

Поредицата „Автореферати на дисертации на
Института по информационни и комуникационни
технологии при Българската академия на
науките“ представя в електронен формат
автореферати на дисертации за получаване на
научната степен „Доктор на науките” или на
образователната и научната степен „Доктор”,
защитени в Института по информационни и
комуникационни технологии при Българската
академия на науките. Представените трудове
отразяват нови научни и научно-приложни приноси в
редица области на информационните и
комуникационните технологии като Компютърни
мрежи и архитектури, Паралелни алгоритми, Научни
пресмятания, Лингвистично моделиране,
Математически методи за обработка на сензорна
информация, Информационни технологии в
сигурността, Технологии за управление и обработка
на знания, Грид-технологии и приложения,
Оптимизация и вземане на решения, Обработка на
сигнали и разпознаване на образи, Интелигентни
системи, Информационни процеси и системи,
Вградени интелигентни технологии, Йерархични
системи, Комуникационни системи и услуги и др.

 The series Abstracts of Dissertations of the Institute of
Information and Communication Technologies at the
Bulgarian Academy of Sciences presents in an
electronic format the abstracts of Doctor of Sciences
and PhD dissertations defended in the Institute of
Information and Communication Technologies at the
Bulgarian Academy of Sciences. The studies provide
new original results in such areas of Information and
Communication Technologies as Computer Networks
and Architectures, Parallel Algorithms, Scientific
Computations, Linguistic Modelling, Mathematical
Methods for Sensor Data Processing, Information
Technologies for Security, Technologies for Knowledge
management and processing, Grid Technologies and
Applications, Optimization and Decision Making, Signal
Processing and Pattern Recognition, Information
Processing and Systems, Intelligent Systems, Embedded
Intelligent Technologies, Hierarchical Systems,
Communication Systems and Services, etc.

Редактори

Геннадий Агре
Институт по информационни и комуникационни
технологии, Българска академия на науките
E-mail: agre@iinf.bas.bg

Райна Георгиева
Институт по информационни и комуникационни
технологии, Българска академия на
E-mail: rayna@parallel.bas.bg

Даниела Борисова
Институт по информационни и комуникационни
технологии, Българска академия на науките
E-mail: dborissova@iit.bas.bg

 Editors

Gennady Agre
Institute of Information and Communication
Technologies, Bulgarian Academy of Sciences
E-mail: agre@iinf.bas.bg

Rayna Georgieva
Institute of Information and Communication
Technologies, Bulgarian Academy of Sciences
E-mail: rayna@parallel.bas.bg

Daniela Borissova
Institute of Information and Communication
Technologies, Bulgarian Academy of Sciences
E-mail: dborissova@iit.bas.bg

Настоящето издание е обект на авторско право.
Всички права са запазени при превод, разпечатване,
използване на илюстрации, цитирания,
разпространение, възпроизвеждане на микрофилми
или по други начини, както и съхранение в бази от
данни на всички или част от материалите в
настоящето издание. Копирането на изданието или
на част от съдържанието му е разрешено само със
съгласието на авторите и/или редакторите

 This work is subjected to copyright. All rights are
reserved, whether the whole or part of the materials is
concerned, specifically the rights of translation,
reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in other
ways, and storage in data banks. Duplication of this
work or part thereof is only permitted under the
provisions of the authors and/or editor.

e-ISSN: 1314-6351

© IICT-BAS 2012 www.iict.bas.bg/dissertations

Introduction

Importance of the Topic

Storing data in relational databases has a long history since Codd defined the

relational model and its normal forms in (Codd, 1970). Such relational databases

still build the foundation for various applications throughout all application

domains even with todays growing data volumes. It is assumed that, despite

a rapid dissemination of In-Memory or NoSQL databases, relational databases

will keep their important role. Hence, also relational databases are used as

a foundation to store huge volumes of data and this is exactly where Cloud

Computing offers dynamic and scalable capabilities. Renting such technological

assets and capabilities from external cloud providers is an interesting approach.

The pay-as-you-go character of these cloud offers, promise the usage of computing

assets without large initial investments. In Cloud Computing environments,

dedicated services are used for a certain time and are paid only for the respective

usage. Moreover, as there are dedicated services, the complexity to integrate

and use them is considered lower compared to paradigms like service-oriented

architectures. As there are still open data security and data protection

challenges, the usage of especially public Cloud Computing is far behind the

expectations of e.g. Gartner (Carlton, 2013) and IDC (Gens & Shirer, 2013). Hence

in this thesis, data security and data protection challenges for relational

databases are addressed with the definition and an implementation of a framework

for a SEcure and DI stributed C loud Data StOre, exploiting a fixed vertical

partitioning and distribution (FVPD) scheme. The main contribution of this

work is to show that the proposed framework provides comparable

response times to non-partitioned relational databases using cloud

infrastructures and contemporary hardware devices.

An approach that contributes to the broad dissemination of using especially

public clouds is SeDiCo, a framework for a SEcure and DI stributed C loud Data

stOre. The key concept of this approach is to vertically partition relational

database data and store the respective partitions in different databases operated

in different clouds. The author of this work firstly proposed this so-called Security-

by-Distribution concept in 2012 (Kohler & Specht, 2012) and developed and

1

4 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

implemented it prototypically from 2012 to 2014 (Kohler & Specht, 2014a)1.

Although these works proved the technological feasibility, the approach still suffers

from severe performance problems when the partitioned and distributed data are

accessed. These performance issues are in the focus of this thesis, which aims

at investigating, developing and evaluating new ways of accessing those data.

In order to not exceed the limits of this work, this thesis focuses on the query

response time. On the one hand, recent analyses of the author show that the

insert, update, and delete operations are also affected (Kohler & Specht, 2014b)

(Kohler & Specht, 2014c). On the other hand, (Krueger et al., 2010) showed that

∼ 90% of all operations in enterprise databases are queries (i.e. selects). Hence,

the focus of this work is on the query response time and the insert, update and

delete performance are considered as key questions of future work tasks. Finally, it

can be stated that the usage of Cloud Computing capabilities still are a weighing

between security and performance and this thesis aims at minimizing this gap

with the definition and the evaluation of adequate query patterns.

A motivating example of the entire SeDiCo framework is drawn in Fig. 1

which illustrates the fixed vertical partitioning and distribution (FVPD) approach

with a simple CUSTOMER relation.

Figure 1: Motivating SeDiCo Example

In this example, there are 2 vertical partitions one containing more sensitive

data (Customer Partition1) and less sensitive data (Customer Partition2). The

basic idea is now that an intruder (e.g. to the public cloud partition) is not able

to reconstruct entire CUSTOMER rows, since the partitioning and distribution

1In close cooperation with the theses supervised by the author listed at the end of the full
version of the thesis. SeDiCo is available under GPL-License at: http://github.com/jenskohler

2

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 5

Abstracts of Dissertations 1 (2020) 3-56

scheme is unknown to him. Therefore, it is of minor importance which data are

stored in which cloud (public, private, community, hybrid) respectively.

Overview of the Main Results in the Area

The presented version of SeDiCo (cf. Chapter 2) was developed and imple-

mented before the work on the thesis has started. The results of this preliminary

work have shown that the ideas behind SeDiCo are feasible and work in practice.

However, there is still an open question regarding the framework performance in

practical use cases:

• Performance optimization of the SeDiCo approach: Although the

feasibility of the original implementation is empirically shown and formally

proved, the response time (especially for larger data sets, i.e. more than

10K rows) decreased tremendously. Thus, how can the response time for a

FVPD query in practical use cases scenarios be improved, such that it is in

the same order of magnitude as a non-FVPD query?

To the best of the author’s knowledge, no one has followed a vertical database

partitioning approach in the context of data security and privacy yet. Hence, this

thesis conceptualizes, implements and evaluates advanced query mechanisms in

order to improve the overall response time of SeDiCo.

Current figures of the initial implementation can be found in the author’s

previously published work, e.g. (Kohler, Simov, & Specht, 2015) (Kohler & Specht,

2014b) and in Section 6.3.

All in all, this thesis uses these figures as a basic performance metric and

compares the investigated advanced query mechanisms to it.

Previous works (e.g. (Son & Kim, 2004) (Grund et al., 2011)) on vertical

database partitioning have been conducted in the context of performance op-

timization tasks. These optimization approaches are workload driven, i.e. the

approach depends on the queries issued against the database. SeDiCo is different

as it follows a fixed vertical partitioning approach.

Another interesting field of research with respect to the vertical partitioning

and distribution approach is Cloud Computing.

With respect to this, the thesis with its FVPD approach proposes the possibility

to partition and distribute data, such that each of a certain amount of different

3

6 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

cloud providers only gets a logically independent data chunk, which is not usable

without the others. Thus, the FVPD approach fosters the usage of (possibly

untrustworthy public) Cloud Computing, which is a promising alternative to huge

investments in IT infrastructures.

Goals and Tasks of the Thesis

The response time evaluation of the initial SeDiCo implementation (Kohler &

Specht, 2014b) and (Kohler & Specht, 2014c) showed that there is a tremendous

performance loss (factor ∼460 considering the average response time) with the

vertical partitioning and distribution approach. However, with an advanced level

of data security and privacy (Kohler & Specht, 2015a), this approach enables the

usage of public cloud infrastructures. This shows that the SeDiCo approach is

still a weighing between security and performance.

Hence, the objectives of this thesis are finding strategies, con-

cepts and corresponding implementations to improve the response

time to a level that it is in the same order of magnitude as a non-

partitioned and non-distributed approach. This results in a mini-

mization problem of the required time to retrieve the result set of a

certain query that is issued against fixed vertically partitioned and

distributed (FVPD) data.

With respect to this, the hypotheses that are investigated can be formulated

as follows:

Hypothesis 0: The definition of a Fixed Vertically Partitioned Schema (FVPD)

for relational databases improves the level of data security and data pro-

tection by separating (i.e. partitioning) and distributing logically coherent

data to different storage locations.

Hypothesis 1: Query Rewriting improves the response time to a level that is

in the same order of magnitude as a non-partitioned and non-distributed

scenario due to partitioned and parallelized query and join implementations.

Hypothesis 2: Caching data improves the response time to a level that is in the

same order of magnitude as a non-partitioned and non-distributed scenario

due to the usage of In-Memory caches.

Hypothesis 3: Using Solid State Disks (SSDs) as distributed secondary storage

devices for the FVPD data improves the response time to a level that is

4

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 7

Abstracts of Dissertations 1 (2020) 3-56

in the same order of magnitude as a non-partitioned and non-distributed

scenario due to faster access times of the memory.

Based on the hypotheses, the following tasks are conducted:

Task 1: the definition of a methodology for creating an FVPD schema for

relational data and a proof of the correctness of the methodology;

Task 2: the conceptualization of adequate query mechanisms for relational

FVPD data sets;

Task 3: the implementation of these relational query mechanisms in Java;

Task 4: the evaluation of these relational query mechanisms in terms of their

response time;

Task 5: the comparison of all developed relational query mechanisms against

each other and against the initial SeDiCo implementation;

Task 6: the application of the FVPD methodology in the Semantic Web with

Resource Description Framework-based (RDF-based) data.

The expected results can be subsumed as follows:

Result 1: a formal correctness proof of the FVPD methodology;

Result 2: ready-to-use FVPD query execution methods;

Result 3: an evaluation of the query mechanisms that acts as a guideline for

their concrete application in different scenarios;

Result 4: a classification of the query mechanisms, which ones are applicable

in which scenarios;

Result 5: a conceptual transfer of the relational FVPD approach to other

application domains (i.e. the Semantic Web with RDF-based data)

to emphasize the generic character of the approach;

Result 6: a demonstration of how the entire SeDiCo approach can be applied

in the Semantic Web on RDF-based data.

5

8 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

Contributions of the Thesis

With the successful implementation and evaluation of the before-mentioned

tasks, the thesis contributes to the current state-of-the-art with the following

aspects.

Contribution 1: Definition of a Security-by-Distribution Principle for Rela-

tional Databases

In this thesis, there is a Security-by-Distribution principle introduced that

uses vertical relational database partitioning to logically separate database

tables into chunks that are worthless without the others, but can be joined

based on the containing primary key. This principle is used in the so-called

SeDiCo framework. The respective chunks are distributed (ideally) across

different clouds and only the user who partitioned and distributed the rows

knows the partitioning distribution scheme of the partitions (chunks). This

increases the level of security and privacy and enables the storage of data

in especially public cloud infrastructures.

Contribution 2: Development of FVPD Query Strategies

The previously mentioned Security-by-Distribution approach requires new

ways of accessing the partitioned and distributed rows, as they have to be

joined, i.e. entirely reconstructed before they are actually accessible. All

approaches are conceptualized, implemented and evaluated in the presented

thesis.

Contribution 3: FVPD Query Strategy Integration into the SeDiCo Frame-

work

This thesis is created in the context of the SeDiCo framework development.

As a further result, the approaches conceptualized and illustrated in this

thesis are implemented and positively evaluated ones are integrated into

the framework. This will develop the entire framework to a feasible oppor-

tunity in practical usage scenarios, which will allow further performance

analyses in various application domains, where relational databases build

the foundation for applications.

Contribution 4: FVPD Performance Evaluation and Classification

The developed query mechanisms are evaluated with respect to their re-

sponse time and compared to each other to provide a short but precise

6

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 9

Abstracts of Dissertations 1 (2020) 3-56

overview about all investigated approaches and their respective response

time.

Contribution 5: Transfer of the FVPD Methodology to other Databases

Here, the entire SeDiCo approach is transferred to a Semantic Web sce-

nario, based on the resource description framework (RDF). Firstly, this

demonstrates the universal application character of the basic approach2 and

secondly, it proves that the approach can be transferred and applied to other

application domains with a clearly stated and demonstrated integration

effort.

Methodology Used for the Research

In order to answer the research question, the Design Science Research (DSR)

methodology described by Hevner et al. is used (Hevner & Chatterjee, 2010). The

aim is to extend boundaries of human and organizatorial capabilities by creating

new and innovative artifacts (Hevner et al., 2004).

The entire SeDiCo framework development and its associated research work

are aligned to this DSR Cycles. To illustrate this in more detail, Figure 2 maps

the DSR Cycles to the presented thesis.

Figure 2: Design Science Research Cycle Mapped to Thesis Chapters

2other thinkable application scenarios could involve NoSQL datastores with its four funda-
mental architectures (column, document, key-value stores and graph databases)

7

10 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

Chapter 1

Problem Definition

This chapter states the formal definitions of central notions and general

concepts and their adaptions to the context of the presented work. A more

detailed description can be found in the full version of the thesis.

Figure 1.1: Relational Model

In Figure 1.1 the first row is the header of the table containing the attribute

names. The degree of the table is n. The cardinality of the relation is j. Each

cell rkl has an attribute value for the attribute k in row l with 1 ≤ k ≤ n and

1 ≤ l ≤ j.

In order to uniquely identify a certain row rl, there is the concept of a primary

key. A primary key Ak is a set of one or more attributes (Ak ⊆ A), such that the

attribute values for the attributes in Ak are unique for every row r in R(A). For

the sake of better readability, this thesis focuses on relations with a primary key

containing just one attribute1.

In order to access data in a relational database, different operators over the

attributes (i.e. projection) and rows (i.e. selection) are performed.

1.1 Selection

Let A = {a1, a2, . . . , an} be a set of attributes and R(A) be a relation. A

selection operator determines which rows meet the criteria ϕ and which are

therefore collected into a result set (depicted as ←). Rows that do not meet

1This is not a loss of generality because the algorithms presented in the thesis can be extended
to relations with primary keys that consist of more than one attribute.

8

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 11

Abstracts of Dissertations 1 (2020) 3-56

these criteria are omitted. The following selection collects all rows in a result set

RS which meet the selection criteria ω formulated over the relation attributes

ϕ := (ai = ωi, ..., aj = ωj) which is issued against a relation R(A):

RS ← σ(ai=ωi,...,aj=ωj)R(A) (1.1)

with ai as the ith attribute of relation R(A), and 1 ≤ i ≤ j ≤ n.

1.2 Projection

The next operator relevant for the thesis is a projection Π over a relation

R(A). Let A = {a1, a2, . . . , an} be a set of attributes and R(A) be a relation.

A projection is essential for accessing rows in a relation, as it specifies which

attributes of the relation are collected in the result set. Thus, it can be noted

that in contrast to the above-mentioned selection, a projection results in a vertical

subset of a relation (Elmasri & Navathe, 2015).

The following projection Π collects all rows in a result set RS that meet the

attribute list (ai, ...aj) which is issued against a relation R(A):

RS ← Π(ai,...,aj)R(A) (1.2)

with ai as the ith attribute of relation R(A), with 1 ≤ i ≤ j ≤ n. Thus, since not

all attributes are included in this projection, only attributes ai, ..., aj are collected

in the result set RS and by definition (Codd, 1970) duplicate rows are removed

from the result set.

1.3 Join

The join operator ./ (with Θ as the join condition2 allows the combination of

relations in a sense that each row from a relation R is joined with a corresponding

row in relation S. Hence, a join ./ is defined as3

2e.g. depending on which condition is used for Θ (possible are: =, 6=, <,>,≤,≥)
3a more detailed derivation can be found in the full version of the thesis

9

12 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

R ./a1=b1 S :={(ra1,k, ..., rai,k)⊕ (sb1,l, ..., sbm,l) |

R(ra1,k, ..., rai,k) ∧ S(sb1,l, ..., sbm,l) ∧

(ra1,k, ..., rai,k) and (sb1,l, ..., sbm,l) meet (ra1,k = sb1,l)} (1.3)

Here, the ⊕ denotes a special case of a concatenation of the rows in R and

S: based on the equality of the primary key attributes a1 and b1 respectively, the

rows in the relations R and S are merged together.

Compared to Equation (1.3) a compact notation for the FVPD (natural) join

can be reached if all attributes (that are not important for the join condition) are

omitted and its results are given in the following definition:

R ./a1 S := {(R)⊕ (S)} (1.4)

1.4 Problem Formulation

The key approach of this thesis is to create vertical partitions of a relation

R(A) and to distribute them across different clouds. For reasons of clarity, the

FVPD approach described in this thesis focuses on two vertical partitions Sv(B)

and Tv(C). Based on this, the response time of this vertical partitioning approach

(FVPD) is evaluated.

Hence, the research problem of this thesis can be summed up with finding

adequate query strategies that improve the overall response time to a level that

is in the same order of magnitude as a query against a non-partitioned and non-

distributed database setup. A formal definition of this is a minimization problem

of the time t required to generate the joint result set based on FVPD relations

Sv(B) and Tv(C). This can be stated as follows:

mint(RSv query1Sv(B) ./a1 RSv query2Tv(C))

10

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 13

Abstracts of Dissertations 1 (2020) 3-56

With respect to this minimization problem, a lower bound4 is the time tlower,

required to collect the same result set with a non-partitioned relation R(A):

tlower = RSquery(R(A))

An upper bound for the response time is determined by the FVPD query itself:

tupper ≥ (RSv query1Sv(B) ./a1 RSv query2Tv(C))

The lower and the upper bounds are determined by the time complexity of

the FVPD approach. The dominant factor here is the join of the FVPD relations

as defined in Section 1.3. Therefore, in a näıve approach, this join results in the

Cartesian Product of the FVPD relations5, which yields to an upper bound of

O(n2) with n as the number of rows in the relations and the exponent indicating

the number of relations. An analogous consideration can also be made for the lower

bound. Again, with the join as the predominant factor for the performance of the

entire FVPD approach, more sophisticated join algorithms are worth considering.

A theoretical lower bound with approaches like the Hash Join is O(n+m) with

n as building a hash table of all n rows in relation R and m as hashing the

corresponding rows of relation S against the hash table6. The lower bound for

the Sorted-Merge Join can be determined as O(n ∗ log(m)) with n as sorting

all n rows in relation R and merging m rows of relation S against this sorted

list7. Above all, it is assumed that a query against an FVPD data set cannot be

faster than the same query against a non-FVPD data set (i.e. a single database

relation). This results in an absolute lower bound of O(n), which can be stated

as a database query against a relation containing n rows and all these n rows are

collected in the result set.

4note that the complexity is (in the best case) O(n) with n as the number of rows in R, e.g.
if relation R is stored completely in an In-Memory cache,

5except that the primary key a1 is not replicated in the result
6note that n and m denote the cardinality of relations R and S and therefore it follows that

n = m
7note that n and m denote the cardinality of relations R and S and therefore it follows that

n = m

11

14 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

Both, the lower and the upper bounds could also be determined in concrete

figures in experimental setups in (Kohler & Specht, 2014b) for different numbers

of rows, ranging from 0 to 288K rows per relation.

12

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 15

Abstracts of Dissertations 1 (2020) 3-56

Chapter 2

Definition of the FVPD Methodology and

its Original Implementation in the SeDiCo

Framework

The main idea is that a relation is divided in several partitions in a way, such

that each individual partition contains logically independent (i.e. irrelevant) tuples.

Thus, in order to use FVPD data, they have to be joined first and this requires

mechanisms to separate a relation in several parts and strategies to query the

respective partitions, such that the join produces an equal result set compared

to the original query over the original relation. In the rest of the thesis it is

assumed (without the loss of generality) that the original relation contains one

single primary key attribute and that its FVPD partitions as two relations satisfy

the necessary and sufficient conditions to represent the original relation. The

presented results of the thesis are also correct for relations with more than one

primary key attribute and more than two FVPD partitions.

2.1 Fixed Vertical Partitioning and Distribution (FVPD) Definition

Definition 1. Non-FVPD relation

Let A = {a1, a2, . . . , an} be a set of attributes. Let R(A) be a relation R with

attributes A such that a1 is the only key attribute for R(A). Then the relation R

is called a Non-FVPD relation.

Definition 2. FVPD relations for the non-FVPD relation R(A)

Let A = {a1, a2, . . . , an} be a set of attributes and let R be a non-FVPD

relation with attributes A. Let B and C be two sets of attributes such that:

• B ∪ C = A,

and

• B ∩ C = {a1}

13

16 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

Then, the two relations Sv(B) and Tv(C) are FVPD relations for the non-

FVPD relation R(A), if and only if

• |Sv(B)| = |Tv(C)| = |R(A)|

and

• R(A) = Sv(B) ./a1 Tv(C).

The condition B ∩ C = {a1} is called disjointness criterion, because the sets

of attributes in the partitions B and C are disjoint expect for the primary key

attribute a1. The condition |Sv(B)| = |Tv(C)| = |R(A)| is called completeness

criterion, because there are one-to-one correspondences from sets of tuples in

Sv(B) to the set of tuples in Tv(C) on the basis of the value of the primary key

attribute a1.

Definition 3. Reconstruction queries

Let A = {a1, a2, . . . , an} be a set of attributes and let R be a non-FVPD

relation with attributes A. Let Sv(B) and Tv(C) be FVPD relations for relation

R(A).

Let Π(ai,...,aj), (1 ≤ i < j ≤ n) be a projection query for R(A), such that

RS ← Π(ai,...,aj)R(A).

Let Πv1(a1,ak,...,al) be a projection query for Sv(B) and let Πv2(a1,am,...,ao) be a

projection query for Tv(C) with 1 ≤ i ≤ k, l,m, o ≤ j ≤ n, such that

RSv1 ← Πv1(a1,ak,...,al)Sv(B) and RSv2 ← Πv2(a1,am,...,ao)Tv(C).

The projections queries Πv1(a1,ak,...,al) and Πv2(a1,am,...,ao) are called reconstruc-

tion queries for the projection query Π(a1,...,aj), if and only if

RS = Π(ai,...,aj)(RSv1 ./a1 RSv2).

Definition 4. FVPD methodology

Let A = {a1, a2, . . . , an} be a set of attributes and let R be a non-FVPD

relation with attributes A. Let B = {a1, a2, . . . , ak} and C = {a1, ak+1, . . . , an}
for 2 ≤ k ≤ n− 1 be two sets of attributes such that:

• B ∪ C = A,

and

14

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 17

Abstracts of Dissertations 1 (2020) 3-56

• B ∩ C = {a1},

and

• the result sets for the projections on B and C: RSv1 ← Π(a1,a2,...,ak)R(A)

and RSv2 ← Π(a1,ak+1,...,an)R(A) contain no sensitive or relevant information

respectively.

Then, the two relations Sv(B) = RSv1 and Tv(C) = RSv2 are FVPD rela-

tions for the non-FVPD relation R(A).

2.1.1 Correctness of FVPD methodology

Theorem 1 states the correctness of the original SeDiCo approach. The proof

of the Theorem consists in two steps: (1) presentation of the algorithm for the

query rewriting into the reconstruction queries, and (2) the proof that the two

rewritten queries are in fact reconstruction queries for the original one.

Theorem 1. Let A = {a1, a2, . . . , an} be a set of attributes and let R be a non-

FVPD relation with attributes A. Let Sv(B) and Tv(C) be FVPD relations for

relation R(A).

For each Πω, (ω = (ai, . . . , aj) : 1 ≤ i < j ≤ n), projection query for R(A),

such that

RS ← ΠωR(A),

there exist two projection queries Πv1(a1,ak,...,al) for Sv(B) and Πv2(a1,am,...,ao) for

Tv(C), that are reconstruction queries for the original projection query Πω.

The proof of Theorem 1 can be found in the full version of the thesis.

This proof verifies hypothesis 0, stating that the FVPD methodology improves

the level of security and privacy in the context of relational databases. As stated in

Definition 4, the approach can be extended to more than two FVPD partitions and

to more than one primary key attribute. Here SeDiCo, as an implementation of

this methodology, not only provides a framework but also showed the technological

feasibility.

15

18 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

2.2 Data Distribution: The SeDiCo Approach

The basic approach of SeDiCo (A SEcure and DI stributed C loud Data stOre)

is to divide data into several partitions and distribute them across various clouds.

Thus, every cloud provider only gets a chunk of the data that is worthless without

the other parts. Based on this logical and physical data distribution, the level of

security and privacy in the cloud is enhanced.

Figure 2.1 illustrates the Security-by-Distribution approach with a simplified

example based on the TPC-W CUSTOMER relation.

Figure 2.1: SeDiCo Architecture with TPC-W CUSTOMER Data Scheme

Since it is possible to distribute data across various clouds and various database

systems, the entire setup can be regarded as a so-called distributed database system

(Elmasri & Navathe, 2015).

A concluding architectural overview about all these concepts can be found in

Figure 2.2.

Figure 2.2: SeDiCo’s Architectural Overview

16

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 19

Abstracts of Dissertations 1 (2020) 3-56

The SeDiCo framework targets on database administrators, developers and

architects, who aim at transferring database data into a dynamically scalable

cloud infrastructure. Also, system administrators and architects who intend to use

a cloud-based infrastructure for creating redundant or high availability database

systems are addressed. For these target groups, SeDiCo offers a solution to use

all kinds of cloud deployment models, i.e. public, private, hybrid and community

clouds, for the storage of database data, which is transparently usable for new

but also legacy applications.

Figure 2.2 illustrates the entire SeDiCo framework. SeDiCo is implemented

in Java as the most widely used programming language in nowadays enterprises

(TIOBE, 2016). Basically, there are four central aspects: the user administration,

the distribution logic, the cloud interfaces and the database interfaces. The key

components for this thesis are the distribution logic and the database interfaces. It

is possible to use the SeDiCo framework with different database implementations

(e.g. MySQL, Oracle, MariaDB, etc.). However, although these database systems

implement the SQL standard, the concrete implementation differs from database

system to database system. This requires an additional layer that abstracts

from the concrete database system implementations and this is done in the

database interfaces component with Hibernate (RedHat, 2016) as an ORM (Object-

Relational Mapper)1. Here, Hibernate introduces a high-level query language

(JPQL, Java Persistence Query Language) upon SQL, which is independent from

the concrete underlying database system. Hibernate, its implications for SeDiCo

and the distribution logic component are introduced in more detail in the full

version of the thesis.

2.2.1 FVPD Join

A key element in SeDiCo is the join of rows that match a query. Transferred

to the presented FVPD approach, a join corresponds to joining query matching

rows in order to reconstruct them. Thus, all join algorithms that are described

in this section implement the natural join (cf. Section 1.3), and the replicated

primary key attribute a1 appears only once in the respective result set. Thus, for

the join both partitions R and S has to be iterated to find query-matching rows.

1An ORM has several advantages: firstly, it bridges the gap between the object-oriented
programming and the relational database paradigms, secondly, it abstracts from a concrete
database implementation, and thirdly, it ensures transaction safety with the usage of a so-called
session

17

20 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

This results in a run time complexity (with respect to the response time) of O(n2),

with n indicating the cardinality of R and S.

The complexity of this initial FVPD approach (without any optimization) is

summarized in Table 2.1.

Table 2.1: Query Mechanism Complexity

Query Mechanism Join Algorithm Complexity
Initial FVPD approach Nested-Loops Join O(n2)

The presented version of SeDiCo was developed and implemented before the

work on the thesis has started. The results of this preliminary work have shown

that the ideas behind SeDiCo are feasible and work in practice. However, there is

still an open question regarding the framework performance in practical use cases:

• Performance optimization of SeDiCo approach: Although the fea-

sibility of the original implementation is empirically shown and formally

proved, the response time (especially for larger data sets, i.e. more than

10K rows) decreased tremendously. Thus, how can the response time for a

FVPD query in practical use cases scenarios be improved, such that it is in

the same order of magnitude as a non-FVPD query?

18

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 21

Abstracts of Dissertations 1 (2020) 3-56

Chapter 3

Background and Related Work

This chapter covers the architectural background for the key concepts of

the entire SeDiCo framework and relates them to current research topics. The

structure of this chapter is aligned to Figure 3.11.

Figure 3.1: SeDiCo Architecture Mapped to Chapter Content

First, security and privacy challenges are addressed in Section 3.1 with the

Security-by-Distribution approach. This is motivated by the usage of Cloud Com-

puting architectures (cf. Section 3.2). The Security-by-Distribution principle with

different database systems demands an abstraction layer that encapsulates differ-

ent vendor-specific SQL implementations into a centralized interface. Therefore,

object-relational mappers (ORMs) are in the focus of Section 3.3. Another key

element is the investigation of the related work for the caching approach in 3.4.

Last not least, Section 3.5 presents several alternative benchmarks with a strong

focus on databases to evaluate the before-mentioned approaches. The complete

presentation of the background and the related work can be found in the full

version of the thesis.
1note that the user administration component is out of the scope of this work and is not

described in more detail here. Section 4.1 is a central aspect in the distribution logic and in the
database interfaces component and is therefore illustrated twice

19

22 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

Chapter 4

Conceptualization

Generally, there are 3 approaches investigated in this thesis in order to minimize

the response time of FVPD data: a query rewriting, a caching, and an SSD-based

one. Previously published works of the author can be found in (Kohler, Simov,

Fiech, & Specht, 2015)1 for the query rewriting in (Kohler & Specht, 2015c) and

in (Kohler & Specht, 2015a) concerning the caching approach. The SSD-based one

has not been published or evaluated so far. These approaches are conceptualized

here to optimize the original SeDiCo framework implementation outlined in

Section 2.

4.1 Query Rewriting Approach

The fundamental idea behind this approach is to not only partition and

distribute relations and their rows, but also to partition queries accordingly. This

section formalizes the entire query rewriting approach based on a projection issued

against two partitions Sv(B) and Tv(C).

Since the partitions are restricted to be disjoint and complete, it is ensured that

all attributes are matched only once, except for the primary key (a1) (disjointness)

and none of the attributes is omitted (completeness). After the query parsing,

the query is partitioned and issued against the respective partitions. Finally, the

result sets with the matching rows are collected and the result sets are joined into

a final result set.

A nice advantage of this query rewriting approach is that both selections

can be run in parallel so that the corresponding result sets can be produced

simultaneously.

1This work also demonstrates how additional query filter, join, etc. criteria (previously
denoted as ω) are implemented in the SeDiCo framework. However, they are ommited here as
they are out of the scope and for the sake of better readability.

20

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 23

Abstracts of Dissertations 1 (2020) 3-56

4.2 Caching Approach

The three caching mechanisms presented in this work can be distinguished as

follows:

• Server-Based Caching

These caches are server-based caches (i.e. a cache for every partition) that

are operated on different servers between the vertical database partitions

and the clients. Every cache only stores tuples from its respective cloud

partition and clients access these caches rather than the actual database

partitions. Performance improvements are expected from faster access of

the cache memory but the actual join of the tuples have to be performed in

the clients.

• Local Caching

This is a cache for each client, as there is a 1:1 connection between client

and cache. Here, tuples are already joined (reconstructed) in the cache,

which promises performance improvements.

• Remote Caching

Firstly, it has to be noted that this approach violates SeDiCo’s Security-by-

Distribution approach, because a single central server that stores already

joined tuples is used. However, in order to develop a basic performance

metric, this approach is considered useful in the context of this work for the

sake of comparability.

4.3 SSD-based Approach

The SSD-based approach is similar to the original SeDiCo approach.

The fundamental idea is that a major performance gain concerning the collec-

tion of the result sets and the join performance can be achieved with the usage of

new hardware technologies (i.e. Solid State Drives, SSDs) that store the respective

partitions.

21

24 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

Chapter 5

Implementation

With respect to the formal description of the query rewriting, the caching,

and the SSD-based query mechanisms, this chapter now outlines their concrete

implementation. Figure 5.1 gives an overview about the location of the respective

mechanisms and their integration into the SeDiCo framework. Hence, Figure 5.1

is used as an overview about the structure of this chapter which firstly outlines

the concrete query rewriting implementation, secondly, the caching and lastly the

SSD-based approach. The complete outline of the implementation can be found

in the full version of the thesis.

Figure 5.1: SeDiCo Query Mechanism Integration Overview

22

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 25

Abstracts of Dissertations 1 (2020) 3-56

Chapter 6

Evaluation

6.1 Evaluation Environment

In order to achieve a better comparability throughout all previous works of the

author and this thesis, all evaluations are performed with a data set that ranges

from 0 to 288K randomly generated rows, which result in an overall database size

of:

Table Size in MB
CUSTOMER (R(A)) 147

Table 6.1: Data Set Size of Relation R(A)

Tables Size in MB
CUSTOMER p1 (Sv(B)) 56
CUSTOMER p2 (Tv(C)) 113

Table 6.2: Data Set Size of Vertical Partitions Sv(B) and Tv(C)

Furthermore, it has to be mentioned that the figures in this section are only

excerpts of the evaluation because of the great variation in the query times from

1 to 288K tuples. Hence, the figures only illustrate the query times from 1K to

88K tuples, which is considered the best trade-off between informational value

and readability.

Evaluation Environment In the local evaluation all components are in-

stalled on one single machine (with a dual core 2.4 GHz processors, 8 GB RAM,

500 GB HDD, CentOS 6, Java 1.7 79 64Bit, MySQL 5.6, Oracle Express 11g).

The main reason for this is to avoid typical side-effects in Cloud Computing

environments (i.e. changing (Internet) network bandwidths, unknown utilization

of physical hosts and virtual machines, etc.). In contrast to the local evaluation,

the remote evaluation uses a (private) cloud infrastructure and a client connected

via local area network (LAN) to reduce the above-mentioned side-effects to a

23

26 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

minimum. Based on this these capabilities, two private cloud infrastructures

(Eucalyptus 3 (Hewlett Packard, 2016) and CloudStack 3.2.2 (Apache, 2016)) with

à 5 computing nodes (1 cloud management server and 4 cloud nodes) (with the

hardware dimensions stated above) were set up.

It further has to be noted that the following performance evaluations also

include the measurements of a simultaneous usage of both database systems. This

is the so-called combined response time. As the SeDiCo framework offers the

possibility to use both database systems for partitions at the same time, it is

possible to store one FVPD partition in an Oracle and the other in a MySQL

database (or vice versa).

6.2 Basic Database Performance Evaluation

This initial performance measurement serves as a basic performance metric

for all following evaluations. All performance measurements were conducted three

times and the average times of all measurements are listed in the figures of this

chapter. With this approach, unreproducible side-effects like Java’s Garbage

Collector or changing host utilization could be reduced to a minimum.

1,000 15,000 30,000 50,000 88,000
0

5,000

10,000

Tuples

T
im

e
in

m
s

MySQL Local
Oracle Local

MySQL Remote
Oracle Remote

Figure 6.1: Initial Response Times

6.2.1 Conclusion

Considering the average response time of Hibernate, based on a non-distributed

and non-partitioned data set, these results show that querying a MySQL database

requires ∼1,6 seconds and an Oracle database which is nearly similar requires

24

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 27

Abstracts of Dissertations 1 (2020) 3-56

∼1,7 seconds. These values stem from a local environment where all components

are installed on one single physical machine. Although this is not applicable

in real world scenarios, these figures provide a basic performance metric. In a

remote setup (i.e. a client-server environment), querying a MySQL database

requires ∼2 seconds and an Oracle database needs ∼3 seconds to answer the

query. Thus, it can be concluded that the network overhead is ∼0.3 seconds

(MySQL) and ∼1,4 seconds (Oracle) and this is insofar interesting as the following

performance measurements will show, how this network overhead affects the

Security-by-Distribution approach of the SeDiCo framework.

6.3 SeDiCo Framework Performance Evaluation

Similar to the previous section, this evaluation is also divided into a local and

a remote measurement and the following sections present the response times of

the initial SeDiCo security-by-distribution approach without any optimizations.

1,000 15,000 30,000 50,000 88,000

0

2 000 000

4 000 000

6 000 000

8 000 000

Tuples

T
im

e
in

m
s

MySQL Local
Oracle Local

MySQL Remote
Oracle Remote

Combined Local
Combined Remote

Figure 6.2: Initial SeDiCo Response Times

The figures from the local and from the remote evaluation in Fig. 6.2 show that

the average response time of the FVPD data is considerably slower compared to the

initial implementation in Fig. 6.1. The average response time for non-partitioned

and non-distributed data compared to the average FVPD response time is ∼1,6

seconds for MySQL and ∼1,7 seconds for Oracle in the local setup and ∼2 seconds

for MySQL and ∼3 seconds for Oracle in the remote setup. Compared to the

FVPD setup in the initial SeDiCo approach, the response times are ∼257 seconds

for a MySQL and ∼1,100 seconds for an Oracle database (local) and ∼465 seconds

for MySQL and ∼2,200 seconds for Oracle in a remote setup.

25

28 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

6.3.1 Conclusion

Based on these figures, it has to be noted that the SeDiCo approach as is,

unfortunately is not usable in practical usage scenarios. Above that, the combined

response times in Fig. 6.2 show interesting results, as both, the local and the

remote values, are similar to the results of the Oracle database. Thus, it can be

concluded that the bottleneck in combined scenarios is always the slower database.

Comparing the local against the remote setup of this section shows that with a

1 Gbit Ethernet broadband LAN connection between the components, the network

causes another performance degrade by factor ∼2 averagely.

6.4 Query Rewriting Evaluation

In this section, the response time of the query rewriting approach with its 3

FVPD join algorithms (nested-loops, hash and sorted-merge join) is evaluated.

The following figures (Fig. 6.3-Fig. 6.5) illustrate the respective join implemen-

tation for the FVPD partitions in the local as well as in the remote environment.

1,000 15,000 30,000 50,000 88,00088,000

0

2,000

4,000

6,000

Tuples

T
im

e
in

m
s

MySQL Local
Oracle Local

MySQL Remote
Oracle Remote

Combined Local
Combined Remote

Figure 6.3: FVPD Query Rewriting Nested-Loops Response Time

26

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 29

Abstracts of Dissertations 1 (2020) 3-56

1,000 15,000 30,000 50,000 88,00088,000

0

2,000

4,000

6,000

Tuples

R
es

p
on

se
T

im
e

in
m

s

MySQL Local
Oracle Local

MySQL Remote
Oracle Remote

Combined Local
Combined Remote

Figure 6.4: FVPD Query Rewriting Hash Join Response Times

1,000 15,000 30,000 50,000 88,00088,000

0

2,000

4,000

6,000

Tuples

R
es

p
on

se
T

im
e

in
m

s

MySQL Local
Oracle Local

MySQL Remote
Oracle Remote

Combined Local
Combined Remote

Figure 6.5: FVPD Query Rewriting Sorted-Merge Join Response Times

6.4.1 Conclusion

In contrast to (Kohler & Specht, 2015b), the SSD-based query rewriting

approach evaluation showed that the hash join (O(n+m)) and the sorted-merge join

(O(n ∗ log(n))) produced almost similar results. As expected, both outperformed

the nested-loops join (O(n2)) (Fig. 6.3 - Fig. 6.5) if the average performance is

considered.

All join algorithms benefit from the fact that the rows are collected in sorted

order based on their primary key values from the underlying FVPD database

27

30 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

partitions. This reduces the join phase (join, probe or merge phase), as e.g. the

inner loop of the nested-loops join can stop as soon as the first matching row is

found. The same holds for the probe phase in the hash join and for the merge

phase in the sorted-merge join.

Above that, taking a closer look into the hash and the sorted-merge join, which

both produced almost similar query response times, it can be noted that collecting

query matching rows from the FVPD partitions (i.e. the build and the sort phase)

are similar. Both algorithms only differ in their join (i.e. their probe and merge)

phases. The total response time of both algorithms depicted above show that the

collection phase heavily predominates the join phase and that the join phase is an

exceptionally small part of the total response time. Thus, even if the probe phase

(hash join) outperforms the merge phase (sorted-merge join) by factor ∼2, the

overall response times of both algorithms are almost similar.

Furthermore, regarding the nested-loops join performance in Fig. 6.3, the

results show a remarkable performance gain compared to the initial SeDiCo

implementation depicted in Fig. 6.2. Moreover, the hash and the sorted-merge

join achieved even greater performance improvements as Fig. 6.4 and Fig. 6.5

show.

6.5 Caching Evaluation

Server-Based Caching As in this implementation every partition has its

own cache, none of these reside at the client. Thus, there is only a server-based

evaluation for this implementation. Yet, this evaluation distinguishes between

a lazy and a parallel row fetching strategy, which fetches rows from the caches

either partition-wise or simultaneously in different threads.

Local and Remote Caching Finally, this section evaluates the local and

the remote caching approach and the respective results are illustrated in Fig. 6.7

6.5.1 Conclusion

Considering the pure cache performance without the cache warming phase,

both, the local and the remote implementations outperform the server-based one.

This is not surprising, as in the local and remote caches, the rows are already joined

and thus this is comparable to traditional non-partitioned and non-distributed

database caching approaches.

28

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 31

Abstracts of Dissertations 1 (2020) 3-56

1,000 15,000 30,000 50,000 88,000
1,000
5,000

10,000

15,000

20,000

25,000

30,000

35,000

Tuples

R
es

p
on

se
T

im
e

in
m

s

Local Parallel Fetch
Remote Parallel Fetch

Local Lazy Fetch
Remote Lazy Fetch

Figure 6.6: FVPD Server-Based Parallel and Local Response Times

1,000 15,000 30,000 50,000 88,000
0

200

400

600

Tuples

R
es

p
on

se
T

im
e

in
m

s

Local Cache
Remote Cache

Figure 6.7: FVPD Local and Remote Caching Response Times

Above that, this evaluation showed that the local and the remote implementa-

tions also outperform the query rewriting and the SSD-based approaches. However,

taking the cache warming phase into consideration, the figures above get rela-

tivized and then the query rewriting approach outperforms the caching approach

again.

The cache warming phase is neglected in this evaluation because it only has to

be performed once, e.g. at the start of the SeDiCo client. Once the cache is warmed,

all queries can be run against the cache. In addition to this however, updating

the cache (e.g. regularly time-based, user-triggered, via cache invalidation, etc.)

is another requirement, which is not considered in this evaluation. This is also

too dependent on the specific database workload and thus regarded as a future

29

32 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

work task in concrete application domains, where the SeDiCo framework will be

integrated.

Moreover, considering the decentralized implementation it can be concluded

that the parallel fetch outperforms the lazy fetch by factor ∼2 (local fetch) and

by factor ∼7 (remote fetch). However, the concrete fetch strategy is heavily

dependent on the database workload and if the partitioning scheme is defined

such that most queries can be answered with only the values of a single partition,

the lazy fetch outperforms the parallel fetch, even if the partitions are accessed

simultaneously there. Finally, the results confirmed the assumption that collecting

rows form the cache memory is faster that directly from the FVPD partitions and

this is the case for the entire caching approach.

6.6 SSD-based Evaluation

Basic SSD-based Performance Evaluation Analogous to the previous

evaluations in this work, firstly, a basic SSD performance metric with a non-

distributed and non-partitioned data set is measured (Fig. 6.8) and then the

FVPD data set (sec. 6.1) based on SSDs is evaluated in Fig. 6.9.

1,000 15,000 30,000 50,000 88,000
0

2,000

4,000

6,000

8,000

Tuples

R
es

p
on

se
T

im
e

in
m

s

MySQL Local
Oracle Local

MySQL Remote
Oracle Remote

Figure 6.8: Initial SSD-Based Response Times

6.6.1 Conclusion

The initial SSD performance measurement in the local and in the remote

environment (Fig. 6.8 compared to Fig. 6.1), showed that indeed the SSD as

secondary storage improves the response times by ∼30% in a local MySQL, by

∼20% in a local Oracle, by ∼60% in a remote MySQL, and by ∼32% in a remote

30

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 33

Abstracts of Dissertations 1 (2020) 3-56

1,000 15,000 30,000 50,000 88,000

0

100 000

200 000

Tuples

R
es

p
on

se
T

im
e

in
m

s

MySQL Local
Oracle Local

MySQL Remote
Oracle Remote

Combined Local
Combined Remote

Figure 6.9: FVPD SSD-Based Response Times

Oracle environment (Fig. 6.8). These are promising results; however, they show

the improvements based on a non-partitioned and non-distributed data set.

Transferred to a FVPD data set, the performance gains are depicted in Fig.

6.9 for the local and for the remote evaluation environment. Compared to the

initial SeDiCo framework evaluation (Fig. 6.2), these values show a significant

performance gain by factor ∼50 (MySQL local), by factor ∼68 (Oracle local), by

factor ∼34 (MySQL remote) and by factor ∼52 (Oracle remote).

Analogous to these figures are the measurements for the combined usage of

MySQL and Oracle. Here again, the slower database system is the bottleneck, but

the SSD-based approach improved the combined response times by factor ∼64 for

the local and by factor ∼41 for the remote setup. To sum up this section, it can

be concluded that although the usage of SSDs yields to a remarkable performance

gain, the SSD-based approach is still not feasible in practical usage scenarios.

However, using SSDs rather than traditional HDDs is a good starting point for

further approaches and thus, all following evaluations are performed with SSDs as

secondary storage devices.

31

34 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

Chapter 7

Summarization of the Main Results

First of all, the hypotheses are recapitulated now and then they are either

verified or rejected.

Hypothesis 0: The definition of a Fixed Vertically Partitioned Schema (FVPD)

for relational databases improves the level of data security and data protection by

separating (i.e. partitioning) and distributing logically coherent data to different

storage locations.

This hypothesis can be verified. It was formally proved in Chapter 1. In

addition to this, the SeDiCo framework as a concrete implementation of the

FVPD methodology showed its technological feasibility.

With respect to the hypotheses 1-3, Table 7.11 states the aimed average

response times of the non-partitioned and non-distributed data set, which was

queried with Hibernate as the used ORM. The average response times used

throughout this chapter are the average response times of the presented figures in

the evaluation in Chapter 6, ranging from 1 - 288K tuples.

Table 7.1: Average Hibernate Response Time for a Non-FVPD Data Set in ms

Secondary
Storage

MySQL Local Oracle Local MySQL
Remote

Oracle
Remote

HDD 1,626 1,701 2,050 2,991

SSD 1,253 1,415 1,267 2,256

Hypothesis 1 was stated as follows:

Hypothesis 1: Query Rewriting improves the response time to a level that is in

the same order of magnitude as a non-partitioned and non-distributed scenario

due to partitioned and parallelized query and join implementations.

1As these measurements are conducted on a non-FVPD data set, a combined measurement
with both databases simultaneously was not possible.

32

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 35

Abstracts of Dissertations 1 (2020) 3-56

This hypothesis can be verified. Surprisingly, the average performance of query

rewriting and its corresponding join algorithms mostly outperforms the basic

performance metric (Table 7.1). Accordingly, Table 7.2 shows the performance

values of all query mechanisms with the best achieved values in bold font.

Table 7.2: Average FVPD Response Time in ms

Approaches MySQL
Local

Oracle
Local

MySQL
Remote

Oracle
Remote

Combined
Local

Combined
Remote

Initial
SeDiCo 257,346 1,177,436 465,972 2,266,895 1,178,949 2,287,508a

Query
Rewriting
Nested-
Loops Join

955 1,093 1,094 2,339 1,323 2,567

Query
Rewriting
Hash Join

600 755 716 1,944 979 1,959

Query
Rewriting
Sorted-
Merge
Join

609 766 729 1,946 993 2,255

Server-
Based
Caching
Parallel
Fetch

2,020 N/Ab 2,094 N/Ab N/Ab N/Ab

Server-
Based
Caching
Lazy Fetch

4,186 N/Ab 14,323 N/Ab N/Ab N/Ab

Local
Caching 146c N/Ab 365 N/Ab 254 N/Ab

Remote
Caching 229 N/Ab 434 N/Ab 324 N/Ab

SSD-Based 5,160 17,255 13,656 43,119 18,219 55,116

anote that this is the upper bound tupper defined in Section 1
b As the queries are directly issued against the cache, the underlying database can be

neglected. Therefore, only MySQL was used for this evaluation.
cnote that this is the lower bound tlower defined in Section 1, because here the local cache

stores the already reconstructed relation R(A)

The figures depicted in Table 7.2 and Table 7.3 show that query rewriting

is absolutely applicable in practical usage scenarios. Hence, the entire SeDiCo

framework becomes a viable approach with respect to security and privacy in

especially public cloud environments.

33

36 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

Table 7.3: Comparison of Hash and Sorted-Merge Join with Larger Data Sets in
ms

#Tuples Hash Join Sorted-Merge Join
Build Probe Sort Merge

1M 30,207 6,097 339 3,895
750K 10,167 1,671 578 3,859
500K 6,491 1,357 375 3,831

Average 15,621 3,042 431 3,852
Total 18,063 4,283

Hypothesis 2 was originally stated as follows:

Hypothesis 2: Caching data improves the response time to a level that is in

the same order of magnitude as a non-partitioned and non-distributed scenario

due to the usage of In-Memory caches.

This hypothesis can be verified. For this evaluation, only the pure cache

performance is important and thus Table 7.2 only focuses on the local, remote

and server-based cache performance without the cache warming phase.

Hypothesis 3 With respect to the general research question, hypothesis 1

referred to the SSD-based approach and was stated as follows:

Hypothesis 3: Using Solid State Disks (SSDs) as distributed secondary storage

devices for the FVPD data improves the response time to a level that is in the

same order of magnitude as a non-partitioned and non-distributed scenario due to

faster access times of the memory.

This hypothesis must be rejected. Although the response time gains achieved

with SSDs were significant (cf. Section 6.6), the performance did not reach the

same order of magnitude2 as queries based on non-FVPD data sets. Nevertheless,

the achieved performance values are listed in Table 7.2.

The evaluation further showed that every query mechanism has pros and cons

and therefore, no clear recommendation can be given here. Table 7.4 summarizes

these advantages and disadvantages.

This summary shows that query rewriting and caching proved the hypotheses

of this work. Although the hypothesis concerning the SSD-based approach has to

be rejected, even this approach promises performance improvements, however, the

improvements were not as big as expected. Finally, it can be concluded that the

2except for the local MySQL measurement

34

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 37

Abstracts of Dissertations 1 (2020) 3-56

Table 7.4: Query Mechanism Summary

Query
Mech-
anism

Preserves
Security-

by-
Distribution

Pros Cons

Query
Rewrit-
ing

yes Fast response times Large amount of client RAM
memory necessary for the join
algorithms (when large data
volumes with many query
matches are applied)

Applicable in practical usage
scenarios

Advantages of parallel fetch
can only be applied on clients
that have multiple cores (i.e.
as many cores as there are par-
titions)

Caching
Fast response times Additional cache coherence

protocols, that affect the re-
sponse time or the data con-
sistency are required

Applicable in practical usage
scenarios

Server-
Based

yes Dynamically scalable cache
memories

Slower response times com-
pared to query rewriting and
local and remote caching

Local yes Fastest response time com-
pared against the other ap-
proaches

Cache warming required at ev-
ery start of the client (the more
data, the more time-consuming
is the cache warming)
Cache requires large amount of
client RAM (with large data
volumes)

Remote no Cache warming must only be
performed once at server start

Cache requires additional secu-
rity and privacy measures

Dynamically scalable cache
memories

SSD-
Based

yes No conceptual, algorithmic or
architectural SeDiCo frame-
work changes required

Comparatively slow response
times

Inapplicable in practical usage
scenarios because of the slow
response times

results of query rewriting and caching are promising to further following SeDiCo’s

vision of creating a secure and distributed cloud data store where the performance

is in the same order of magnitude as traditional relational non-partitioned and

non-distributed databases.

35

38 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

Chapter 8

Framework Application in Semantic Web

Databases

The introduction of this section (in the full version of the thesis) outlines

the history of the Semantic Web and its development. The thesis firstly gives

a short introduction about the Semantic Web, its technologies and its basic

notions. This introduction is omitted here due to the lack of space, but then the

research problem is formulated. After that, the approach to transfer the SeDiCo

distribution approach to RDF-based data is conceptualized, then implemented and

finally evaluated and concluded. The concrete implementation, the correctness

proof, the complexity analysis, the outlook and future work tasks, and relevant

related work concerning this chapter (which are outlined in the thesis) are also

omitted here due to the lack of space.

8.1 Problem Formulation

The author of this work proposes to include security and privacy into to

context of linked data (LD). Generally, as the name LD suggests, data should be

linked. However, it might not be clear at first sight which data are confidential

or sensitive or even worse, which data might become confidential and sensitive

when they are combined with other data. Thus, the proposed FVPD approach to

increase the level of security and privacy might also become viable in the context

of LD. Furthermore, in relevant literature no approach has dealt with security

and privacy in this context so far. Above that, it is worth mentioning that not

even one of the W3C standards or recommendations considered security, privacy

or performance in LD. Indeed, there are 2 papers (Rakhmawati et al., 2013) and

(Betz et al., 2012) that mention copyright, data ownership and security, but only

in a small section. Therefore, the challenge of privacy and security is considered

as neglected so far.

Finally, this section is driven by a hypothesis that is stated as follows:

36

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 39

Abstracts of Dissertations 1 (2020) 3-56

Relational data, with respective mappings exposed as RDF data and published

via SPARQL endpoints are vertically partitioned and distributed according to the

FVPD methodology. Thus, the FVPD approach improves the level of security

and privacy through physical and logical data distribution at comparable response

times which are in the same order of magnitude as in a non-partitioned and

non-distributed data set.

8.2 Approach

The general approach is to expose relational data as SPARQL endpoints with

the FVPD approach incorporated, as illustrated in Fig. 8.1 and Fig. 8.2.

Figure 8.1: TPC-W
CUSTOMER Table As
SPARQL Endpoint

Figure 8.2: FVPD TPC-
W CUSTOMER Parti-
tions As SPARQL End-
points

8.3 Evaluation

8.3.1 Evaluation Environment

For the evaluation of the before-mentioned Semantic Web frameworks and the

underlying FVPD approach, the same evaluation environment as outlined in sec.

6.1 was used.

8.3.2 Local SPARQL 1.0 Evaluation

This section illustrates the measured values for the local non-FVPD (Fig. 8.3)

and the FVPD-based (Fig. 8.4) evaluation.

37

40 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

1,000 15,000 30,000 50,000 88,000

20,000

40,000

60,000

80,000

Tuples

T
im

e
in

m
s

FedX
Jena

Sesame
Blazegraph

Figure 8.3: Local Non-FVPD OBDA Framework Evaluation

1,000 15,000 30,000 50,000 88,000

20,000

40,000

60,000

80,000

Tuples

T
im

e
in

m
s

FedX
Jena

Sesame
Blazegraph

Figure 8.4: Local FVPD OBDA Framework Evaluation

8.3.3 Remote SPARQL 1.0 Evaluation

Accordingly, his section illustrates the measured values for the remote non-

FVPD (Fig. 8.5) and the FVPD-based (Fig. 8.6) evaluation.

38

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 41

Abstracts of Dissertations 1 (2020) 3-56

1,000 15,000 30,000 50,000 88,000

20,000

40,000

60,000

80,000

100,000

120,000

Tuples

T
im

e
in

m
s

FedX
Jena

Sesame
Blazegraph

Figure 8.5: Remote Non-FVPD OBDA Framework Evaluation

1,000 15,000 30,000 50,000 88,000
20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

Tuples

T
im

e
in

m
s

FedX 1.0
Jena

Sesame
Blazegraph

Figure 8.6: Remote FVPD OBDA Framework Evaluation

8.4 Conclusion

To conclude the evaluation, it can be noted that the results measured in (Haase

et al., 2010) could not be confirmed. Surprisingly, the query performance for the

local setup over the evaluated federation is similar (except for FedX) compared to

the single endpoint implementation with a non-partitioned and non-distributed

data set. Although, in the remote setup the average query performance degrades

by factor ∼2 (Fig. 8.5 compared against Fig. 8.6), it can be noted that the

federation does not have such an high impact on the average performance as it was

elaborated in (Haase et al., 2010). However, it has to be mentioned that in this

39

42 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

evaluation a comparatively small data set was used compared to e.g. DBPedia

(∼7 billion triples) or ∼110,000K triples in (Haase et al., 2010). Moreover, the

evaluation in this section focused on an federation of only 2 different SPARQL

endpoints, whereas the evaluation in (Haase et al., 2010) focused on 12 different

endpoints. Hence it must be assumed that with a growing number of triples

and a growing number of partitions (or federations) the performance degrades

will also increase. Here, further measurements that take a problem-driven data

distribution (with respect to the number of vertical partitions), a corresponding

number of different endpoints and a use-case driven data volume into consideration

are necessary. Above that, finding an adequate benchmark that takes these issues

into account is another challenging task, which is therefore considered as a future

work challenge.

Above that, (Haase et al., 2010) determined that complex queries are more

effected by performance losses (averagely by factor ∼3) than simple queries. This

could be confirmed in this evaluation with the separated view of SPARQL 1.0

(simple queries) and SPARQL 1.1 (complex queries). Here, the figures above

show that the simple SPARQL 1.0 queries outperform the complex SPARQL 1.1

queries averagely by factor ∼10 for both, the local (Fig. 8.4) and the remote

(Fig. 8.6) setup. Hence, the join can be identified as the crucial factor for the

performance degrade and thus, especially complex queries could benefit from

further optimizations with respect to this expensive operation.

Comparing the measured RDF-based results against the SSD-based TPC-W

benchmark results in sec. 6.6 shows that the average query performance degrades

by factor ∼22 in the local non-FVPD setup. Interestingly, in the local FVPD

setup, the performance degrades only by factor ∼5. Moreover, the measurements

for the remote setup are almost similar with performance degrades by factor ∼28

for the non-FVPD and by factor ∼4 for the FVPD data set. Thus, on the one

hand, compared to a traditional database access via JDBC or via ORM, there is

a significant performance loss that has to be considered in real-world scenarios.

On the other hand however, accessing RDF-based data offers a schema free and

more flexible way of querying data or even finding unknown relations, links or

other information between data with the usage of inference engines.

Contrasting the local and the remote figures above, it can be concluded that

although the integration of the FVPD approach decreases the query performance

40

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 43

Abstracts of Dissertations 1 (2020) 3-56

by averagely factor ∼2 (in the remote setup)1, it is a viable approach if further

optimizations are taken into consideration. Such optimizations could involve

strategies and techniques depicted in sec. 4.2 and sec. 4.1 of this work, namely

caching or query rewriting. Transferring such concepts to the proposed FVPD

approach results in both, faster query times and a privacy and security-aware way

of storing such data in RDF-based form.

To sum up the conclusion with respect to the hypothesis expressed in the

problem formulation of sec. 8.1, it can be stated that it can be verified. Finally, the

query performance is in the same order of magnitude as the results in this section

show. Hence, for the given scenario the FVPD approach with data exposed as

SPARQL endpoints is a feasible approach with respect to the query performance.

1whereas in the local setup the performance is similar

41

44 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

Summary and Outlook

Summary

The SeDiCo framework, developed by the author of this work and the student

works listed in Section 8.4, splits database relations and distributes the partitions

across (ideally) different clouds. Moreover, the framework aims at avoiding vendor

lock-ins with respect to the used database systems and with respect to the cloud

providers through the usage of database abstraction with Hibernate as an Object-

relational Mapper (ORM) and through cloud abstraction with jclouds as a cloud

abstraction layer on the IaaS service layer.

Although SeDiCo increases the level of security and privacy, it leads to

tremendous performance losses, as the FVPD data have to be joined together

again before they are actually accessed. Despite the technological feasibility, the

framework was not usable in practical usage scenarios due to the tremendous

performance degrade. Hence, this thesis focused on this performance challenge

and conceptualized, implemented and evaluated query mechanisms for the FVPD

partitions. For this, the research problem was defined as a minimization problem

with respect to the response time. Moreover, the entire FVPD approach was

formalized and proved according to Codds relational model (Codd, 1970).

Furthermore, the current state-of-the-art regarding the key concepts (i.e. se-

curity and privacy, Cloud Computing, Database Abstraction (ORM), Query

Rewriting, Caching and Benchmarking) were elaborated. Based on this, 3 query

mechanisms were conceptualized and developed. Accordingly, the query mecha-

nisms were evaluated against a non-partitioned and non-distributed data set as

well as against SeDiCos FVPD implementation. The evaluation, based on the

TPC-W benchmark showed that query rewriting and caching improve the caching

compared to the initial SeDiCo implementation by factors. Surprisingly, both

query mechanisms improved the caching to a level that is in the same order of

magnitude as queries against a non-distributed and non-partitioned setup.

This thesis showed that a combination of the query mechanisms would also a

viable approach to achieve additional performance gains. The evaluation of this

sustainable idea is in the focus of the future work regarding the SeDiCo develop-

42

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 45

Abstracts of Dissertations 1 (2020) 3-56

ment. This leads to the final conclusion that the developed query mechanisms have

a remarkable impact on the response time and that this work serves as a guideline

for interested practitioners and shows which query mechanism promises which

performance gains. Another aspect is the fact that the field of database research

is not bound to a concrete application domain and as database workloads cannot

be generalized, the SeDiCo framework has to be tested and evaluated against

various domains and application scenarios. Therefore, this thesis developed a basic

performance metric, which can be used to test and evaluate further scenarios and

applications and to determine how the FVPD approach affects the response time.

The thesis also contains an analysis of the usage of the framework in a Semantic

Web application scenario in which the FVPD approach is applied. The preliminary

response time evaluation results are promising, however, further optimization

strategies have to be elaborated, applied and evaluated in order to reach similar

performance results with traditional relational database queries.

List of Publications Related to the Thesis

This section lists (in order of their appearance) the author’s publications and

their thematic focus to the respective thesis chapters. It can be noted that central

aspects and ideas of all chapters have been successfully published and presented

at national and international conferences and journals. Finally, this thesis added

substantial extensions to them and integrated and structured the publications in

a central and thematically focused framework. A corresponding summary of all

listed works can be found in the full version of the thesis.

No. Publication Ref.

to

Thesis

Chap-

ter

1 Kohler J.; Specht T.; Simov K.: An Approach for a Security and Privacy-Aware

Cloud-Based Storage of Data in the Semantic Web. In: Proc. of The First IEEE

International Conference on Computer Communication and the Internet (ICCCI 2016).

Wuhan, China.

8

2 Werner S., Kohler J.; Specht T.; Simov K.: Cache Synchronization in a Vertically

Distributed Cloud Database Environment. In: Proc. of AKWI 2016 - Arbeitskreis

Wirtschaftsinformatik an Fachhochschulen, September 2016. Brandenburg, Germany.

4, 5, 6

43

46 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

3 Kohler, J.; Simov, K.; Specht, T.: Analysis of the Join Performance in Vertically

Distributed Cloud Databases. In: International Journal of Adaptive, Resilient and

Autonomic Systems (IJARAS), 6(2), 2016

1, 2, 3,

4, 5, 6

4 Kohler J.; Specht T.: Analysis of Cache Implementations in a Vertically Distributed

Cloud Data Store. In: Proc. of The 3rd IEEE World Conference on Complex Systems,

November 2015. Marrakech, Morocco.

4, 5, 6

5 Kohler J.; Simov K.; Fiech A.; Specht T.: On The Performance Of Query Rewriting

In Vertically Distributed Cloud Databases. In: Proc. of The International Conference

Advanced Computing for Innovation ACOMIN 2015, November 2015. Sofia, Bulgaria.

1, 2, 3,

4, 5, 6

6 Kohler J.; Specht T.: Dynamic Software-Based Scaling In Private Clouds. In: Proc.

of AKWI 2015 - Arbeitskreis Wirtschaftsinformatik an Fachhochschulen, September

2015. Luzern, Switzerland.

3

7 Kohler J.; Specht T.: A Performance Comparison Between Parallel And Lazy Fetching

in Vertically Distributed Cloud Databases. In: Proc. of The International Conference

on Cloud Computing Technologies and Applications - CloudTech 2015, June 2015.

Marrakesh, Morocco.

4, 5, 6

8 Kohler J.; Specht T.: Performance Analysis of Vertically Partitioned Data in Clouds

Through a Client-Based In-Memory Key-Value Store Cache. In: Proc. of The 8th

International Conference on Computational Intelligence in Security for Information

Systems, June 2015. Burgos, Spain.

1, 2, 3,

4, 5, 6

9 Kohler J.; Specht T.: Vertical Query-Join Benchmark in a Cloud Database Environ-

ment. In: Proc. of The 2nd World Conference on Complex Systems, November 2014.

Agadir, Morocco.

1, 2, 3,

4, 5, 6

10 Kohler J.; Specht T.: Analysis of the Join-Problem in Vertically Distributed Databases

(in German). In: Proc. of AKWI 2014 - Arbeitskreis Wirtschaftsinformatik an

Fachhochschulen, September 2014. Regensburg, Germany.

1, 2, 3,

4

11 Velikova D.; Kohler J.; Gerten R.: Case Study On Financing And Business De-

velopment Processes In Technopreneurship. In: Proc. of European Conference on

Innovation and Entrepreneurship (ECIE) 2014, September 2014. Belfast, Ireland.

2

12 Kohler J.; Specht T.: Vertical Update-Join Benchmark in a Cloud Database Envi-

ronment. In: Proc. of WiWiTa 2014. Wismarer Wirtschaftsinformatiktage. June

2014.

4, 5, 6

44

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 47

Abstracts of Dissertations 1 (2020) 3-56

13 Kohler J.; Specht T.: A Marketplace for the Cloud: Comparison of Data Stores

Through QoS/SLA. In: Technologien fuer digitale Innovationen. Springer Verlag 2014.

Wiesbaden, Germany.

3

14 Mueller P.; Kohler J.; Specht T.: A Vertical Data Distribution Approach in the Cloud.

(in German) In: eJournal of AKWI - Arbeitskreis Wirtschaftsinformatik. Februar

2014. Luzern. ISSN: 2296-4592. http://akwi.hswlu.ch

1, 2, 3,

4, 5, 6

15 Kohler J.; Specht T.: A Marketplace for an Efficient and Transparent XaaS-Evaluation.

(in German) In: Proc. of AKWI - Arbeitskreis Wirtschaftsinformatik an Fach-

hochschulen, September 2013. Friedberg, Germany.

3

16 Kohler J.: SeDiCo - Towards a Framework for a Secure and Distributed Cloud Data

Store. In: Proc. of Chip-To-Cloud Security Forum, September 2012. Nice, France.

2

List of Theses Supervised by the Author

The following list presents all bachelor theses that were developed during the

development of the SeDiCo framework supervised by the author. These works

represent small development and testing tasks that were helpful for the author to

implement and evaluate the FVPD approach.

1. Seminar Paper 06/2016

Lorenz, Richard: Conceptualization, Implementation and Evaluation of a Vertical Parti-

tioning Approach for NoSQL Document Stores. (in German)

2. Bachelor-Thesis 09/2015

Taenzer, Martin: Trusted Cloud: A Way Towards a Secure and Trustworthy Cloud. (in

German)

3. Bachelor-Thesis 09/2015

Werner, Stefan: Conceptualization, Implementation and Evaluation of Cache Synchroniza-

tion Mechanisms in a Vertically Partitioned Cloud Database Application. (in German)

4. Bachelor-Thesis 08/2015

Heiler, Daniel: Parallel Data Access Through Query-Rewriting in a Vertically Distributed

Cloud Database Environment

5. Bachelor-Thesis 07/2015

Atilgan, Tunahan: Evaluation of Semantic Service Registries for Web Services. (in

German)

6. Bachelor-Thesis 05/2015

Sahin, Huzeyfe: Integration of a Middle-tier Database Cache into a Vertically Partitioned

Cloud Architecture. (in German)

45

48 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

7. Bachelor-Thesis 05/2015

Schmidt, Sonny: Conceptualization and Implementation of an Automated Horizontal

Scaling Platform for Cloud-based Database Cluster. (in German)

8. Bachelor-Thesis 01/2015

Eslengert, Igor: Conceptualization and Implementation of a Web-based and Automated

Cloud Service Level Agreement Directory for the IaaS Layer. (in German)

9. Bachelor-Thesis 10/2014

Hlipala, Christof: Conceptualization and Implementation of a Dynamic Scaling Mechanism

for CloudStack. (in German)

10. Bachelor-Thesis 07/2013

Mueller, Patrick: Vertical Data Partitioning in a Distributed Cloud Architecture. (in

German)

11. Bachelor-Thesis 07/2013

Kaiser, Leon: Framework Evaluation of Cloud Abstraction Layers for the Integration of

Distributed Data. (in German)

Approbation of the Results

Research Papers. The above-mentioned list of the author’s publication is

the result of research papers that were created and published before and during

the course of this thesis. All published papers include the attendance and the

presentation of the work at the respective conference by the author. The thesis

added substantial extensions to these works as outlined in more detail below.

Based on the promising results of this thesis further research papers are planned

with respect to the topics mentioned in the outlook. Concrete planned works

focus on the adaption of the FVPD approach to NoSQL databases (key-value,

column, document, and graph stores).

Student Theses. The same holds for the above-mentioned list of theses super-

vised by the author. These seminar and bachelor theses were conducted during

the course of the thesis to investigate further topics that are related (but not in

the central focus) to the thesis. Similarly, further student works (and also master

theses) are planned based on the results of this thesis and with respect to the

author’s role as lecturer at the University of Applied Sciences in Mannheim.

Research Projects & Funding. During the course of the thesis, the SeDiCo

idea with its FVPD approach was funded by the above-mentioned institutions.

46

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 49

Abstracts of Dissertations 1 (2020) 3-56

Closely related to the results of the thesis and to the above-mentioned topics,

further research projects in cooperation with partners from industries and other

research groups in national as well as international contexts should be acquired.

The results of the thesis build an excellent foundation for additional project

proposals in order to further pursue the FVPD idea of SeDiCo with funded

projects.

Invited Talks. Furthermore, the author was invited by several institutions

to talk and present new ideas about Cloud Security based on Partitioned and

Distributed Databases. These talks are listed as follows:

1. 10/2016:

SeDiCo - Query Optimization in Vertically Distributed Databases. Mannheimer Informatik-

Kolloquium. Mannheim, Germany 2016. (in German).

2. 12/2014:

SeDiCo - Towards a Framework for a Secure and Distributed Cloud Data Store. Mannheimer

Informatik-Kolloquium. Mannheim, Germany 2014. (in German).

3. 07/2014:

SeDiCo - Towards a Framework for a Secure and Distributed Cloud Data Store. German

Chamber of Industry and Commerce Frankfurt. Frankfurt a. M., Germany 2014. (in

German).

4. 01/2014:

Business Process Modeling Repository. Foundations and Challenges of Change in Ontolo-

gies and Databases. University Bolzano, Italy 2014.

5. 07/2013:

How to Handle Complex Data with Distributed Data Systems in the Cloud. Big Data

Conference. Mannheim, Germany 2013. (in German).

6. 01/2013:

Vertical Database Partitioning in the Cloud. Commit-Workshop Datenmanagement.

University of Applied Sciences, Mannheim 2013. (in German).

7. 05/2012:

Towards a Framework for a Distributed and Secure Cloud Datastore. WiWiTa 2012.

Wismarer Wirtschaftsinformatiktage. Wismar 2012. (in German).

The dissemination of this thesis might generate additional attention to SeDiCo

and its FVPD methodology. Hence, further invited talks might also become

possible in the near future.

47

50 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

Key Scientific and Applied Scientific Contributions

With respect to the tasks defined in the introduction of this work, it can be

concluded that all tasks have successfully been accomplished with this thesis (cf.

Tab. 8.2).

Table 8.2: Successfully Conducted Tasks

Number Task Ref. to Thesis Chapter

1 The definition of a methodology for creating an
FVPD schema for relational data and a proof of
the correctness of the methodology

1

2 The conceptualization of adequate query mecha-
nisms for relational FVPD data sets

4

3 The implementation of these relational query mech-
anisms in Java

5

4 The evaluation of these relational query mecha-
nisms in terms of their response time

6

5 The comparison of all developed relational query
mechanisms against each other and against the
initial SeDiCo implementation

7

6 The application of the FVPD methodology in
the Semantic Web with Resource Description
Framework-based (RDF-based) data

8

The expected results and the contribution to the current state-of-the-art can

be concluded as follows:

Contribution 1: Definition of a Security-by-Distribution Principle for Rela-

tional Databases

This thesis picked up the Security-by-Distribution approach and formalized

it to substantiate it with the relational calculus to have a proper formal

theoretical background. This was then used to prove the correctness of the

principle and of all developed query mechanisms. After that, the evaluation

results were used to formulate the research problem and to develop the

thesis’ hypotheses. The TPC-W benchmark used in these works was also

used to evaluate the query mechanisms in the presented thesis. With the

verification of all hypotheses and the formal proofs, this thesis was able to

prove that the developed query mechanisms indeed are able to enhance the

response time.

Contribution 2: Development of Vertical Query Mechanisms

48

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 51

Abstracts of Dissertations 1 (2020) 3-56

Due to the above-mentioned performance degrades while querying the

vertically distributed data, this thesis developed 3 query strategies to

tackle these issues. This thesis also formalized the strategies and with

this, substantiated them with a formal background (i.e. the relational

calculus). Hence, the correctness of all approaches could be proved and

their complexity could be analyzed.

Contribution 3: Integration of Query Mechanisms into the SeDiCo Framework

Based on the above-mentioned results, the author was able to integrate

them into the overall SeDiCo framework, such that it can be applied in a

unique and transparent way.

This thesis developed a detailed evaluation with a detailed comparison and

a discussion of all query mechanisms.

Contribution 4: Response Time Evaluation and Query Mechanism Classifica-

tion

With respect to the before-mentioned results, this thesis picked up all

evaluations and extended them with a detailed overview and interpreted

and concluded the evaluation figures. The query mechanisms could be

classified and concrete recommendations can now be given which mechanism

is suitable in which use case scenario or for which database workload.

Contribution 5: Transfer of the SeDiCo Approach to other Databases

The Semantic Web as an interesting application domain could be identified

during the course of this thesis. Here, the adoption of the Security-by-

Distribution approach to RDF-based data sets which are queried with

SPARQL were challenging issues. Accordingly, this thesis conducted a deep

analysis of the theoretical background (i.e. relational calculus which is also

used for SPARQL as it is closely related to SQL), added a formal correctness

proof, and considered its complexity. Hence, it could be proved that the

Security-by-Distribution approach is also applicable in other application

domains.

Contribution 6: Further (Indirect) Related Work

This thesis subsumed the challenging topics Cloud Computing, Security-by-

Distribution, Performance, Scalability, and Reliability under the SeDiCo

umbrella and adapted the discussed issues to the focus of this thesis.

49

52 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

All in all, the author (and the respective co-authors) were able to publish a

total of 16 research papers; the author was able to supervise a total of 11 student

works (i.e. bachelor theses and seminar works), and there were 7 invited talks

given by the author.

This leads to the outlook where the attention to future work tasks and inter-

esting further research work is drawn.

Outlook

Query performance, besides data security and privacy, is a key issue in today’s

applications either they are based on physical hardware servers or on virtualized

cloud infrastructures. The results of thesis showed that there are viable approaches

to achieve an adequate response times. Finally, this pushes the SeDiCo framework

towards more practical usage scenarios, which involves further research topics,

outlined in more detail in the full version of the thesis: Primary Key Challenges,

Reporting in Distributed Databases, Partitioning and Distributing at Runtime,

Row-based Security, Mobile Platform Integration, CRUD Performance Evaluation,

Data Encryption, Data Classification, Data Partitioning, and NoSQL.

50

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 53

Abstracts of Dissertations 1 (2020) 3-56

References

Apache. (2016). Apache CloudStack. Retrieved 2016-02-01, from https://

cloudstack.apache.org/

Betz, H., Hose, K., & Sattler, K. (2012). Learning from the History of Distributed

Query Processing. In Third international workshop on consuming linked

data (cold2012) (Vol. 905, pp. 15–26). Boston, USA: CEUR-WS.

Carlton, D. (2013). Cloud Computing 2014: Ready for Real Busi-

ness? Retrieved 2014-08-11, from http://www.mscmalaysia.my/

sites/all/themes/mscmalaysia/images/cloud\-page/cloud\-pdf/

Morning\ 2\ Gartner\ DarrylCarlton.pdf

Codd, E. F. (1970). A relational model of data for large shared data banks.

Communications of the ACM , 13 (6), 377–387. doi: 10.1145/362384.362685

Elmasri, R., & Navathe, S. B. (2015). Fundamentals of Database Systems

(7th editio ed.). London, UK: Pearson Education, UK. doi: 10.1016/

S0026-2692(97)80960-3

Gens, F., & Shirer, M. (2013). IDC Forecasts Worldwide Public IT Cloud

Services Spending to Reach Nearly $108 Billion by 2017 as Focus Shifts from

Savings to Innovation. Retrieved 2016-02-01, from http://www.idc.com/

getdoc.jsp?containerId=prUS24298013

Grund, M., Cudre-Mauroux, P., & Madden, S. (2011). A Demonstration of

HYRISE A Main Memory Hybrid Storage Engine. Proceedings of the

VLDB Endowment , 4 (12), 1434–1437.

Haase, P., Mathäß, T., & Ziller, M. (2010). An evaluation of approaches to

federated query processing over linked data. In I-semantics ’10 proceedings

of the 6th international conference on semantic systems (Vol. 5, pp. 1–9).

Graz, Austria: ACM. doi: 10.1145/1839707.1839713

Hevner, A., & Chatterjee, S. (2010). Design Research in Information Systems

(Vol. 22). Boston, MA: Springer US. doi: 10.1007/978-1-4419-5653-8

Hevner, A., March, S., Park, J., & Ram, S. (2004). Design Science in Information

Systems Research. MIS Quarterly , 28 (1), 75–105. doi: 10.2307/25148625

Hewlett Packard. (2016). Helios Eucalyptus Website. Retrieved 2016-02-01, from

http://www8.hp.com/us/en/cloud/helion-overview.html

Kohler, J., Simov, K., Fiech, A., & Specht, T. (2015). On The Performance Of

51

54 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

Query Rewriting In Vertically Distributed Cloud Databases. In Proceedings

of the international conference advanced computing for innovation acomin

2015. Sofia, Bulgaria.

Kohler, J., Simov, K., & Specht, T. (2015). Analysis of the Join Performance in

Vertically Distributed Cloud Databases. International Journal of Adaptive,

Resilient and Autonomic Systems (IJARAS), 6 (2). doi: 10.4018/IJARAS

Kohler, J., & Specht, T. (2012). SeDiCo - Towards a Framework for a Secure and

Distributed Datastore in the Cloud. In Proceedings of chip-to-cloud security

forum 2012. Nice, France.

Kohler, J., & Specht, T. (2014a). Ein Marktplatz für die Cloud: Vergleichbarkeit

von Datenspeichern durch QoS-/SLA-Mapping. Technologien für digitale

Innovationen, 1 (1).

Kohler, J., & Specht, T. (2014b). Vertical Query-Join Benchmark in a Cloud

Database Environment. In Proceedings of the 2nd ieee world conference on

complex systems. Agadir, Marocco.

Kohler, J., & Specht, T. (2014c). Vertical Update-Join Benchmark in a

Cloud Database Environment. In Proceedings of WiWiTa 2014 Wismarer

Wirtschaftsinformatiktage. Wismar, Germany (pp. 159–175). Wismar, Ger-

many.

Kohler, J., & Specht, T. (2015a). Analysis of Cache Implementations in a

Vertically Distributed Cloud Data Store. In Proceedings of the 3rd ieee world

conference on complex system. Marrakesh, Morocco.

Kohler, J., & Specht, T. (2015b). Performance Analysis of Vertically Parti-

tioned Data in Clouds Through a Client-Based In-Memory Key-Value Store

Cache. In Proceedings of the 8th international conference on computational

intelligence in security for information systems. Burgos, Spain: Springer.

Kohler, J., & Specht, T. (2015c). A Performance Comparison Between Parallel And

Lazy Fetching in Vertically Distributed Cloud Databases. In International

conference on cloud computing technologies and applications - cloudtech 2015.

Marrakesh, Morocco: IEEE Computer Society.

Krueger, J., Grund, M., Zeier, A., & Plattner, H. (2010). Enterprise application-

specific data management. In Proceedings - ieee international enterprise

distributed object computing workshop, edoc (pp. 131–140). Vitoria, Brazil.

Rakhmawati, N. A., Umbrich, J., Karnstedt, M., Hasnain, A., & Hausenblas,

M. (2013). Querying over Federated SPARQL Endpoints - A State of

the Art Survey. arXiv preprint arXiv:1306.1723 . Retrieved from http://

arxiv.org/abs/1306.1723

52

Optimizing Query Strategies in Fixed Vertical Partitioned and Distributed Databases... 55

Abstracts of Dissertations 1 (2020) 3-56

RedHat. (2016). ORM Hibernate Documentation. Retrieved 2016-02-01, from

http://hibernate.org/orm/documentation/5.0/

Son, J. H., & Kim, M. H. (2004). An adaptable vertical partitioning method in

distributed systems. Journal of Systems and Software, 73 (3), 551–561. doi:

10.1016/j.jss.2003.04.002

TIOBE. (2016). TIOBE Index. Retrieved 2016-02-01, from http://www.tiobe

.com/index.php/content/paperinfo/tpci/index.html

53

56 Jens Kohler

Abstracts of Dissertations 1 (2020) 3-56

