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1 Introduction

In this paper we discuss error analysis of biased stochastic algorithms for a class of
integral equations. There are unbiased and biased stochastic algorithms, but the latter
algorithms are more interesting , because there are two errors in them- stochastic and
systematic errors. The systematic error depends both on the number of iterations per-
formed and the characteristic values of the iteration operator, while the stochastic errors
depend on the probabilistic nature of the algorithm. In order to obtain good results the
stochastic error rN must be approximately equal to the systematic error rk that is

rN = O(rk).

The problem of balancing of the errors is closely connected with the problem of obtain-
ing an optimal ratio between the number of realizations N of the random variable and
the mean value k of the number of steps in each random trajectory [1]. The problem of
balancing of both systematic and stochastic error is very important when Monte Carlo
algorithms are used. The balancing of errors (both, systematic and stochastic) allows to
get an approximation of the quantity of interest in the most efficient way by fixing the
number of samples N and the number of iterations k if the error is fixed.

2 Monte Carlo algorithm and error estimates

We study the Fredholm integral equation of the second kind:

u (x) =

∫
Ω

k (x, x′)u (x′) dx′ + f (x) or u = Ku+ f, (1)

We want to construct a Monte Carlo algorithm to evaluate the linear functional from the
solution, denoted by the following expression:

J(u) =

∫
ϕ(x)u(x)dx = (ϕ, u) . (2)

We construct a Monte Carlo method for integral equations based on discrete Markov
chains. We define a set of permissible densities. In correspondance with the initial and



transition probabilities we define a discrete Markov chain. If u(0) ≡ f then Monte Carlo
algorithm for integral equations is given by the following expressions [2]:

Eθk[ϕ] =
(
ϕ, u(k)

)
, θk[ϕ] =

ϕ (x0)

π (x0)

k∑
j=0

Wjf (xj),

W0 = 1, Wj =Wj−1
k(xj−1, xj)

p(xj−1, xj)
, j = 1, . . . , k,

(
ϕ, u(k)

)
≈ 1

N

N∑
n=1

θk[ϕ]n.

We obtain the following estimate for the probable and the systematic error:

rN ≤
0.6745‖f‖L2

‖ϕ‖L2√
N
(
1− ‖K‖L2

) .
rk ≤

‖ϕ‖L2
‖f‖L2

‖K‖k+1
L2

1− ‖K‖L2

.

3 Balancing of the errors

Theorem 1 (Main result). For a Fredholm integral equation with a preliminary given
error δ, the lower bounds for N and k for the Monte Carlo algorithm with a balancing
of the errors are:

N ≥

(
1.349‖ϕ‖L2

‖f‖L2

δ
(
1− ‖K‖L2

) )2

, k ≥
ln

δ(1−‖K‖L2
)

2‖ϕ‖L2
‖f‖L2

‖K‖L2

ln ‖K‖L2

.

Theorem 2 (The optimal ratio).
In a Monte Carlo algorithm based on a balancing of the errors, if N is close to its

lower bound, then for k:

k ≥
ln

0.6745

‖K‖L2

√
N

ln ‖K‖L2

.

Theorem 3 (Equivalence). If N is close to the smallest possible natural number for
which

N ≥

(
1.349‖ϕ‖L2

‖f‖L2

δ
(
1− ‖K‖L2

) )2

then the two obtained lower bounds for k are equivalent.



Corollary 1. In the next tests with a preliminary given error in Monte Carlo algorithm
with a balancing of the errors we choose

N =


(
1.349‖ϕ‖L2

‖f‖L2

δ
(
1− ‖K‖L2

) )2
 , k =


ln

0.6745

‖K‖L2

√
N

ln ‖K‖L2

 . (3)

Corollary 2. One can first choose k to be close to its lower bound in the theorem and
to receive the following inequality for N :

N ≥ 0.455

‖K‖2k+2
L2

.

Corollary 3. One can also choose the following values for N and k:

k =


ln

δ(1−‖K‖L2
)

2‖ϕ‖L2
‖f‖L2

‖K‖L2

ln ‖K‖L2

 , N =

⌈
0.455

‖K‖2k+2
L2

⌉
.

4 Numerical examples and results

4.1 Example 1

The first example is:

u (x) =

∫
Ω

k (x, x′)u (x′) dx′ + f (x) ,

Ω ≡ [0, 1], k (x, x′) =
1

6
ex+x

′
, f (x) = 6x − ex, ϕ(x) = δ(x), uexact(x) = 6x. We

want to find the solution in the middle of the interval. We make 20 algorithm runs on
Intel Core i5-2410M @ 2.3 GHz.

4.2 Example 2

The next example is analytically tractable model taken from the biology from popula-
tion growth model:

u (x) =

∫
Ω

k (x, x′)u (x′) dx′ + f (x) ,

Ω ≡ [0, 1], k (x, x′) = 1
3e
x, f (x) = 2

3e
x, ϕ(x) = δ(x), uexact(x) = ex.



4.3 Example 3

We study the following example taken from neuron networking:

u (x) =

∫
Ω

k (x, x′)u (x′) dx′ + f (x) ,

Ω ≡ [−2, 2], k (x, x′) =
0.055

1 + e−3x
+ 0.07, f (x) = 0.02

(
3x2 + e−0.35x

)
, ϕ(x) =

0.7((x+1)2 cos(5x)+20).We want to find (ϕ, u), whereϕ(x) = 0.7((x+1)2 cos(5x)+
20), uexact(x) = 8.98.

In this example MAO gives the best results and the experimental relative error is
very close to the expected theoretical error.

4.4 Example 4

We consider the MAO algorithm to estimate the functional (2). The function u (x) is a
solution of the following integral equation with polynomial nonlinearity: [1]:

u (x) =

∫
Ω

∫
Ω

k (x, y, z)u (y)u (z) dydz + f (x) , (4)

where Ω = E ≡ [0, 1] and x ∈ R1

In our test k (x, y, z) = x(a2y−z)2
a1

and f(x) = c − x
a3

. We consider the results for
calculating the linear functional (2) for a1 = 11, a2 = 4, a3 = 12, c = 0.5.

5 Conclusion

An original approach to the problem of controlling the error in non deterministic meth-
ods is presented. Monte Carlo method based on balancing of the systematic error and
probability error is presented. Lower bounds for N and k are obtained. Meaningful
numerical examples and results are discussed. Monte Carlo algorithms with various
initial and transition probabilities are compared. Experimental relative errors confirm
expected theoretical errors. Monte Carlo algorithms with probabilities chosen to be pro-
portional to the function from the linear functional under consideration and the kernel,
respectively, give more reliable results. The balancing of errors (both systematic and
stochastic) allows to increase the accuracy of the solution if the computational effort is
fixed or to reduce the computational complexity if the error is fixed.
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