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INTRODUCTION 
There are two main approaches to reduce the complex system to simpler form. The first is to 

accumulate sufficient information in order to achieve structural and parametric al clarity. The 
second is to seek interpretation and consolidation and expression of the different aspects of the 
complex system through expert analysis and description of the expert’s preferences and concepts as 
an element of the system itself. In this sense a complex system is a system with active or decisive 
participation of the human in the determination of the objective, the description and the choice of 
the final decision, moreover, as an element of the system itself. In the context of the system analysis 
this is the system ‘human-process’.  

Machine learning focuses on prediction, based on known properties learned from training data. 
It explores the construction and study of algorithms that can learn from teaching excerpts and make 
predictions. According to some opinions the machine learning and pattern recognition can be 
viewed as two facets of one and the same problem. As scientific field Machine learning is an area of 
computer science that is evolved from the study of pattern recognition and computational learning 
theory. It is closely related to and often overlaps with computational statistics - a discipline that also 
specializes in prediction-making. 

The decision making process is also an iterative process who includes learning as an 
essential part of its realization. The presentation of human preferences analytically using utility 
functions is a good possible approach to mathematical description of human being. It is the first step 
during realization of a human-centered value-driven design process and decision making, whose 
objective is to avoid the contradictions in human decisions and to permit mathematical calculations 
in these fields.  

The combination of previous theories and approaches allows using flexible iterative mutual 
learning process inconstructionof mathematical models of Complex system like „human- process” 
and build mathematically well-founded control solution. The human thinking, notions and 
preferences have of cardinal significance and the machine learning in mathematical meaning need 
analytical representation. These are two contradiction tendencies with their proper requirements. 
The latter impose the need of new approaches and algorithms for inclusion of the machine learning 
in the decision making process in a harmonious way. 

The decision making is based on the preferences and starting from this position the 
incorporation of human preferences in complex systems is a contemporary trend in scientific 
investigations. The objective of the paper is to present a strict logical mathematical approach for 
modeling and estimation of human preferences as mashine learning in the process of building of 
mathematical models of complex systems with human participation. 

MATHEMATICAL FORMULATION, PREFERENCES, UTILITY FUNCTION 
The productive merger of the mathematical exactness with the empirical uncertainty in the 

human notions is the main challenge in the problems to solve. People’s preferences contain 
uncertainty due to the cardinal type of the empirical expert information. This uncertainty is of 
subjective and probability nature. Probability theory and expected utility theory address decision 
making and machine-learning under these conditions (P. Fishburn, 1970; R. Keeney, 1978; R. 
Keeney, H. Raiffa, 1993; V. Terzieva, Y. Pavlov, R. Andreev, 2007). As approach for solution of 
these problems we choose stochastic programming. The uncertainty of the subjective preferences 
could be taken as an additive noise that could be eliminated, as is typical in the stochastic 



approximation procedures and machine-learning (M. Aizerman, E.Braverman , L. Rozonoer 1970; 
Y. Pavlov, 2005). 

The machine learning evaluation method presented here rest upon the achievements of the 
theory of measurement (scaling), utility theory and, statistic programming. The difficulties that 
come from the mathematical approach are due to the probability, and subjective uncertainty of the 
DM expression and the cardinal character of the expressed human preferences. The so called 
normative (axiomatic) approach considers the conditions for existence of utility function. The 
mathematical description follows. Let X be the set of alternatives and P be a set of probability 
distributions over X.  A utility function u(.) will be any function for which the following is fulfilled:  

( p⎬q , (p,q)∈P2 ) ⇔ (∫u(.)dp >∫u(.)dq). 
In live with Von Neumann and Morgenstern (P. Fishburn, 1970) the interpretation of the 

above formula is that the integral of the utility function u(.) is a measure for comparison of the 
probability distributions p and q defined over X. The notation (⎬) expresses the preferences of DM 
over P including those over X(X⊆P). There are different systems of mathematical axioms that give 
satisfactory conditions for the existence of a utility function. The most famous of them is the system 
of von Neumann and Morgenstern: 

(A.1) The preference relation (⎬) is transitive, i.e. if (p⎬q) and (q⎬r) then (p⎬r) for all 
p,q,r∈P; 

(A.2) Archimedean Axiom: for all p,q,r∈P such that (p⎬q⎬r), there is an α,β∈(0,1) such that 
((α p + (1-α)r)⎬q) and (q⎬(βp + (1-β)r));  

(A.3) Independence Axiom: for all p,q,r∈P and any α∈[0, 1], then (p⎬q) if and only if ((α p 
+ (1- α )r) ⎬ (α q + (1- α )r)). 

Axioms (A1) and (A3) are insufficient for the solution of the utility function existence. 
Axioms (A1), (A2) and (A3) give a solution in the interval scale (precision up to an affine 
transformation): ((p⎬q) ⇔ (∫v(x)dp⎬∫v(x)dq)⇔(v(x)= au(x)+b, a,b∈R, a>0)). The “indifference” 
relation (≈) based on (⎬) is defined in (P. Fishburn, 1970): 

((x ≈ y)⇔¬((x⎬y)∨(x⎨y))).  
The presumption of existence of a utility function u(.) leads to the “negatively transitive” 

(¬(p⎬t) ∧¬(t⎬q)) ⇒¬(p⎬q)) and “asymmetric” relation (⎬). From these properties leads to the 
existence of: asymmetry ((x⎨y)⇒ (¬(x⎬y))), transitivity ((x⎬y) ∧ (y⎬z ) ⇒ (x⎬z)) and transitivity of 
the “indifference” relation (≈).The transitivity of the relations (⎬) and (≈) is violated most often in 
practice. The violation of the transitivity of the relation (⎬) could be interpreted as a lack of 
information, or as a DM's subjective mistake. The violation of the transitivity of the relation (≈) is 
due to the natural "uncertainty" of the human’s preference and the qualitative nature of expressions 
of the subjective notions and evaluations (M. Cohen, J-Y. Jaffray, 1988; D. Kahneman, H.Tversky 
1979; H. Raiffa, 1968). 

There is different utility evaluation methods, all of them based on the “lottery” approach 
(gambling approach). A "lottery" is called every discrete probability distribution over X. We mark 
as  <x,y,α> the lottery: here α is the probability of the appearance of the alternative x and (1-α) - 
the probability of the alternative y. The most used evaluation approach is the assessment: z ≈<x,y,α> 
, where (x,y,z)∈X3, (x⎬z⎬ y) and α∈[0,1] (Farquhar  P., (1984; Jaffray  J-Y, 1988).   Weak points of 
this approach are the violations of the transitivity of the relations and the so called “certainty effect” 
and “probability distortion”, identified by Kahneman and Tversky (D. Kahneman, A. Tversky, 
1979) and discussed in Choen and Jaffray (M. Cohen, J-Y. Jaffray, 1988). Additionally, it is very 
difficult to determine the alternatives x (the best) and y (the worst) on condition that (x⎬z⎬ y), where 
z is the analyzed alternative. Therefore, the problem of utility function evaluation on the grounds of 
expert preferences is a important one.  

The measurement scale of the utility function u(.) originates from the previous mathematical 
formulation of the relations (⎬) and (≈). It is accepted that (X⊆P) and that P is a convex set 
((q,p)∈P2⇒(αq+(1-α)p)∈P, for ∀α∈[0,1]). Then the utility function u(.) over X is determined with 
the accuracy of an affine transformation (i.e. interval scale) (P. Fishburn, 1970):  



Proposition1. If ((x∈Χ∧p(x)=1)⇒p∈P) and (((q, p)∈P2) ⇒ ((αp+(1-α)q)∈P, α∈[0,1])) 
then the utility function u(.) is defined with precision up to an affine transformation (u1(.) ≈u2(.))⇔ 
(u1(.)=au2(.)+b , a>0) (in the case of utility function existence). 

The first condition in the proposition 1 can be interpreted as an opportunity of the DM to 
imagine one alternative independently of all the others. The second condition is the opportunity of 
the DM to report on the uncertainty of the results. This proposition reveals that the utility 
measurement scale of the utility function is equivalent to the temperature scale (interval scale).  

MACHINE LEARNING, UTILITY AND STOCHASTIC APPROXIMATION 

Starting from the properties of the preference relation (⎬) and indifference relation (≈) and 
from the weak points of the “lottery approach” we propose the following stochastic approximation 
procedure for evaluation of the utility function. In correspondence with Proposition 1 it is assumed 
that (X⊆P), ((q,p)∈P2⇒(αq+(1-α)p)∈P, for ∀α ∈[0,1]) and that the utility function u(.) exists. We 
define two sets: 

Au*={(α,x,y,z)/(αu*(x)+(1-α)u*(y))>u*(z)},Bu*={(α,x,y,z)/(αu*(x)+(1-α)u*(y))>u*(z)}. 
The notation u*(.) is the DM’s empirical utility assessment. The following proposition is 

fundamental for the stochastic approximation approach: 
Proposition2. We denote Au={(α,x,y,z)/(αu(x)+(1-α)u(y))>u(z)}. If Au1=Au2 and u1(.) and 

u2(.) are continuous functions, then is true (u1(.)=au2(.)+b, a>0) (Y. Pavlov, 2005). 
The approximation of the utility function is constructed by pattern recognition of the set Au 

(M. Aizerman, E. Braverman, L. Rozonoer 1970; Y. Pavlov 2005). The proposed assessment 
process is a machine-learning approach based on the DM’s preferences. The machine learning is a 
probabilistic pattern recognition procedure because (Au*∩Bu*≠∅) and the utility evaluation is a 
stochastic approximation with noise (uncertainty) elimination. Key element in this solution is 
Proposition 2.  

The following presents the evaluation procedure: DM compares the "lottery" <x,y,α> with 
the simple alternative z, z∈Z  ("better-⎬, f(x,y,z,α)=1”, "worse-⎨, f(x,y,z,α)=(-1)” or "can’t answer 
or equivalent- ∼ , f(x,y,z,α)=0”, f(.) denotes the qualitative DM’s answer). This determine a 
learning point ((x,y,z,α), f(x,y,z,α)). The following recurrent stochastic algorithm constructs the 
utility polynomial approximation ∑ Φ=
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In Equation (1) are used the following notations (based on Au):t=(x,y,z,α), ψi(t)=ψi(x,y,z,α) 
=αΦi(x)+(1-α)Φi(y)-Φi(z), where (Φi(x)) is a family of polynomials. The line above the scalar 
product ))(,( tncv Ψ=  means: ( 1=v ), if (v>1), ( 1−=v ) if (v<-1), and ( vv = ) if (-1<v<1). The 
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),,,()()())())(,( ααα zyxGzgygxgtc nnnnn =−−(1+=Ψ  is a scalar product. The learning points are set with a 
pseudo random sequence. 

The mathematical procedure describes the following assessment process: 
The expert relates intuitively the “learning point” (x,y,z,α)) to the set Au*with probability 

D1(x,y,z,α) or to the set Bu* with probability D2(x,y,z,α). The probabilities D1(x,y,z,α) and 
D2(x,y,z,α) are mathematical expectations of f(.) over Au*and Bu* respectively, 
(D1(x,y,z,α)=M(f/x,y,z,α)) if (M(f/x,y,z,α)>0), (D2(x,y,z,α)=(-)M(f/ x,y,z,α)) if (M(f/x,y,z,α)<0). Let 
D'(x,y,z,α) is the random value: D'(x,y,z,α)=D1(x,y,z,α) if (M(f/x,y,z,α)>0); D'(x,y,z,α)=(-
D2(x,y,z,α)) if (M(f/x,y,z,α)<0); D'(x,y,z,α)=0 if (M(f/x,y,z,α)=0). We approximate D'(x,y,z,α) by a 
function of the type : 

G(x,y,z,α)=(αg(x)+(1-α)g(y)-g(z)), where ∑=
i

ii xcxg )()( Φ .  



The coefficients ci
n take part in the polynomial approximation of 
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Gn(x,y,z,α) is positive over Au* and negative over Bu* depending on the degree of approximation of 
D'(x,y,z,α). The function gn(x) is the approximation of the utility function u(.). 

The stochastic convergence of the evaluation given by Equation (1) is analyzed in ((M. 
Aizerman, E. Braverman, L. Rozonoer, 1970) and is described by the following stochastic 
procedure: 
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The following decomposition is used: 
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The following theorem determines the convergence of the stochastic procedure (1) ((M. 
Aizerman, E. Braverman, L. Rozonoer, 1970; Y. Pavlov, R. Andreev, 2013): 

THEOREM: We denote by (t1,...,tn,..) a sequence of independent random vectors t=(x,y,z,α) 
with one and the same distribution F. We suppose that the sequence of random values (ξ1,ξ2,.,ξn,..) 
(Procedure 3) satisfies the conditions:      M(ξn/(x,y,z,α),cn-1)=0, M((ξn)2/( x,y,z,α),cn-1)<d, d∈R. It is 
supposed that the Euclidian norm of Ψ(t)  is limited by a constant, 

),,,(,,0,,)( αzyxttfort =∀>∈<Ψ θθθ R . The convergence follows from Procedure (3):  
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In the theorem above p.p. denotes “almost sure” and M denotes mathematical expectation. 
The functions S(t) in the limits of the integral belong to L2 (defined by the probability measure F) 
and have the presentation described in Equation (2). The integral )),,,((GJ n

D' αzyx  fulfills: 
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The proof is based on the extremal approach of the potential function method ((M. 
Aizerman-E. Braverman-L. Rozonoer 1970).  

We know that the utility function is defined in the interval scale (in the proposed conditions) 
[Fishburn, 1970, Pavlov-Andreev, 2013]. A decision support system for subjective utility evaluation 
is developed (figure 1). The utility U(.) is approximated by a polynomial: 
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The polynomial representation permits easy mathematical implementation of the utility 
function and utilization of computers and information systems for mathematical description, 
optimization and control of complex process with human participation 

The proposed procedure and its modifications are machine learning. The computer is taught 
to have the same preferences as the DM. The DM is comparatively fast in learning to operate with 
the procedure: session with 128 questions (learning points) takes approximately 45 minutes and 
requires only qualitative answers “yes”, “no” or “equivalent ”.The learning points 
((x,y,z,α),f(x,y,z,α)) are set with a Sobol’s pseudo random sequence ((M. Sobol 1970). 

  
 
LEARNER’S MODEL CONSTRUCTION: USE CASES OF MEASUREMENT OF 

SUBJECTIVE PREFERENCES 



In this section we present our assertion that through measurement of human preferences it is 
possible to determine various learner attributes and in this way to build learner model. In that way it 
is possible to ensure the realization on value based management of e-learning personalization. 
Using learner’s preferences we can construct objective learner model, since the most objective 
assessment of an attributes of a learner can be given by himself/herself. The paper presents the 
determination of an aspect of cognitive ability of a learner – comprehension of knowledge. This 
ability is determined in the following limits: theoretical presentation of knowledge and example-
based presentation. We have made this attempt with two learners using the instrument for 
measurement of their specific preferences. The results of this measurement concern the choice of 
proportion of theoretical presentation to the example-based presentation of knowledge.  
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