Ning et al., 2008)

might be helpful in use cases where not all but only parts of the results are

required. Reducing the result set to only highly ranked triples would also reduce

the number of required join operations and thus, it would be possible to transfer

smaller result sets to the querying client faster.

Further future work tasks could also involve a detailed analysis and evaluation

of join algorithms. Recent approaches, besides the nested-loops, hash and sorted-

merge join outlined in Section 5.2 use the MapReduce framework for the join

of federated SPARQL queries (Gimenez-Garcia et al., 2014). This is considered

an appealing approach, especially when RDF data is serialized as XML, JSON

or other files. For MapReduce this is advantageous because its most prominent

Hadoop implementation uses a distributed file system, the Hadoop File System

(HDFS) that is able to handle serialized RDF triples in parallel and thus very

efficiently. With respect to this, (Gimenez-Garcia et al., 2014) provide useful

information on how such a MapReduce-based approach can be implemented.

Therefore, transferring these approaches the FVPD approach in order to improve

164

the response time are considered as promising future work tasks for the further

ongoing SeDiCo framework development.

165

Summary and Outlook

This chapter now concludes and summarizes the entire thesis, its approach and

its results. It also provides an outlook about further research works with respect

to the SeDiCo framework implementation.

Summary

In recent years the interest in Cloud Computing has grown significantly as e.g.

Gartner (Gartner, 2013) or IDC (Gens & Shirer, 2013) regularly show. There are

several reasons for this: the avoidance of large initial investments in hardware

infrastructures, the shift of maintenance, update or upgrade tasks towards cloud

providers, the universal accessibility via Internet to cloud offers, data synchro-

nization between various heterogeneous (even mobile) devices, etc. As databases

(and especially relational databases still are) are the foundation for a variety of

applications, storing these data volumes in a cloud infrastructure would mean a

great benefit for enterprises and for end customers. However, data security and

privacy issues prevent enterprises as well as end customers from using especially

public cloud infrastructures for the management of their sensitive data.

The SeDiCo framework, developed by the author of this work and the student

works listed below, addresses these concerns with a vertical database partitioning

and distribution (so-called FVPD) approach, that splits database relations and

distributes the chunks across (ideally) different clouds. Moreover, the framework

aims at avoiding vendor lock-ins with respect to the used database systems and

with respect to the cloud providers through the usage of database abstraction with

Hibernate as an Object-relational Mapper (ORM) and through cloud abstraction

with jclouds as a cloud abstraction layer on the IaaS service layer.

166

Although SeDiCo increases the level of security and privacy, it leads to

tremendous performance losses, as the FVPD data have to be joined together

again before they are actually accessed. Despite the technological feasibility, the

framework was not usable in practical usage scenarios due to the tremendous

performance degrade. Hence, this thesis focused on this performance challenge

and conceptualized, implemented and evaluated query mechanisms for the FVPD

partitions. For this, the research problem was defined as a minimization problem

with respect to the response time. Moreover, the entire FVPD approach was

formalized according to Codds relational model (Codd, 1970).

In a second step, the current state-of-the-art regarding the key concepts (i.e.

Security and Privacy, Cloud Computing, Database Abstraction (ORM), Query

Rewriting, Caching and Benchmarking) were elaborated. Afterwards, the current

state-of-the-art of the SeDiCo framework was developed and illustrated. Based

on this, 3 query mechanisms were conceptualized and developed. Accordingly, the

query mechanisms were evaluated against a non-partitioned and non-distributed

data set as well as against SeDiCos FVPD implementation. The evaluation, based

on the TPC-W benchmark showed that query rewriting and caching improve the

caching compared to the initial SeDiCo implementation by factors. Surprisingly,

both query mechanisms improved the response time to a level that is in the same

order of magnitude as queries against a non-distributed and non-partitioned setup.

Moreover, this thesis showed that a combination of the query mechanisms

would also a viable approach to achieve additional performance gains. The

evaluation of this sustainable idea is in the focus of the future work regarding the

SeDiCo development. This leads to the final conclusion that the developed query

mechanisms have a remarkable impact on the response time and that this work

serves as a guideline for interested practitioners and shows which query mechanism

promises which performance gains. Another aspect is the fact that the field of

database research is not bound to a concrete application domain and as database

workloads cannot be generalized, the SeDiCo framework has to be tested and

evaluated against various domains and application scenarios. Therefore, this thesis

developed a basic performance metric, which can be used to test and evaluate

further scenarios and applications and to determine how the FVPD approach

affects the response time. The thesis also contains an analysis of the usage of the

framework in a Semantic Web application scenario in which the FVPD approach is

applied. The preliminary response time evaluation results are promising, however,

further optimization strategies have to be elaborated, applied and evaluated in

167

order to reach similar performance results with traditional relational database

queries.

List of Publications Related to the Thesis

This section summarizes the author’s publications and their thematic focus to the

respective thesis chapters. It can be noted that central aspects and ideas of all

chapters have been successfully published and presented at national and interna-

tional conferences and journals. Thus, this thesis added substantial extensions to

them and integrated and structured the publications in a central and thematically

focused framework.

No. Publication Summary Ref.

to

Thesis

Chap-

ter

1 Kohler J.; Specht T.; Simov K.:

An Approach for a Security and

Privacy-Aware Cloud-Based Stor-

age of Data in the Semantic Web.

In: Proc. of The First IEEE In-

ternational Conference on Com-

puter Communication and the In-

ternet (ICCCI 2016). Wuhan,

China.

This paper conceptualizes, implements and evaluates

the FVPD approach for RDF-based data and eval-

uates a TPC-W benchmark scenario with SPARQL

queries based on customer data. Hence, this thesis

added a more detailed analysis of different Seman-

tic Web Frameworks and different benchmark frame-

works. Moreover, this thesis added a complexity anal-

ysis and a correctness proof of the proposed approach.

Moreover, it introduces the selection criteria for the

Semantic Web Frameworks and the benchmarks in

closer detail and describes how the respective frame-

works and benchmarks were selected. All in all, this

paper provides a first performance evaluation in the

Semantic Web and gives an outlook about further

works with respect to native triple store implementa-

tions.

8

168

2 Werner S., Kohler J.; Specht T.;

Simov K.: Cache Synchroniza-

tion in a Vertically Distributed

Cloud Database Environment. In:

Proc. of AKWI 2016 - Ar-

beitskreis Wirtschaftsinformatik

an Fachhochschulen, September

2016. Brandenburg, Germany.

This paper analyses the challenging synchronization

task when different client-based caches read and write

data to and from relational FVPD data. Consistency

is a major topic here, this paper evaluates ACID

(Atomicity, Consistency, Isolation, Durability) as hard

consistency (ACID) and BASE (Basically Available

Soft State Eventual Consistency) as a weaker form

of consistent data. The evaluation shows that is a

distributed client-based caching approach hard ACID

consistency is not applicable from a performance point

of view. Here, weaker forms (in between ACID and

BASE), dependent on the required consistency are

more promising models.

4, 5, 6

3 Kohler, J.; Simov, K.; Specht,

T.: Analysis of the Join Perfor-

mance in Vertically Distributed

Cloud Databases. In: Interna-

tional Journal of Adaptive, Re-

silient and Autonomic Systems

(IJARAS), 6(2), 2016

This journal paper outlines the whole SeDiCo ap-

proach in more detail from an architectural point of

view. It discusses different join locations (applica-

tion, database driver, ORM layer, etc.) where the

time-consuming join in the FVPD approach could

be performed efficiently. This analysis further justi-

fies the usage of an ORM for the FVPD approach

and presents a detailed performance analysis of the

pure SeDiCo framework usage, based on the TPC-

W benchmark. These benchmark results are tested

against a real world application scenario that uses

the FVPD approach in a Wikipedia user database to

guarantee a higher level of anonymization and to im-

plement the databases securely in distributed public

cloud architecture.

1, 2, 3,

4, 5, 6

4 Kohler J.; Specht T.: Analysis of

Cache Implementations in a Ver-

tically Distributed Cloud Data

Store. In: Proc. of The 3rd IEEE

World Conference on Complex

Systems, November 2015. Mar-

rakech, Morocco.

The aim of this work was a deeper analysis of the

caching approach with an evaluation of different cache

storages. Here, an In-Memory key-value store, a lo-

cally installed relational database and a JSON file-

based cache implementation were used and the re-

sponse time of all storages was measured and com-

pared. This work proved that for the FVPD ap-

proach the In-Memory cache outperforms the other

ones, however they also have their raison dtre when

other requirements such as non-volatile storage, larger

cache memories or strong ACID support, etc. are

more important than pure response time.

4, 5, 6

169

5 Kohler J.; Simov K.; Fiech A.;

Specht T.: On The Performance

Of Query Rewriting In Vertically

Distributed Cloud Databases. In:

Proc. of The International

Conference Advanced Comput-

ing for Innovation ACOMIN 2015,

November 2015. Sofia, Bulgaria.

The focus of this work was the conceptualization,

formalization and a first prototypical implementa-

tion followed by an evaluation of the query rewriting

approach. The presented thesis extends this work

now with a more extensive evaluation that also takes

different cloud infrastructures into concern. This

work proved the technological feasibility of the query

rewriting approach and the evaluation in this work

proved that the approach is worth to be pursued

further as a foundation for this thesis.

1, 2, 3,

4, 5, 6

6 Kohler J.; Specht T.: Dynamic

Software-Based Scaling In Pri-

vate Clouds. In: Proc. of AKWI

2015 - Arbeitskreis Wirtschaftsin-

formatik an Fachhochschulen,

September 2015. Luzern, Switzer-

land.

This is a supplementary work in which a dynamic, au-

tomated, software-driven, horizontal scalability mech-

anism for IaaS clouds was developed. On this layer,

dynamic scalability is still challenging, as infrastruc-

tures (e.g. entire virtual machines) with a heteroge-

neous software stack have to be scaled. Due to this

enormous heterogeneity these infrastructures have to

be scaled manually, which is a daunting task. Due to

the missing data encryption and other security chal-

lenges, SeDiCo mainly focuses on databases on the

IaaS layer and thus this work contributed to the over-

all SeDiCo framework development with a dynamic

and automated software scalability layer.

3

170

7 Kohler J.; Specht T.: A Per-

formance Comparison Between

Parallel And Lazy Fetching

in Vertically Distributed Cloud

Databases. In: Proc. of The In-

ternational Conference on Cloud

Computing Technologies and Ap-

plications - CloudTech 2015, June

2015. Marrakesh, Morocco.

This work investigates 2 different data fetching strate-

gies that are similarly offered by ORMs: lazy and

eager fetching. Eager fetching in the context of this

work is called parallel fetching as with respect to the

FVPD approach, eager and lazy fetching result in the

same implementation. Here, parallel fetching collects

query-matching rows from all partitions in parallel

threads to improve the response time, whereas lazy

fetching collects rows from one partition and queries

only the corresponding partitions if the row is really

accessed by the client eventually. This work was

conducted during the investigations of the caching

approach and this thesis now concludes that both

strategies are in the same order of magnitude as non-

partitioned and non-distributed queries are, however

slightly slower. This work shows that the parallel

outperforms the lazy strategy at cost of higher re-

quirements for the querying clients (i.e. processors

that support multiple threads).

4, 5, 6

8 Kohler J.; Specht T.: Perfor-

mance Analysis of Vertically Par-

titioned Data in Clouds Through

a Client-Based In-Memory Key-

Value Store Cache. In: Proc. of

The 8th International Conference

on Computational Intelligence in

Security for Information Systems,

June 2015. Burgos, Spain.

This work continues the research work concerning

the introduction of a client-based cache between the

clients and the databases in the clouds. Here, the

integration of an In-Memory cache (i.e. memcached)

that holds recently accessed data in order to improve

the overall insert, update and delete performance is

presented. This work also shows that an In-Memory

cache is an appealing way to achieve substantial per-

formance improvements. The performance evaluation

of the cache implementation in this paper shows that

the data access times are comparable with the ac-

cess times of non-partitioned data. However, the

introduction of a cache involves adequate loading,

synchronization and invalidation strategies, which

are only briefly sketched to not exceeding the limits

of the paper.

1, 2, 3,

4, 5, 6

171

9 Kohler J.; Specht T.: Verti-

cal Query-Join Benchmark in

a Cloud Database Environment.

In: Proc. of The 2nd World

Conference on Complex Systems,

November 2014. Agadir, Mo-

rocco.

The focus of this paper is the performance compar-

ison of queries between vertically distributed and

non-distributed data. Foundation for the basic mea-

surement of the required response time was a locally

installed non-distributed database table. This table

was then vertically distributed and the query (i.e.

select * from table) was performed again. In the

basic setup, the database and the manipulating client

were installed on the same physical hardware. After-

wards, the query measurement was repeated with a 1

GBit network connection between the manipulating

client and the databases in different clouds. Thus, as

the result of the paper, the required response times

were recorded and compared. A tremendous perfor-

mance loss was discovered and caching approaches to

overcome these performance losses were sketched.

1, 2, 3,

4, 5, 6

10 Kohler J.; Specht T.: Analy-

sis of the Join-Problem in Ver-

tically Distributed Databases (in

German). In: Proc. of AKWI

2014 - Arbeitskreis Wirtschaftsin-

formatik an Fachhochschulen,

September 2014. Regensburg,

Germany.

This work concentrates on the introduction of a cache

between the cloud databases and the clients in or-

der to overcome the performance loss caused by the

vertical distribution approach. Basically, there are

three approaches for a cache: an In-Memory cache, in-

spired by the new trend topic In-Memory databases,

a cache in form of a locally installed intermediate

database and an intermediary file-based JSON cache.

This work analyses the pros and cons of all 3 caching

architectures. The results of the analysis show, that

there is no optimal architecture, as the cache archi-

tecture always depends on the underlying database

workload. Nevertheless, it creates a valuable founda-

tion for the implementation work and the subsequent

performance evaluation of the presented thesis.

1, 2, 3,

4

172

11 Velikova D.; Kohler J.; Gerten

R.: Case Study On Financing

And Business Development Pro-

cesses In Technopreneurship. In:

Proc. of European Conference on

Innovation and Entrepreneurship

(ECIE) 2014, September 2014.

Belfast, Ireland.

This case study investigated the reason for the re-

markable innovation gap between European coun-

tries. Despite various innovation and research mea-

surements like Horizon 2020, FP7 and FP6, in 2013

countries like Sweden, Denmark and Germany were

presented as innovation leaders, whereas countries

like Romania or Bulgaria were identified as modest in-

novating countries. The hypothesis of this paper was

the assumption that the different funding and busi-

ness development processes of the countries are a key

issue for the innovation gap. The case study of three

different venture capitalists (a Bulgarian, a German

and one from Switzerland) not only confirmed the

hypothesis but also provided useful information and

approaches on how to overcome the gap in the near

future. Therefore, on the one hand, organizational

changes in the funding and business development

processes are necessary. On the other hand, Cloud

Computing could serve as a technological architecture,

to develop, enable, support and accelerate collabo-

ration and cooperation activities of all EU member

countries.

2

12 Kohler J.; Specht T.: Verti-

cal Update-Join Benchmark in

a Cloud Database Environment.

In: Proc. of WiWiTa 2014. Wis-

marer Wirtschaftsinformatiktage.

June 2014.

The focus of this paper is the update performance

comparison between vertically distributed and non-

distributed data. Foundation for the measurement

of the required time to manipulate data was a lo-

cally installed non-distributed database table. This

table was then vertically distributed and the same

manipulations were performed again. In the basic

setup, the database and the manipulating client were

installed on the same physical hardware. Afterwards,

the measurement was repeated with a 1 Gbit net-

work connection between the manipulating client and

the databases in different clouds. Thus, as the re-

sult of the paper, the required manipulation times

were recorded and compared. Finally, a tremendous

performance loss was discovered and approaches to

overcome these performance losses were sketched.

4, 5, 6

173

13 Kohler J.; Specht T.: A Mar-

ketplace for the Cloud: Com-

parison of Data Stores Through

QoS/SLA Mapping. (in German)

In: Technologien fuer digitale In-

novationen. Springer Verlag 2014.

Wiesbaden, Germany.

This paper deals with the challenge of finding an

adequate cloud vendor and the lack of comparable

cloud offerings. As there is no defined structure, find-

ing suitable cloud offerings is a daunting task. This

work proposes a unified structure for cloud offerings

(i.e. for their functional and non-functional criteria)

and presents a mathematical model to compare them

semi-automatically.

3

14 Mueller P.; Kohler J.; Specht T.:

A Vertical Data Distribution Ap-

proach in the Cloud. (in Ger-

man) In: eJournal of AKWI - Ar-

beitskreis Wirtschaftsinformatik.

Februar 2014. Luzern. ISSN:

2296-4592. http://akwi.hswlu.ch

This paper focuses on the data integration after their

distribution. The entire SeDiCo approach is based

on the vertical distribution of data, but joining data

together afterwards is as important as their distri-

bution. This paper analyzes five possible locations

where distributed data could be joined. There are

various possibilities directly on the database layer

(i.e. database links, trigger, log file analysis, etc.) or

one layer above in the database drivers. Furthermore,

this work analyzes object-relational mappers (i.e. Hi-

bernate or the Java Persistence API) as a possible

location for the join. Lastly, a join in the application

layer (i.e. Java Beans) is taken into consideration.

Moreover, these locations not only are analyzed but

also evaluated. This evaluation showed that a join in

the object-relational mapper (Hibernate) is the most

appropriate location with respect to the support of

different database vendors in the SeDiCo framework.

1, 2, 3,

4, 5, 6

174

15 Kohler J.; Specht T.: A Market-

place for an Efficient and Trans-

parent XaaS-Evaluation. (in Ger-

man) In: Proc. of AKWI - Ar-

beitskreis Wirtschaftsinformatik

an Fachhochschulen, September

2013. Friedberg, Germany.

This work points out another great and still open

challenge in Cloud Computing that refers to the ven-

dor lock-in. This problem stems from different vendor

interfaces (APIs) and from different service offerings.

Due to the fact that every provider has its own pro-

gramming interfaces and its own structure to offer ser-

vices, it is a complex and expensive task to exchange

a cloud vendor with another one. Thus, this is a chal-

lenging task throughout all cloud architectures (IaaS,

PaaS and SaaS). This paper includes a literature anal-

ysis of Quality of Service (QoS) and Service Level

Agreement (SLA) definitions from service-oriented

architectures (2002) to the current Cloud Computing

hype (2013) and extracts 25 key criteria, that every

service should include, in order to adequately describe

a service offering.

3

16 Kohler J.: SeDiCo - Towards a

Framework for a Secure and Dis-

tributed Cloud Data Store. In:

Proc. of Chip-To-Cloud Security

Forum, September 2012. Nice,

France.

This paper stresses data security and data protec-

tion as the main problems of Cloud Computing. It

visualizes the fundamental approach of the SeDiCo

Framework and presents the vertical data partitioning

distribution approach as an idea to overcome data se-

curity and protection problems. It also conceptualizes

the entire framework and provides an overview about

upcoming challenges for its implementation, i.e. dif-

ferent vendor interfaces, performance considerations

and ACID-conform transactions.

2

Above that, the works described above contributed to the current state-of-the-

art with the following citations:

Kohler J.; Specht T.: Vertical Query-Join Benchmark in a Cloud Database

Environment. In: Proc. of The 2nd World Conference on Complex Systems,

November 2014. Agadir, Morocco.

Cited by:

Awadh, A.: Distributed relational database performance in Cloud Computing:

an investigative study. Master Thesis at Auckland University of Technology. 2015.

Auckland, Australia

Kohler J.; Simov K.; Fiech A.; Specht T.: On The Performance Of Query

Rewriting In Vertically Distributed Cloud Databases. In: Proc. of The Interna-

175

tional Conference Advanced Computing for Innovation ACOMIN 2015, November

2015. Sofia, Bulgaria.

Cited by:

Kaur, K.; Laxmi, V.: Partitioning Techniques in Cloud Data Storage: Review

Paper. In: Shrimali, T. (Eds.) International Journal of Advanced Research in

Computer Science. Vol. 8(5). 2017. India.

The entire SeDiCo framework development was funded by the following insti-

tutions:

• Federal Ministry of Education and Research, Germany

• MFG Foundation Baden-Wuerttemberg, Karl Steinbuch Research Program,

Germany

List of Theses Supervised by the Author

The following list presents all student works, supervised by the author, that were

developed in the context of the SeDiCo framework. These works represent small

development and testing tasks that were helpful for the author to implement and

evaluate the FVPD approach.

1. Seminar Paper 06/2016

Lorenz, Richard: Conceptualization, Implementation and Evaluation of a

Vertical Partitioning Approach for NoSQL Document Stores. (in German)

2. Bachelor-Thesis 09/2015

Taenzer, Martin: Trusted Cloud: A Way Towards a Secure and Trustworthy

Cloud. (in German)

3. Bachelor-Thesis 09/2015

Werner, Stefan: Conceptualization, Implementation and Evaluation of Cache

Synchronization Mechanisms in a Vertically Partitioned Cloud Database

Application. (in German)

4. Bachelor-Thesis 08/2015

Heiler, Daniel: Parallel Data Access Through Query-Rewriting in a Vertically

Distributed Cloud Database Environment

176

5. Bachelor-Thesis 07/2015

Atilgan, Tunahan: Evaluation of Semantic Service Registries for Web Ser-

vices. (in German)

6. Bachelor-Thesis 05/2015

Sahin, Huzeyfe: Integration of a Middle-tier Database Cache into a Vertically

Partitioned Cloud Architecture. (in German)

7. Bachelor-Thesis 05/2015

Schmidt, Sonny: Conceptualization and Implementation of an Automated

Horizontal Scaling Platform for Cloud-based Database Cluster. (in German)

8. Bachelor-Thesis 01/2015

Eslengert, Igor: Conceptualization and Implementation of a Web-based and

Automated Cloud Service Level Agreement Directory for the IaaS Layer.

(in German)

9. Bachelor-Thesis 10/2014

Hlipala, Christof: Conceptualization and Implementation of a Dynamic

Scaling Mechanism for CloudStack. (in German)

10. Bachelor-Thesis 07/2013

Mueller, Patrick: Vertical Data Partitioning in a Distributed Cloud Archi-

tecture. (in German)

11. Bachelor-Thesis 07/2013

Kaiser, Leon: Framework Evaluation of Cloud Abstraction Layers for the

Integration of Distributed Data. (in German)

Approbation of the Results

Research Papers. The above-mentioned list of the author’s publication is

the result of research papers that were created and published before and during

the course of this thesis. All published papers include the attendance and the

presentation of the work at the respective conference by the author. The thesis

added substantial extensions to these works as outlined in more detail below.

Based on the promising results of this thesis further research papers are planned

177

with respect to the topics mentioned in the outlook. Concrete planned works

focus on the adaption of the FVPD approach to NoSQL databases (key-value,

column, document, and graph stores).

Student Theses. The same holds for the above-mentioned list of theses super-

vised by the author. These seminar and bachelor theses were conducted during

the course of the thesis to investigate further topics that are related (but not in

the central focus) to the thesis. Similarly, further student works (and also master

theses) are planned based on the results of this thesis and with respect to the

author’s role as lecturer at the University of Applied Sciences in Mannheim.

Research Projects & Funding. During the course of the thesis, the SeDiCo

idea with its FVPD approach was funded by the above-mentioned institutions.

Closely related to the results of the thesis and to the above-mentioned topics,

further research projects in cooperation with partners from industries and other

research groups in national as well as international contexts should be acquired.

The results of the thesis build an excellent foundation for additional project

proposals in order to further pursue the FVPD idea of SeDiCo with funded

projects.

Invited Talks. Furthermore, the author was invited by several institutions

to talk and present new ideas about Cloud Security based on Partitioned and

Distributed Databases. These talks are listed as follows:

1. 10/2016:

SeDiCo - Query Optimization in Vertically Distributed Databases. Mannheimer

Informatik-Kolloquium. Mannheim, Germany 2016. (in German).

2. 12/2014:

SeDiCo - Towards a Framework for a Secure and Distributed Cloud Data

Store. Mannheimer Informatik-Kolloquium. Mannheim, Germany 2014. (in

German).

3. 07/2014:

SeDiCo - Towards a Framework for a Secure and Distributed Cloud Data

Store. German Chamber of Industry and Commerce Frankfurt. Frankfurt a.

M., Germany 2014. (in German).

178

4. 01/2014:

Business Process Modeling Repository. Foundations and Challenges of

Change in Ontologies and Databases. University Bolzano, Italy 2014.

5. 07/2013:

How to Handle Complex Data with Distributed Data Systems in the Cloud.

Big Data Conference. Mannheim, Germany 2013. (in German).

6. 01/2013:

Vertical Database Partitioning in the Cloud. Commit-Workshop Datenman-

agement. University of Applied Sciences, Mannheim 2013. (in German).

7. 05/2012:

Towards a Framework for a Distributed and Secure Cloud Datastore. Wi-

WiTa 2012. Wismarer Wirtschaftsinformatiktage. Wismar 2012. (in Ger-

man).

The dissemination of this thesis might generate additional attention to SeDiCo

and its FVPD methodology. Hence, further invited talks might also become

possible in the near future.

Key Scientific and Applied Scientific Contributions

With respect to the tasks defined in the introduction of the thesis, it can be

concluded that all tasks have successfully been accomplished. Namely, theses

tasks were defined as listed in Table 8.7.

The results and the contribution to the current state-of-the-art, as defined at

the beginning of this thesis, can be concluded as follows:

Contribution 1: Definition of a Security-by-Distribution Principle for Rela-

tional Databases

This thesis picked up the Security-by-Distribution approach and formalized

it to substantiate it with the relational calculus to have a proper formal

theoretical background. This was then used to prove the correctness of the

principle and of all developed query mechanisms. After that, the evaluation

results were used to formulate the research problem and to develop the

179

Table 8.7: Successfully Conducted Tasks

Number Task Ref. to Thesis Chapter

1 The definition of a methodology for creating an
FVPD schema for relational data and a proof of
the correctness of the methodology

1

2 The conceptualization of adequate query mecha-
nisms for relational FVPD data sets

4

3 The implementation of these relational query mech-
anisms in Java

5

4 The evaluation of these relational query mecha-
nisms in terms of their response time

6

5 The comparison of all developed relational query
mechanisms against each other and against the
initial SeDiCo implementation

7

6 The application of the FVPD methodology in
the Semantic Web with Resource Description
Framework-based (RDF-based) data

8

thesis’ hypotheses. The TPC-W benchmark used in these works was also

used to evaluate the query mechanisms in the presented thesis. With the

verification of all hypotheses and the formal proofs, this thesis was able to

prove that the developed query mechanisms indeed are able to enhance the

response time.

Contribution 2: Development of Vertical Query Mechanisms

Due to the above-mentioned performance degrades while querying the

vertically distributed data, this thesis developed 3 query strategies to

tackle these issues. This thesis also formalized the strategies and with

this, substantiated them with a formal background (i.e. the relational

calculus). Hence, the correctness of all approaches could be proved and

their complexity could be analyzed.

Contribution 3: Integration of Query Mechanisms into the SeDiCo Framework

Based on the above-mentioned results, the author was able to integrate

them into the overall SeDiCo framework, such that it can be applied in a

unique and transparent way.

This thesis developed a detailed evaluation with a detailed comparison and

a discussion of all query mechanisms.

Contribution 4: Response Time Evaluation and Query Mechanism Classifica-

tion

180

With respect to the before-mentioned results, this thesis picked up all

evaluations and extended them with a detailed overview and interpreted

and concluded the evaluation figures. The query mechanisms could be

classified and concrete recommendations can now be given which mechanism

is suitable in which use case scenario or for which database workload.

Contribution 5: Transfer of the SeDiCo Approach to other Databases

The Semantic Web as an interesting application domain could be identified

during the course of this thesis. Here, the adoption of the Security-by-

Distribution approach to RDF-based data sets which are queried with

SPARQL were challenging issues. Accordingly, this thesis conducted a deep

analysis of the theoretical background (i.e. relational calculus which is also

used for SPARQL as it is closely related to SQL), added a formal correctness

proof, and considered its complexity. Hence, it could be proved that the

Security-by-Distribution approach is also applicable in other application

domains.

Contribution 6: Further (Indirect) Related Work

This thesis subsumed the challenging topics Cloud Computing, Security-by-

Distribution, Performance, Scalability, and Reliability under the SeDiCo

umbrella and adapted the discussed issues to the focus of this thesis.

All in all, the author (and the respective co-authors) were able to publish a

total of 16 research papers; the author was able to supervise a total of 11 student

works (i.e. bachelor theses and seminar works), and there were 7 invited talks

given by the author.

This leads to the outlook where the attention to future work tasks and inter-

esting further research work is drawn.

Outlook

Response time, besides data security and privacy, is a key issue in todays applica-

tions either they are based on physical hardware servers or on virtualized cloud

infrastructures. The evaluation showed that there are viable approaches to achieve

an adequate response times. This pushes the SeDiCo framework towards more

practical usage scenarios, which involves further research topics. These topics

181

are now outlined to provide an overview about the future development of the

framework.

The following topics emerged during the work on the SeDiCo framework and

during the work on this thesis. Unfortunately, these topics cannot be dealt with

here in order to not exceeding the scope of this thesis. However, they are mentioned

here as future work topics to give an overview about further challenging tasks for

interested framework developers, researchers, students, doctoral candidates, etc.

Future SeDiCo Development

The future development of the SeDiCo framework concentrates primarily on the

issues described in this section. These challenges are ideal to be addressed in

seminar papers, student research projects or even bachelor or master theses.

Primary Key Challenges. In its current implementation it is mandatory that

every relation that should be divided according to the FVPD principle, has a single

primary key defined. This has two implications besides the fact that relations

without a primary key cannot be partitioned and distributed: firstly, the data type

of the defined primary key has a great influence on the join algorithms developed

in the query rewriting approach. Secondly, relations with a compound primary

key may cause erroneous behavior, as it is not further specifiable which of the

primary key columns should be used for the join of the FVPD data. Here, a

possible solution would be the creation of an artificial primary key on top of the

compound primary key. Furthermore, functional dependencies of attributes to

(compound) primary keys have to be taken into concern in this challenge.

Another issue with respect to this is the preservation of database constraints,

i.e. foreign keys, unique constraints, etc. At the moment, these constraints are

not considered in the FVPD approach. Here, the application logic (e.g. the ORM)

has to enforce these constraints. The support of these constraints would require

to search the relations meta data and to transfer them to the FVPD partitions

accordingly. Yet, this is considered as a future work task as currently the ORM is

capable of mapping the constraints to the partitions.

Reporting in Distributed Databases. Database reporting (e.g. query, up-

date or other workload statistics) achieves a complexity similar to distributed

182

database. Here, an advanced reporting mechanism that integrates various different

database systems and analyzes the workload against the FVPD partitions would

be required.

Partitioning and Distributing at Runtime. Avoiding the fixed vertical

partitioning and distribution scheme is another aim. This would allow to moving

partitions between databases and clouds at runtime. Moreover, a repartitioning of

the relations on demand at runtime would mean more flexibility and would raise

the level of security.

Row-based Security. Another contribution to an increased level of security

would be the integration of row-based security features as current database versions

e.g. (PostgresSQL, 2016) do. This means that user privileges (permissions to

read, write, etc.) can be defined for every user and for every single row specifically.

Here, the practical usage of this feature in the near future will show if this is a

viable approach and whether it should also be supported by SeDiCo or not.

Mobile Platform Integration. The adoption of the SeDiCo framework to

other (especially mobile platforms) is thinkable. This would mean the trans-

formation of the SeDiCo client, which is currently developed in Java, to other

programming languages such as C#, Python, Swing or other prominent ones

(TIOBE, 2016), or even on mobile platforms such as Android, iOS or Windows-

Phone. Yet, in Cloud Computing environments where long lasting operations are

performed in the cloud and only the results are delivered to the clients, this is an

interesting approach.

CRUD Performance Evaluation. Further performance measurements with

respect to the create, update, and delete, i.e. not only queries, but also the

performance of data manipulation statements would be useful.

Data Encryption. The integration of encryption mechanisms, e.g. proposed

in (Huber et al., 2013) is another interesting part, but is due to the already

existing performance challenges, not in the focus of this work. Encrypting data

would mean additional overhead and an additional performance decrease. The

goal of this thesis is to make this approach comparable to a non-partitioned

183

and non-distributed architecture and then consecutively to integrate advanced

encryption mechanisms (e.g. a public key infrastructure). Here, (Achenbach et

al., 2011), (Huber et al., 2013) with Cumulus4j and (Popa et al., 2011) with

CryptDB address this challenge and build a good foundation for FVPD data sets,

concerning the encryption and the corresponding key management.

Future Research Work

This section outlines further issues in a broader context of SeDiCo, which raise

more complex and challenging tasks that require further research works in form

of research papers, national or even international research projects or PhD theses.

Data Classification. Challenges that have come up in SeDiCo are the inte-

gration of the framework into heterogeneous enterprise infrastructures. Here,

interesting questions such as the consolidation of existing data or suitable distri-

bution approaches that differentiate between critical and less critical data emerge.

Further literature dealing with these topics are (Chen & Liu, 2005) (Sood, 2012).

Especially (Verykios et al., 2004) provide a good overview about techniques, that

help to identify privacy-aware data in data mining. Therefore, transferring these

approaches to the data classification problem of SeDiCo might be a promising

way.

Data Partitioning. (Agrawal et al., 2004) provide a good overview about

horizontal and vertical partitioning approaches. Analogous to this work, horizontal

partitioning is considered as the row-based distribution of rows according to

a certain value or criteria, whereas vertical partitioning is the column-based

distribution of tuples. Both approaches are used to improve the overall database

performance separately (vertical approaches e.g. (Rodriguez & Li, 2011), horizontal

approaches e.g. (Huang et al., 2013), but also simultaneously e.g. (Alsultanny,

2010) (Agrawal et al., 2004). The usage of both approaches at the same time is

considered a feasible way to improve the access of the data. This is referred to as

diagonal partitioning. The future ongoing work will show, if this might even be a

strategy for SeDiCo. Another challenge is to distribute the partitions efficiently

across available computing nodes (i.e. distributed databases in different clouds) to

minimize the data access times. This is closely related to NoSQL systems and the

corresponding horizontal distribution of nodes and data sets. A well-documented

184

approach for this horizontal data distribution, including encryption of data was

developed by (Neves et al., 2013).

NoSQL. NoSQL databases are an interesting topic for the future work but out

of the scope of this thesis. Moreover, there is currently a great heterogeneity of

NoSQL vendors and architectures (NoSQL Archive, 2016) and it is not predictable

at the moment which kinds of databases and vendors will gain remarkable market

shares21. So in order to achieve valuable and reusable results, a certain market

consolidation is waited for.

21Currently, there are some trends, e.g. SAP HANA (SAP, 2016) as a column store, or
MongoDB (MongoDB, 2016) as a document store, but especially in the Open Source community,
no outstanding architecture or system like (MySQL in relational databases) can be determined.

185

Declaration of Originality

Hereby, I declare that I have composed the presented thesis independently on my

own and without any other resources than the ones indicated. All thoughts taken

directly or indirectly from external sources are properly denoted as such.

This work has neither been previously submitted to another authority nor has

it been published yet.

Place, Date, Signature

(Jens Kohler)

186

Acknowledgments

Although only my name appears on the cover of this dissertation, I would like to

take the opportunity of expressing my sincere gratitude to my advisor Prof. Dr.

Kiril Simov. I have been amazingly fortunate to have an advisor who gave me the

freedom to explore and elaborate the key concepts of this thesis on my own, and

at the same time lead me as a guide to relevant research topics and theoretical

backgrounds.

I am also very grateful to Prof. Dr. Thomas Specht who has been always there

to listen and to give advice. I am deeply thankful for the long discussions that

helped me sort out the concepts and architectures of my work. I would also like

to express my sincerest thanks to Prof. Dr. Sc. Galia Angelova for her guidance

and her help to maintain the focus of this work.

I am also indebted to all the members of the Department of Computer Science

with whom I have interacted during my research. Thank you - Miriam, Georg,

Thomas, Michael, Thomas, Thorsten and Michael - for giving me the freedom to

follow my ideas, for the welcome distractions and for the mind-opening discussions.

My closest friends - Britta, Björn, Marleen, Felix, Sarah, and Christopher - have

helped me to stay sane through these difficult years. Their support and care

helped me to overcome setbacks and stay focused on my work. I greatly value

their friendship and I deeply appreciate their belief in me. Most importantly, none

of this would have been possible without the love and patience of my entire family;

thank you, mom and dad for creating the environment and the cornerstones for

my career and for your infinite love and support. I would also like to express

my heart-felt gratitude to my extended family Margret and Martin for raising

the most beautiful, love-filled and thoughtful wife - Myriam - that I could ever

imagine. Finally, I envy my children - Emilia and Sofia - for the curiosity and

eagerness to learn new things and I am grateful for showing me the real meaning

of life.

187

References

Achenbach, D., Gabel, M., & Huber, M. (2011). MimoSecco: A Middleware

for Secure Cloud Storage. In Proceedings of the 18th ispe international

conference on concurrent engineering (pp. 175–181). Boston, USA: Springer

London.

Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H., Kenthapadi, K., Mot-

wani, R., . . . Xu, Y. (2005). Two can keep a secret: A distributed archi-

tecture for secure database services. Cidr 2005 , 186–199. Retrieved from

http://ilpubs.stanford.edu:8090/659/ doi: 10.1.1.86.9485

Agrawal, S., Narasayya, V., & Yang, B. (2004). Integrating vertical and horizontal

partitioning into automated physical database design. In Proceedings of

the 2004 acm sigmod international conference on management of data (pp.

359–371). New York, USA. doi: 10.1145/1007568.1007609

Akioka, S., & Muraoka, Y. (2010). HPC Benchmarks on Amazon EC2. In 2010

ieee 24th international conference on advanced information networking and

applications workshops (pp. 1029–1034). Perth, Australia. doi: 10.1109/

WAINA.2010.166

Alsultanny, Y. (2010). Database management and partitioning to improve database

processing performance. Journal of Database Marketing and Customer

Strategy Management , 17 (3), 271–276. doi: 10.1057/dbm.2010.14

Amazon. (2016). Amazon EC2 Website. Retrieved 2016-02-01, from https://

aws.amazon.com/ec2/?nc1=h ls

Apache. (2015). Apache Jena Website: SDB Documentation. Retrieved 2016-02-01,

from https://jena.apache.org/documentation/sdb/

Apache. (2016a). Apache CloudStack. Retrieved 2016-02-01, from https://

cloudstack.apache.org/

Apache. (2016b). Apache jclouds Website. Retrieved 2016-02-01, from https://

jclouds.apache.org/reference/providers/

Apache. (2016c). Apache Jena Website. Retrieved 2016-02-01, from https://

188

jena.apache.org/index.html

Apache. (2016d). DeltaCloud Website. Retrieved 2016-02-01, from https://

deltacloud.apache.org

Apache. (2016e). LibCloud Website. Retrieved 2016-02-01, from https://

libcloud.apache.org

Arias, M., Fernández, J. D., Mart́ınez-Prieto, M. A., & de la Fuente, P. (2011).

An Empirical Study of Real-World SPARQL Queries. arXiv preprint arXiv:

1103.5043 , 10–13. Retrieved from http://arxiv.org/abs/1103.5043 doi:

10.1016/j.postharvbio.2004.03.006

Arora, I., & Gupta, A. (2012). Cloud Databases: A Paradigm Shift in Databases.

International Journal of Computer Science, 9 (4), 77–83.

Ayani, R., Teo, Y. M., & Chen, P. (2002). Cost-based proxy caching. In Proceed-

ings of international symposium on distributed computing & applications to

business, engineering & science (pp. 218–222). Wuxi, China.

Bauer, C., King, G., & Gregory, G. (2007). Java Persistence with Hibernate.

Greenwich, Connecticut: Manning Publications Company.

Berners-Lee, T. (2006). Linked Data Principles.

Berners-Lee, T. (2009). W3C Website: Linked Data. Retrieved 2016-02-01, from

https://www.w3.org/DesignIssues/LinkedData.html

Bertino, E., & Sandhu, R. (2005). Database security - concepts, approaches, and

challenges. IEEE Transactions on Dependable and Secure Computing , 2 (1),

2–19. doi: 10.1109/TDSC.2005.9

Betz, H., Hose, K., & Sattler, K. (2012). Learning from the History of Distributed

Query Processing. In Third international workshop on consuming linked

data (cold2012) (Vol. 905, pp. 15–26). Boston, USA: CEUR-WS.

Binz, T., Breiter, G., Leyman, F., & Spatzier, T. (2012). Portable cloud services

using TOSCA. IEEE Internet Computing , 16 (3), 80–85. doi: 10.1109/

MIC.2012.43

Bizer, C., & Schultz, A. (2001). The Berlin SPARQL Benchmark. International

Journal on Semantic Web and Information Systems, 5 (2), 1–24. doi: 10

.4018/jswis.2009040101

Bohn, R. B., Messina, J., Liu, F., Tong, J., & Mao, J. (2011). NIST cloud

computing reference architecture. In Proceedings - 2011 ieee world congress

on services, services 2011 (pp. 594–596). Gaithersburg, MD.

Booch, G., Rumbaugh, J., & Jacobson, I. (2005). Unified Modeling Language

User Guide, The (2Nd Edition).

Bornhövd, C., Altinel, M., Mohan, C., Pirahesh, H., & Reinwald, B. (2004).

189

Adaptive Database Caching with DBCache. IEEE Data Engineering Bulletin,

27 (2), 11–18.

Buil-Aranda, C., Polleres, A., & Umbrich, J. (2014). Strategies for Executing

Federated Queries in SPARQL1.1. The Semantic Web ISWC 2014 (Lecture

Notes in Computer Science), 8797 , 390–405. doi: 10.1007/978-3-319-11915

-1 25

Carey, M. J., DeWitt, D. J., & Naughton, J. F. (1993). The 007 Benchmark. In

ACM New York (Ed.), Proceedings of the 1993 acm sigmod international

conference on management of data (Vol. 22, pp. 12–21). NY, USA. doi:

10.1145/170036.170041

Carlton, D. (2013). Cloud Computing 2014: Ready for Real Busi-

ness? Retrieved 2014-08-11, from http://www.mscmalaysia.my/

sites/all/themes/mscmalaysia/images/cloud\-page/cloud\-pdf/

Morning\ 2\ Gartner\ DarrylCarlton.pdf

Cattell, R. G. (1994). Object Data Management: Object-Oriented and Extended.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Cecchet, E., Chanda, A., Elnikety, S., Marguerite, J., & Zwaenepoel, W. (2003).

Performance Comparison of Middleware Architectures for Generating Dy-

namic Web Content. In Proceedings of the acm/ifip/usenix 2003 interna-

tional conference on middleware (pp. 242–261). Rio de Janeiro, Brazil. doi:

10.1007/3-540-44892-6 13

Chen, K., & Liu, L. (2005). Privacy Preserving Data Classification with Rotation

Perturbation. In Fifth ieee international conference on data mining (icdm’05)

(pp. 589–592). Housten, Texas, USA. doi: 10.1109/ICDM.2005.121

Cloud Security Alliance. (2011). Security Guidance for Critical

Areas of Focus in Cloud Computing V3.0. Retrieved 2016-

02-01, from https://cloudsecurityalliance.org/download/security

-guidance-for-critical-areas-of-focus-in-cloud-computing-v3/

Codd, E. F. (1970). A relational model of data for large shared data banks.

Communications of the ACM , 13 (6), 377–387. doi: 10.1145/362384.362685

Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., & Sears, R. (2010).

Benchmarking cloud serving systems with YCSB. In Proceedings of the 1st

acm symposium on cloud computing - socc ’10 (pp. 143–155). Indianapolis,

USA: ACM Press. doi: 10.1145/1807128.1807152

Cudre-Mauroux, P., Enchev, I., Fundatureanu, S., Groth, P., Haque, A., Harth,

A., . . . Wylot, M. (2013). NoSQL databases for RDF: An empirical

evaluation. In Lecture notes in computer science (including subseries lecture

190

notes in artificial intelligence and lecture notes in bioinformatics) (Vol.

8219 LNCS, pp. 310–325). Springer Berlin Heidelberg. doi: 10.1007/

978-3-642-41338-4 20

Cyganiak, R. (2016). D2RQ Website. Retrieved 2016-02-01, from http://

d2rq.org/

Cyganiak, R., & Cyganiak, R. (2005). Technical Report: A relational algebra for

SPARQL (Vol. 12; Tech. Rep.). Bristol: Hewlett-Packard Development Com-

pany. Retrieved from http://fog.hpl.external.hp.com/techreports/

2005/HPL-2005-170.pdf

Darari, F., Nutt, W., Pirrò, G., & Razniewski, S. (2013). Completeness statements

about RDF data sources and their use for query answering. In Lecture notes

in computer science (including subseries lecture notes in artificial intelligence

and lecture notes in bioinformatics) (Vol. 8218 LNCS, pp. 66–83). doi:

10.1007/978-3-642-41335-3 5

Darari, F., Razniewski, S., & Nutt, W. (2014). Bridging the Semantic Gap

Between RDF and SPARQL Using Completeness Statements. In Proceedings

of the 2014 international conference on posters & demonstrations track

- volume 1272 (pp. 269–272). Aachen, Germany, Germany: CEUR-WS.org.

Das, S., Sundara, S., & Cyganiak, R. (2012). W3C Website: R2RML - RDB to

RDF Mapping Language. Retrieved 2016-02-01, from https://www.w3.org/

TR/r2rml/

Davision, B. D. (2001). A Web caching primer. IEEE Internet Computing , 5 (4),

38–45. doi: 10.1109/4236.939449

DBLP. (2016). DBLP Website. Retrieved 2016-02-01, from http://dblp.uni

-trier.de/

DBPedia. (2016). DBPedia Data Set. Retrieved 2016-02-01, from http://

wiki.dbpedia.org/services-resources/datasets/dbpedia-datasets

DIN ISO 27000. (2011). DIN ISO/IEC 27000. Retrieved 2016-02-

01, from https://www.beuth.de/de/norm-entwurf/din-iso-iec-27000/

243433889

Dongarra, J. J. (1990). The LINPACK benchmark: An explanation. In (pp.

456–474). London, UK: Chapman & Hall, Ltd.

Duan, S., Kementsietsidis, A., Srinivas, K., & Udrea, O. (2011). Apples and

Oranges : A Comparison of RDF Benchmarks and Real RDF Datasets. In

Sigmod ’11 proceedings of the 2011 acm sigmod international conference on

management of data (pp. 145–155). Athens, Greece: ACM. doi: 10.1145/

1989323.1989340

191

Duerst, M., & Suignard, M. (2005). IETF IRI, RFC 3987. Retrieved 2016-02-01,

from https://www.ietf.org/rfc/rfc3987.txt

Elmasri, R., & Navathe, S. B. (2015). Fundamentals of Database Systems

(7th editio ed.). London, UK: Pearson Education, UK. doi: 10.1016/

S0026-2692(97)80960-3

European Commission. (1995). Directive 95/46/EC. Retrieved from

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:

31995L0046:en:HTML

Fan, B., Andersen, D., & Kaminsky, M. (2013). MemC3: Compact and con-

current memcache with dumber caching and smarter hashing. In Nsdi’13

proceedings of the 10th usenix conference on networked systems design and

implementation (pp. 371–385). Lombard, Ilinois, USA.

FluidOperations. (2016). Fluid Operations Website: FedX. Retrieved 2016-02-01,

from https://www.fluidops.com/en/company/training/open source

Franklin, M. J., Carey, M. J., & Livny, M. (1997). Transactional client-server

cache consistency: alternatives and performance. ACM Transactions on

Database Systems , 22 (1), 315–363. doi: 10.1145/261124.261125

Franz, T., Schultz, A., Sizov, S., & Staab, S. (2009). TripleRank: Ranking

Semantic Web data by tensor decomposition. In Lecture notes in computer

science (including subseries lecture notes in artificial intelligence and lecture

notes in bioinformatics) (Vol. 5823 LNCS, pp. 213–228). doi: 10.1007/

978-3-642-04930-9 14

Garcia-Molina, H., Ullman, J. D., & Widom, J. (2008). Database Systems: The

Complete Book (2nd edition ed.). New York, USA: Prentice Hall. doi:

10.1145/253262.253287

Garrod, C., Manjhi, A., Ailamaki, A., Maggs, B., Mowry, T., Olston, C., &

Tomasic, A. (2008). Scalable query result caching for web applications.

Proceedings of the VLDB Endowment , 1 (1), 550–561. doi: 10.14778/1453856

.1453917

Gartner. (2013). Gartner’s 2013 Hype Cycle for Emerging Technologies Maps Out

Evolving Relationship Between Humans and Machines. Retrieved 2016-02-01,

from http://www.gartner.com/newsroom/id/2575515

Gens, F., & Shirer, M. (2013). IDC Forecasts Worldwide Public IT Cloud

Services Spending to Reach Nearly $108 Billion by 2017 as Focus Shifts from

Savings to Innovation. Retrieved 2016-02-01, from http://www.idc.com/

getdoc.jsp?containerId=prUS24298013

GeoNames. (2016). GeoNames Website. Retrieved 2016-02-01, from http://

192

www.geonames.org/

Ghandeharizadeh, S., & Mutha, A. (2014). An Evaluation of the Hibernate

Object-Relational Mapping for Processing Interactive Social Networking

Actions. In Proceedings of the 16th international conference on information

integration and web-based applications & services - iiwas ’14 (pp. 64–70).

New York, USA: ACM Press. doi: 10.1145/2684200.2684285

Gilbert, S., & Lynch, N. (2002). Brewer’s conjecture and the feasibility of

consistent, available, partition-tolerant web services. ACM SIGACT News ,

33 (2), 51–59. doi: 10.1145/564585.564601

Gimenez-Garcia, J. M., Fernandez, J. D., & Martinez-Prieto, M. (2014).

MapReduce-based Solutions for Scalable SPARQL Querying. Open Jour-

nal of Semantic Web (OJSW), 1 (1), 1–18. Retrieved from http://

dataweb.infor.uva.es/wp-content/uploads/2014/03/ojsw14.pdf

GitHub. (2016). GitHub Website. Retrieved 2016-02-01, from https://github

.com/

Görlitz, O., & Staab, S. (2011). Federated Data Management and Query Op-

timization for Linked Open Data. New Directions in Web Data Man-

agement (Studies in Computational Intelligence), 331 , 109–137. doi:

10.1007/978-3-642-17551-0 5

Graefe, G. (2011). New algorithms for join and grouping operations. Computer

Science - Research and Development , 27 (1), 3–27. doi: 10.1007/s00450-011

-0186-9

Grund, M., Cudre-Mauroux, P., & Madden, S. (2011). A Demonstration of

HYRISE A Main Memory Hybrid Storage Engine. Proceedings of the

VLDB Endowment , 4 (12), 1434–1437.

Grund, M., Schaffner, J., Krueger, J., Brunnert, J., & Zeier, A. (2010). The

Effects of Virtualization on Main Memory Systems. In Proceedings of the

sixth international workshop on data management on new hardware (pp.

41–46). New York, NY, USA: ACM. doi: 10.1145/1869389.1869395

Guo, Y., Pan, Z., & Heflin, J. (2005). LUBM: A benchmark for OWL knowledge

base systems. Web Semantics: Science, Services and Agents on the World

Wide Web, 3 (2-3), 158–182. doi: 10.1016/j.websem.2005.06.005

Haase, P., Mathäß, T., & Ziller, M. (2010). An evaluation of approaches to

federated query processing over linked data. In I-semantics ’10 proceedings

of the 6th international conference on semantic systems (Vol. 5, pp. 1–9).

Graz, Austria: ACM. doi: 10.1145/1839707.1839713

Harris, S., Lamb, N., & Shadbolt, N. (2009). 4store: The Design and Implemen-

193

tation of a Clustered RDF Store. In Scalable semantic web knowledge base

systems - ssws2009 (pp. 81–96). Washington DC, USA: CEUR-WS.

Harris, S., & Seaborne, A. (2013). W3C Website: SPARQL 1.1 Query Language.

Retrieved 2016-02-01, from http://www.w3.org/TR/sparql11-query/

Harth, A., Umbrich, J., Hogan, A., & Decker, S. (2007). YARS2: a federated

repository for querying graph structured data from the web. Lecture Notes

in Computer Science, 4825 , 211–224.

Hevner, A., & Chatterjee, S. (2010). Design Research in Information Systems

(Vol. 22). Boston, MA: Springer US. doi: 10.1007/978-1-4419-5653-8

Hevner, A., March, S., Park, J., & Ram, S. (2004). Design Science in Information

Systems Research. MIS Quarterly , 28 (1), 75–105. doi: 10.2307/25148625

Hewlett Packard. (2016). Helios Eucalyptus Website. Retrieved 2016-02-01, from

http://www8.hp.com/us/en/cloud/helion-overview.html

Hofmann, M., & Beaumont, L. (2005). Content networking: architecture, protocols,

and practice. Burlington, Massachusetts, USA: Morgan Kaufman Publ Inc.

Hofmann, M., Feig, E., & Zhang, J. (2009). From SaaS to XaaS: Evolution

and Outlook of Software Cloud. Retrieved 2016-02-01, from http://www

.thecloudcomputing.org/2009/1/panels.html#Panel2

Huang, C., Hu, W., Shih, C., Lin, B., & Cheng, C. (2013). The improvement of

auto-scaling mechanism for distributed database - A case study for Mon-

goDB. In 15th asia-pacific network operations and management symposium

(apnoms), 2013 (pp. 1–3). Hiroshima, Japan.

Huber, M., Gabel, M., Schulze, M., & Bieber, A. (2013). Cumulus4j: A Prov-

ably Secure Database Abstraction Layer. In Proceedings of cd-ares 2013

workshops: Mocrysen and secihd (pp. 180–193). Regensburg, Germany.

Ireland, C., Bowers, D., Newton, M., & Waugh, K. (2009). A classification of object-

relational impedance mismatch. In Proceedings - 2009 1st international

conference on advances in databases, knowledge and data applications, dbkda

2009 (pp. 36–43). Gosier, Guadeloup. doi: 10.1109/DBKDA.2009.11

ISO/IEC. (2005). ISO/IEC 19501:2005 - Information technology - Open

Distributed Processing - Unified Modeling Language (UML). Retrieved

2017-07-26, from http://www.iso.org/iso/home/store/catalogue tc/

catalogue detail.htm?csnumber=32620

ISO/IEC. (2011). Database Languages -SQL- Part 1 - 14. Standardization

Document: ISO/IEC 9075:2011 (Tech. Rep.). Geneva, Switzerland: Author.

Kaiser, L. (2013). Evaluation of Various Cloud Abstraction Layers for a Distributed

Cloud Datastore. Bachelorthesis at Institute for Enterprise Computing,

194

University of Applied Sciences Mannheim, Mannheim Germany.

Kanehisa Laboratories. (2016). KEGG: Kyoto Encyclopedia of Genes and

Genomes. Retrieved 2016-02-01, from http://www.genome.jp/kegg/

Kohler, J., Simov, K., Fiech, A., & Specht, T. (2015). On The Performance Of

Query Rewriting In Vertically Distributed Cloud Databases. In Proceedings

of the international conference advanced computing for innovation acomin

2015. Sofia, Bulgaria.

Kohler, J., Simov, K., & Specht, T. (2015). Analysis of the Join Performance in

Vertically Distributed Cloud Databases. International Journal of Adaptive,

Resilient and Autonomic Systems (IJARAS), 6 (2). doi: 10.4018/IJARAS

Kohler, J., & Specht, T. (2012). SeDiCo - Towards a Framework for a Secure and

Distributed Datastore in the Cloud. In Proceedings of chip-to-cloud security

forum 2012. Nice, France.

Kohler, J., & Specht, T. (2014a). Ein Marktplatz für die Cloud: Vergleichbarkeit

von Datenspeichern durch QoS-/SLA-Mapping. Technologien für digitale

Innovationen, 1 (1).

Kohler, J., & Specht, T. (2014b). Vertical Query-Join Benchmark in a Cloud

Database Environment. In Proceedings of the 2nd ieee world conference on

complex systems. Agadir, Marocco.

Kohler, J., & Specht, T. (2014c). Vertical Update-Join Benchmark in a

Cloud Database Environment. In Proceedings of WiWiTa 2014 Wismarer

Wirtschaftsinformatiktage. Wismar, Germany (pp. 159–175). Wismar, Ger-

many.

Kohler, J., & Specht, T. (2015a). Analysis of Cache Implementations in a

Vertically Distributed Cloud Data Store. In Proceedings of the 3rd ieee world

conference on complex system. Marrakesh, Morocco.

Kohler, J., & Specht, T. (2015b). Performance Analysis of Vertically Parti-

tioned Data in Clouds Through a Client-Based In-Memory Key-Value Store

Cache. In Proceedings of the 8th international conference on computational

intelligence in security for information systems. Burgos, Spain: Springer.

Kohler, J., & Specht, T. (2015c). A Performance Comparison Between Parallel And

Lazy Fetching in Vertically Distributed Cloud Databases. In International

conference on cloud computing technologies and applications - cloudtech 2015.

Marrakesh, Morocco: IEEE Computer Society.

Krueger, J., Grund, M., Zeier, A., & Plattner, H. (2010). Enterprise application-

specific data management. In Proceedings - ieee international enterprise

distributed object computing workshop, edoc (pp. 131–140). Vitoria, Brazil.

195

Li, L., & Gruenwald, L. (2012). Autonomous database partitioning using data

mining on single computers and cluster computers. In Proceedings of the

16th international database engineering and applications sysmposium on

- ideas ’12 (pp. 32–41). New York, New York, USA: ACM Press. doi:

10.1145/2351476.2351481

Lorey, J., & Naumann, F. (2013). Detecting SPARQL query templates for

data prefetching. In Lecture notes in computer science (including subseries

lecture notes in artificial intelligence and lecture notes in bioinformatics)

(Vol. 7882 LNCS, pp. 124–139). Springer Berlin Heidelberg. doi: 10.1007/

978-3-642-38288-8-9

Luo, Krishnamurthy, S., Mohan, C., Pirahesh, H., Woo, H., Lindsay, B. G., &

Naughton, J. F. (2002). Middle-tier database caching for e-business. In

Proceedings of the 2002 acm sigmod international conference on management

of data (pp. 600–611). Madison, Wisconsin, USA.

Lutteroth, C., & Weber, G. (2009). Database synchronization as a service.

In Proceedings - ieee international enterprise distributed object computing

workshop, edoc 2009 (pp. 84–91). Auckland, New Zealand. doi: 10.1109/

EDOCW.2009.5332009

Manola, F., Miller, E., & McBride, B. (2014). RDF 1.1 Primer Website W3C

Working Group Note 25 February 2014. Retrieved 2016-02-01, from http://

www.w3.org/TR/rdf11-primer/

Martin, M., Unbehauen, J., & Auer, S. (2010). Improving the Performance of

Semantic Web Applications with SPARQL Query Caching. In Proceedings of

7th extended semantic web conference (eswc 2010) (pp. 304–318). Heraklion,

Crete, Greece: ACM. Retrieved from http://www.springerlink.com/

content/764m684325739v67/ doi: doi:10.1007/978-3-642-13489-0 21

Mattsson, U. (2008). How to Prevent Internal and External Attacks on Data

- Securing the Enterprise Data Flow Against Advanced Attacks. SSRN

Electronic Journal , 1 (1). doi: 10.2139/ssrn.1144290

Mell, P., & Grance, T. (2011). The NIST Definition of Cloud Computing (Tech.

Rep. No. 800-145). Gaithersburg, MD: National Institute of Standards and

Technology (NIST). Retrieved 2016-02-01, from http://csrc.nist.gov/

publications/nistpubs/800-145/SP800-145.pdf

Melnik, S., Adya, A., & Bernstein, P. a. (2008). Compiling mappings to bridge

applications and databases. ACM Transactions on Database Systems , 33 (4),

1–50. doi: 10.1145/1412331.1412334

Microsoft. (2016). Microsoft Linq Website. Retrieved 2016-02-01, from https://

196

msdn.microsoft.com/de-de/library/bb397926.aspx

Mishra, P., & Eich, M. H. (1992). Join processing in relational databases. ACM

Computing Surveys , 24 (1), 63–113. doi: 10.1145/128762.128764

MongoDB. (2016). MongoDB Website. Retrieved 2016-10-01, from https://

www.mongodb.org/

Montoya, G., Vidal, M. E., Corcho, O., Ruckhaus, E., & Buil-Aranda, C. (2012).

Benchmarking federated SPARQL query engines: Are existing testbeds

enough? In Lecture notes in computer science (including subseries lecture

notes in artificial intelligence and lecture notes in bioinformatics) (Vol.

7650 LNCS, pp. 313–324). Springer Berlin Heidelberg. doi: 10.1007/

978-3-642-35173-0-21

Morsey, M., Lehmann, J., Auer, S., & Ngonga Ngomo, A. C. (2011). DBpedia

SPARQL benchmark - Performance assessment with real queries on real

data. In Lecture notes in computer science (including subseries lecture

notes in artificial intelligence and lecture notes in bioinformatics) (Vol.

7031 LNCS, pp. 454–469). Springer Berlin Heidelberg. doi: 10.1007/

978-3-642-25073-6 29

MySQL. (2016). MySQL 5.6 Reference Manual Including MySQL Cluster NDB 7.3

Reference Guide. Author. Retrieved 2016-02-01, from http://dev.mysql

.com/doc/

Neves, B. A., Correia, M. P., Bruno, Q., Fernando, A., & Paulo, S. (2013). DepSky:

dependable and secure storage in a cloud-of-clouds. In Acm transactions on

storage (tos) (Vol. 9, pp. 31–46). ACM. doi: 10.1145/2535929

Ning, X., Jin, H., & Wu, H. (2008). RSS: A framework enabling ranked search on

the semantic web. Information Processing and Management , 44 (2), 893–909.

doi: 10.1016/j.ipm.2007.03.005

NoSQL Archive. (2016). NoSQL Archive Website. Retrieved 2016-02-01, from

http://nosql-databases.org/

OECD. (2013). 2013 OECD Privacy Guidelines. Organisation for Economic Co-

operation and Development. Retrieved 2016-02-01, from http://www.oecd

.org/sti/ieconomy/oecdguidelinesontheprotectionofprivacy.htm

Olston, C., & Widom, J. (2002). Best-effort cache synchronization with source

cooperation. In Proceedings of the 2002 acm sigmod international conference

on management of data - sigmod ’02 (pp. 73–84). New York, USA: ACM

Press. doi: 10.1145/564691.564701

Omg. (2011). UML Infrastructure Specification, v2.4.1. Omg(August), 34.

Retrieved from http://www.omg.org/spec/UML/2.4.1/Infrastructure/

197

PDF/ doi: 10.1007/s002870050092

Ontop. (2016). Ontop Website. Retrieved 2016-02-01, from http://ontop.inf

.unibz.it/

Ontotext. (2016). GraphDB Website. Retrieved 2016-02-01, from http://

ontotext.com/products/graphdb/

Oracle. (2016). Oracle R© Database VLDB and Partitioning Guide 11g Release 1

(11.1). Retrieved 2016-02-01, from http://docs.oracle.com/cd/B28359

01/server.111/b32024/title.htm

Ottinger, J., Guruzu, S., & Mak, G. (2015). Hibernate Recipes. Apress, New

York.

Özsu, M. T., & Valduriez, P. (2011). Principles of Distributed Database Systems

(3rd editio ed., Vol. 12). New York, USA: Springer. doi: 10.1007/978-1-4419

-8834-8

Pearson, S. (2013). Privacy, Security and Trust in Cloud Computing. In Privacy

and security for cloud computing se - 1 (pp. 3–42). Springer London. doi:

10.1007/978-1-4471-4189-1 1

Pérez, J., Arenas, M., & Gutierrez, C. (2006). Semantics and Complexity of

SPARQL. The Semantic Web - ISWC 2006 , 4273 , 30–43. doi: 10.1007/

11926078

Plattner, H. (2013). A Course in In-Memory Data Management: The Inner

Mechanics of In-Memory Databases. Berlin Heidelberg, Germany: Springer.

Podlipnig, S., & Böszörmenyi, L. (2003). A survey of Web cache replacement

strategies. ACM Computing Surveys , 35 (4), 374–398. doi: 10.1145/954339

.954341

Popa, R. A., Redfield, C. M. S., Zeldovich, N., & Balakrishnan, H. (2011).

CryptDB. In Proceedings of the twenty-third acm symposium on operating

systems principles - sosp ’11 (p. 85). New York, USA: ACM Press. doi:

10.1145/2043556.2043566

Ports, D. R. K., Clements, A. T., Zhang, I., Madden, S., & Liskov, B. (2010).

Transactional Consistency and Automatic Management in an Application

Data Cache. In Proceedings of the ninth usenix symposium on operating

systems design and implementation (pp. 279–292). Vancouver, BC, Canada.

PostgresSQL. (2016). PostgreSQL Documentation 9.5. Retrieved 2016-02-01,

from http://www.postgresql.org/

Pritchett, D. (2008). BASE: An ACID Alternative. Queue, 6 (3), 48–55. doi:

10.1145/1394127.1394128

Qiao, S., & Özsoyo, Z. M. (2015). RBench : Application-Specific RDF Bench-

198

marking. In Proceedings of the 2015 acm sigmod international conference

on management of data (pp. 1825–1838). Melbourne, VIC, Australia: ACM.

doi: 10.1145/2723372.2746479

Quilitz, B. (2006). DARQ Website. Retrieved 2016-02-01, from http://darq

.sourceforge.net/

Quilitz, B., & Leser, U. (2008). Querying distributed RDF data sources with

SPARQL. In Lecture notes in computer science (including subseries lecture

notes in artificial intelligence and lecture notes in bioinformatics) (Vol.

5021 LNCS, pp. 524–538). Springer Berlin Heidelberg. doi: 10.1007/

978-3-540-68234-9 39

Rakhmawati, N. A., Umbrich, J., Karnstedt, M., Hasnain, A., & Hausenblas,

M. (2013). Querying over Federated SPARQL Endpoints - A State of

the Art Survey. arXiv preprint arXiv:1306.1723 . Retrieved from http://

arxiv.org/abs/1306.1723

RedHat. (2016). ORM Hibernate Documentation. Retrieved 2016-02-01, from

http://hibernate.org/orm/documentation/5.0/

Rodŕıguez, L., & Li, X. (2011). A dynamic vertical partitioning approach for

distributed database system. In Conference proceedings - ieee international

conference on systems, man and cybernetics (pp. 1853–1858). doi: 10.1109/

ICSMC.2011.6083941

Rodriguez, L., & Li, X. (2011). A dynamic vertical partitioning approach for

distributed database system. In Conference proceedings - ieee international

conference on systems, man and cybernetics (pp. 1853–1858). Anchorage,

Alaska USA. doi: 10.1109/ICSMC.2011.6083941

Rodŕıguez-Muro, M., & Rezk, M. (2015). Efficient SPARQL-to-SQL with R2RML

mappings. Journal of Web Semantics , 33 , 141–169. doi: 10.1016/j.websem

.2015.03.001

Rohilla, S., & Mittal, P. (2013). Database Security: Threats and Challenges. In-

ternational Journal of Advanced Research in Computer Science and Software

Engineering , 3 (5), 810–813.

Russell, C. (2008). Bridging the Object-Relational Divide. ACM Queue, 6 (3),

18–29. doi: 10.1145/1394127.1394139

SAP. (2016). SAP HANA Website. Retrieved 2016-02-02, from https://hana

.sap.com/abouthana.html

Schmidt, M., Görlitz, O., Haase, P., Ladwig, G., Schwarte, A., & Tran, T. (2011).

FedBench: A benchmark suite for federated semantic data query processing.

In Lecture notes in computer science (including subseries lecture notes in

199

artificial intelligence and lecture notes in bioinformatics) (Vol. 7031 LNCS,

pp. 585–600). doi: 10.1007/978-3-642-25073-6 37

Schmidt, M., Hornung, T., Meier, M., Pinkel, C., & Lausen, G. (2009). SP2bench:

A SPARQL performance benchmark. In Ieee 25th international conference

on data engineering, 2009. icde ’09. (pp. 222 – 233). Shanghai, China: IEEE.

doi: 10.1007/978-3-642-04329-1 16

Schwarte, A., Haase, P., Schmidt, M., Hose, K., & Schenkel, R. (2012). An Expe-

rience Report of Large Scale Federations. arXiv preprint arXiv:1210.5403 .

Retrieved from http://arxiv.org/abs/1210.5403

Sequeda, J. F., & Miranker, D. P. (2013). Ultrawrap: SPARQL execution on

relational data. Web Semantics: Science, Services and Agents on the World

Wide Web, 22 , 19–39. doi: 10.1016/j.websem.2013.08.002

Sesame. (2015). Sesame Website: Sesame SAIL API Documentation. Retrieved

2016-02-01, from http://rdf4j.org/sesame/2.7/apidocs/org/openrdf/

sail/rdbms/RdbmsStore.html

Sesame. (2016). Sesame Website. Retrieved 2016-02-01, from http://rdf4j

.org/

Sion, R. (2007). Secure data outsourcing. In Proceedings of the 33rd international

conference on very large data bases (Vol. 4, pp. 1431–1432). Vienna, Austria.

Sivasubramanian, S., Pierre, G., van Steen, M., & Alonso, G. (2007). Analysis

of caching and replication strategies for web applications. IEEE Internet

Computing , 11 (1), 60–66. doi: 10.1109/MIC.2007.3

Son, J. H., & Kim, M. H. (2004). An adaptable vertical partitioning method in

distributed systems. Journal of Systems and Software, 73 (3), 551–561. doi:

10.1016/j.jss.2003.04.002

Sood, S. K. (2012). A combined approach to ensure data security in cloud

computing. Journal of Network and Computer Applications , 35 (6), 1831–

1838. doi: 10.1016/j.jnca.2012.07.007

SPC. (2013). SPC Benchmark 1 Official Specification. California, USA:

Storage Performance Council. Retrieved 2016-02-01, from http://www

.storageperformance.org/specs/SPC-1 SPC-1E v1.14.pdf

SPEC. (2016). SPEC Website. Retrieved 2016-02-01, from https://www.spec

.org

SQLAlchemy. (2016). SQLAlchemy Website. Retrieved 2016-02-01, from http://

www.sqlalchemy.org/

Steve, P., & Ushar, T. (2011). Securing the Cloud - Using Encryp-

tion and Key Management to Solve Today’s Cloud Security Chal-

200

lenges. Colorado Springs, CO: Storage Networking Industry Associ-

ation (SINA). Retrieved 2016-02-01, from https://www.google.at/

url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=

8&ved=0ahUKEwiIsv3ipe JAhVL1ywKHTWNAEcQFggmMAA&url=http://

www.snia.org/sites/default/education/tutorials/2011/spring/

security/PateTambay Securing the Cloud K

Sweeney, L. (2002). Achieving k-anonymity privacy protection using gener-

alization and suppression. International Journal of Uncertainty, Fuzzi-

ness and Knowledge-Based Systems, 10 (05), 571–588. doi: 10.1142/

S021848850200165X

Systap. (2016). Blazegraph Website. Retrieved 2016-02-01, from https://

wiki.blazegraph.com

TIOBE. (2016). TIOBE Index. Retrieved 2016-02-01, from http://www.tiobe

.com/index.php/content/paperinfo/tpci/index.html

TPC. (2003). TPC Benchmark W (Web Commerce) Specification Version 2.0r.

Retrieved 2016-02-01, from http://www.tpc.org/tpcw/default.asp

TPC. (2014). TPC Benchmark H (Decision Support) Standard Specification

Revision 2.17.0. San Francisco, USA: Transaction Processing Performance

Concil. Retrieved 2016-02-01, from http://www.tpc.org/tpch/default

.asp

Van Zyl, P., Kourie, D. G., & Boake, A. (2006). Comparing the performance

of object databases and ORM tools. In Proceedings of the 2006 annual

research conference of the south african institute of computer scientists and

information technologists on it research in developing countries - saicsit ’06

(pp. 1–11). New York, USA: ACM Press. doi: 10.1145/1216262.1216263

Van Zyl, P., Kourie, D. G., Coetzee, L., & Boake, A. (2009). The influence

of optimisations on the performance of an object relational mapping tool.

In Proceedings of the 2009 annual research conference of the south african

institute of computer scientists and information technologists on - saicsit

’09 (pp. 150–159). Vaal River, South Africa. doi: 10.1145/1632149.1632169

Verykios, V. S., Bertino, E., Fovino, I. N., Provenza, L. P., Saygin, Y., & Theodor-

idis, Y. (2004). State-of-the-art in privacy preserving data mining. ACM

SIGMOD Record , 33 (1), 50. doi: 10.1145/974121.974131

Virtuoso. (2016). Virtuoso Website. Retrieved 2016-02-01, from http://virtuoso

.openlinksw.com/

W3C. (2007). W3C Semantic Web Stack. Retrieved 2016-02-01, from https://

www.w3.org/2007/03/layerCake.png

201

W3C. (2016a). W3C Website: RDF and OWL Browsers. Retrieved 2016-

02-01, from https://www.w3.org/2001/sw/wiki/Category:RDF or OWL

Browser

W3C. (2016b). W3C Website: SPARQL Implementations. Retrieved 2016-02-01,

from https://www.w3.org/wiki/SparqlImplementations

Wood, D. (2014). W3C Website: What’s new in RDF 1.1. Retrieved 2016-02-01,

from https://www.w3.org/TR/rdf11-new/

Wu, B., Zhou, Y., Yuan, P., Jin, H., & Liu, L. (2014). SemStore: A Semantic-

Preserving Distributed RDF Triple Store. In Proceedings of the 23rd acm in-

ternational conference on conference on information and knowledge manage-

ment (pp. 509–518). Shanghai, China: ACM. doi: 10.1145/2661829.2661876

Yao, S. B., & Hevner, A. R. (1984). A Guide to Performance Evaluation of

Database Systems. Washington, D.C., USA: NBS Special Publication.

202

Appendix A

List of TablesList of Tables

1.1 Mapping of Relational Model to Database Implementation 22

1.2 Approaches for Hypothesis 2 . 27

1.3 Thesis Approaches Mapped to Hypotheses 29

2.1 Query Mechanism Complexity . 44

3.1 Mapping the CIA-Principles to SeDiCo 54

3.2 Mapping the Privacy Principles to SeDiCo 54

3.3 Impedance Mismatch Challenges 62

3.4 Applicable Caching Approaches for SeDiCo 70

3.5 Classification of Cache Replacement Strategies 72

3.6 Cache Consistency Models: ACID and BASE 73

3.7 Master-Slave Replication Discussion 75

3.8 Decentralized Replication Discussion 76

3.9 Benchmark Discussion . 78

4.1 Query Mechanism Complexity . 83

4.2 Query Mechanism Complexity . 90

6.1 Data Set Size of Relation R(A) 103

203

6.2 Data Set Size of Vertical Partitions Sv(B) and Tv(C) 103

7.1 Average Hibernate Response Time for a Non-FVPD Data Set in ms120

7.2 Average FVPD Response Time in ms 120

7.3 Comparison of Hash and Sorted-Merge Join with Larger Data Sets

in ms . 121

7.4 Query Mechanism Summary . 124

8.1 Mapping between Relational Model and RDF 138

8.2 Semantic Web Frameworks Analysis 149

8.3 CUSTOMER Table with 5 Columns 152

8.4 Partition 1 of CUSTOMER Table with 5 Columns 153

8.5 Partition 2 of CUSTOMER Table with 5 Columns 153

8.7 Successfully Conducted Tasks . 180

204

Appendix B

List of FiguresList of Figures

1 Motivating SeDiCo Example . 5

2 Design Science Research Cycles 11

3 Design Science Research Cycle Mapped to Thesis Chapters 12

1.1 Relational Model . 17

1.2 Vertical Partitioned TPC-W Customer Relation 26

2.1 SeDiCo Architecture with TPC-W CUSTOMER Data Scheme . . 41

2.2 SeDiCo’s Architectural Overview 42

2.3 Query and Join Approach in SeDiCo 44

2.4 CRUD Operations in SeDiCo . 47

3.1 SeDiCo Architecture Mapped to Chapter Content 49

3.2 Data Lifecycle . 51

3.3 Cloud Reference Architecture . 56

3.4 Cloud Computing Service Models 57

3.5 Cloud Computing Deployment Models 58

3.6 ORM Architecture . 61

3.7 Cache Hierarchy . 66

3.8 Cache Positions . 67

205

3.9 Cache Workflow . 68

3.10 Mater Slave Replication . 75

3.11 Decentralized Replication . 76

4.1 Server-Based Caching . 85

4.2 Server-Based Caching . 85

4.3 Local Caching . 86

4.4 Local Caching . 87

4.5 Remote Caching . 88

4.6 SSD-Based Architecture . 89

5.1 SeDiCo Query Mechanism Integration Overview 91

5.2 UML Sequence Diagram Key Concepts 92

5.3 Query Rewriting Implementation 94

5.4 Cache Performance Comparison 97

5.5 Server-Based Caching Implementation 98

5.6 Local Caching Implementation . 99

5.7 Remote Caching Implementation 100

5.8 SSD-Based Implementation . 101

6.1 FVPD TPC-W CUSTOMER Table 103

6.2 Initial Response Time . 107

6.3 Initial SeDiCo Response Time . 108

6.4 FVPD Query Rewriting Nested-Loops Response Time 110

6.5 FVPD Query Rewriting Hash Join Response Time 110

6.6 FVPD Query Rewriting Sorted-Merge Join Response Time 111

6.7 FVPD Query Rewriting Skewed Join Response Time 112

6.8 FVPD Server-Based Parallel and Local Response Time 114

6.9 FVPD Local and Remote Caching Response Time 115

206

6.10 Initial Non-FVPD SSD-Based Response Time 117

6.11 FVPD SSD-Based Response Time 117

8.1 Adapted Semantic Web Stack . 127

8.2 General Semantic Web Framework Architecture 127

8.3 General RDF Triple . 129

8.4 RDF CUSTOMER Triple . 130

8.5 TPC-W CUSTOMER Table as SPARQL Endpoint 134

8.6 FVPD TPC-W CUSTOMER Partitions as SPARQL Endpoints . 134

8.7 Graph for Primary Key Instance for a Row in R(A) 138

8.8 Mapping A SPARQL Query to its Corresponding Reconstruction

Queries . 155

8.9 SPARQL to SQL Example - Query Tree 157

8.10 Local Non-FVPD OBDA Framework Evaluation 159

8.11 Local FVPD OBDA Framework Evaluation 160

8.12 Remote Non-FVPD OBDA Framework Evaluation 160

8.13 Remote FVPD OBDA Framework Evaluation 161

8.14 Local and Remote FVPD OBDA SPARQL 1.1 Framework Evaluation161

207

Appendix C

ListingsListings

1 Example Source/Pseudo Code . 15

3.1 HQL n+1 Selects Problem . 64

3.2 Customer Select Query . 64

3.3 Order Select Query with Criteria 64

3.4 Customers and Orders Join Query 65

4.1 FVPD Nested-Loops Join Algorithm 81

4.2 FVPD Hash Join Algorithm . 82

4.3 FVPD Sorted-Merge Join Algorithm 83

6.1 FVPD Query for Skewed Data . 113

8.1 CUSTOMER RDF Triple Encoded in Turtle Syntax 130

8.2 Generic SPARQL Query . 131

8.3 Generic SQL Query . 131

8.4 R2RML CUSTOMER RDF Mapping Example 152

8.5 Non-FVPD SPARQL CUSTOMER Query 152

8.6 R2RML CUSTOMER Partition 1 RDF Mapping Example 153

8.7 R2RML CUSTOMER Partition 2 RDF Mapping Example 153

8.8 Reconstruction SPARQL 1.0 TPC-W CUSTOMER Queries 154

8.9 Reconstruction SPARQL 1.1 TPC-W CUSTOMER Query 155

8.10 SPARQL to SQL Query Example 156

8.11 SPARQL to SQL Query Example - The SQL Query 157

208

Appendix D

SeDiCo Application Screenshots

209

210

211

212

