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Introduction

Definition for Data Mining
‘Non-trivial extraction of implicit, previously 

unknown, and potentially useful information from 
data’ W.Frawley, G.Piatetsky –Shapiro and S. 
Mathews

Data mining is also known as knowledge discovery 
in databases. 
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Introduction
Data mining can also be considered as coherent 

merging of information from multiple sources.

4
Fig.1 Data mining as a step in the process of knowledge discovery



Introduction
Existing methods for knowledge presentation in intelligent

systems
 Logical formulas
Logical models for knowledge presenting are based on

conception of formal system. One formal system is
presented with next four elements M =<T,P,A,F> where T is
set of base elements, P is set of syntaxes rules, A is set of
true axioms and P is set of rules for inferences.

 Production rules
Production models are combination of production rules which

are related each others in form of the following type:
If <antecedent> Then < consequent >
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Introduction
 Semantic Nets
Semantic nets are other type for knowledge presenting.

They are familiar as their graphical visualisation in
form of nodes and vertices.

 Frames
Frames or list of facts are the next form for knowledge

presenting in intelligent systems. They are used when
investigated data are characters or words.
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Introduction
Existing methods for knowledge extraction:
 Expert oriented method
The methods of expert’s opinion are based on expert’s

experience in particular research field.

 Data mining methods
Data Mining methods are based on data grouping according

to similar properties like clusterisation, classification
and grouping.
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Introduction

Disadvantages of existing methods for knowledge
extraction:

 Subjective and intuitive (expert oriented methods)
 Not suitable for real time (data mining methods)
 Not suitable for the complex processes (data mining

methods)
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Introduction

Attributes of complex processes
Quantitative  complexity
 Large number of inputs
 Large number of state parameters
 Large number of outputs
Qualitative  complexity
 Non-linearity, non-stationary and uncertainty
 Environmental disturbances
 Immeasurable of some inputs

9
International Conference АUTOMATICS AND INFORMATICS'2013 

Bulgaria, Sofia, October 3 - 7, 2013



Introduction

10

Fig.2 Structure of model of complex process
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Introduction

 U (u1,u2,…,ur)- controllable inputs; 

 V(v1,v2,…,vl)- parameters of the environment 
disturbances; 

 X(x1,x2,…,xd)- states parameters;

 Y(y1,y2,…,ys)- outputs;
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Fig.3 Multi-stage system with sequence composition
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Fig.4 Multi-stage system with parallel composition
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Fig.5 Multi-stage system with feedback
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Introduction

Modeling problems for complex processes:

 The high accuracy of the model of the complex
process is incompatible with increasing of
complexity of the object (L. Zadeh)

 Low efficiency of process model
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Essence of the Method of MLPF

The models of the processes are:

 knowledge bases (KB) of production rules, which
include probability of occurrences [7]

 updatable multi-layer network structure [8]
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Essence of the Method of MLPF

Novel approach for knowledge extraction MLPF [6,11]:
 multi-valued logical and probabilistic functions

<Ly, p {Ly}> = F (Lx1,Lx2,…,Lxn) (1)

where
Lx {Li}, i=1÷n - a set of logical values of the arguments;
Lyj, j=1÷m – set of logical values of the outputs;

Lyeq=F1{GLNr}, GLNr(τ)=F2{Lxij, W} (2)
p{Lyeq}=P1{GLNr} p{GLNr}=P2{Lxij,W} (3)
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Essence of the Method of MLPF

Table 1 MLPF for three degree logical system [8,11]
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Essence of the Method of MLPF
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where Lx1, Lx2, Lx3 are inputs and Ly1 and Ly2 are the 
outputs;

a1,a2 and a3 are  logical values with a meaning  for  small, 
medium and  large; 

Pabcd  is probability (frequency) of occurrences  for the 
three inputs and one output; 

W(t) no apparent argument (factor)  for inputs which is 
including in frequency of occurrence  Pabcd
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Models of complex processes under 
uncertainty using MLPF 

3.1. Production Rule Model [6,7]
Using new data sets in real time creates packages of numerical values for inputs

and outputs, which are updated values of MLPFs [7] . The model or the
updated knowledge base is a combination of production rules with the
following structure:

If < logical values of measurable inputs> Then < logical values of 
the outputs supplemented with a probability of occurrences>
or

If < Lx1, Lx2,Lx3 > Then   < Ly1, Ly2 > 
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 The process with three inputs with logical values and three outputs
is presented. The experimental data sets are 56 and part of them
are shown in Table 7, [6].

 The flotation process from the mining industry is a typical
complex process that deals with the enrichment of raw ore.

 Flotation is implemented by processing a mixture of finely ground
ore, water and reagents called pulp.

21
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Models of complex processes under 
uncertainty using MLPF 
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Fig. 6 General structure of basic flotation in two stages
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uncertainty using MLPF 
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Inputs are controllable and measurable parameters of the pulp [6].
x1 – percentage of copper content in incoming pulp, stage I ;
x2 – percentage of iron content incoming pulp, stage I;
x3 – capacity of incoming pulp, stage I [m3/h].

y1, y2, y3–analogical parameters of the output concentrate in stage I, incoming
for flotation in stage II (outputs for stage I and inputs for stage II );

v1, v2, v3 – analogical parameters of the waste of the pulp used for extraction
of the useful components (waste for stage I);

z1, z2, z3 – analogical parameters of the concentrate in stage II (output for
stage II);

w1, w2 , w3 – analogical parameters of the waste of the pulp in stage II.
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Models of complex processes under 
uncertainty using MLPF 
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A seven-degree logic system is perceived where the inputs and 

the outputs have logical values : VVS, VS, S, M, L, VL, VVL, 

where VVS is ‘very very small’, VS is ‘very small’, S is 

‘small’, M is   ‘medium’, L is ‘large’, VL is ‘very large’, VVL 

is ‘very very large’ [6,11].
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Models of complex processes 
under uncertainty using MLPF 
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Table 7 Experimental data for the
basic flotation process*

The purpose for knowledge extraction is
to reveal relations for multiple repeating
correspondences between logical values of
inputs and outputs

*These data are part of full sets of inputs and
outputs. The data are received under normal
working conditions for a 24hour time interval
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Models of complex processes 
under uncertainty using MLPF 

Table 8 Multi-valued logical-
probabilistic function for the flotation
process for single delay between inputs
and outputs.

Analogical results for multi-valued
logical-probabilistic function by
multiple (three, four and five) time
delay between inputs and outputs .
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Models of complex processes 
under uncertainty using MLPF 

Table 8' MLPF for a limited number of data sets Lx1, Lx2, Lx3 and Ly1

International Conference АUTOMATICS AND INFORMATICS'2013 
Bulgaria, Sofia, October 3 - 7, 2013



Models of complex processes under 
uncertainty using MLPF 

28

Table 9 Multi-valued logical-
probabilistic function of the flotation
process for double delay between
inputs and outputs.
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Models of complex processes under 
uncertainty using MLPF
3.2. Network Structure Model [8]
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Figure 6 Model with network structure
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Models of complex processes under 
uncertainty using MLPF

The following relations are introduced here [8]:

RLXGLNr - is the relation between sets of the inputs and dominant
grouping sequence sets ;

R*
LX GLNr- is the relation between the frequency of occurrence of
elements of the inputs and intermediate layers;

RGLNrLyeq – is the relation between the logical values of the
elements of intermediate layer and output layer

R*GLNr Lyeq - is the relation between the frequency of occurrence
of the elements between the intermediate and the output layer.
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Models of complex processes 
under uncertainty using MLPF
Using the network model, logical values and probability 

of occurrences of the outputs are calculated for each 
combination of logical values of measurable inputs [8].

Ly = RGLNrLy  X RLXGLNr X LX (4)

p{Ly}= R*GLNrLy X R*
LXGLNr X p{LX} (5)
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Fig.7 Network model Ly1=f (Lx1,Lx2, Lx3) for 7 degree logic

Models of complex processes 
under uncertainty using MLPF
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Using the network model there are calculated logical values for the output
Ly1for each sequence data set for the inputs Lx1,Lx2 and Lx3.

For example: If there are occur logical values for the input:
Lx1=VVL,Lx2=VVL, Lx3=M then it is activated grouping sequence set
GLN2, which activates the logical values of the output Ly1 as follows, see
Table 8’:

VVS with frequency of occurrence p{VVS}=0,083,
VS with frequency of occurrence p{VS}=0,176
S with frequency of occurrence p{S}=0,333
M with frequency of occurrence p{M}=0,176
VL with frequency of occurrence p {VL}=0,176
VVL with frequency of occurrence p {VVL}=0,083
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Models of complex processes 
under uncertainty using MLPF
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Table  2 Relative values and their corresponding logic values
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Models of complex processes 
under uncertainty using MLPF
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Table 3 Relations between mean values for Lx1 and dominant grouping
sequence sets
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Table 4 Relations between mean relative values for Lx2 and dominant grouping 
sequence sets
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Table 5 Relations between mean relative values for Lx3 and dominant 
grouping sequence sets
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Table 6 Relations of frequency of occurrences between dominant grouping 
sequence sets   GLNr and the output logic values  Ly1
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Models of complex processes 
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Conclusion
 Two MLPF based models for knowledge extraction from multi-factor,

non-stationary, non-linear complex processes are proposed [7,8].

 The model with updatable knowledge base is illustrated with real data
sets for an industrial process from the mining industry [7].

 The difference between the two models is that the model with updatable
knowledge base uses knowledge extraction in the form of production
rule whereas the model with network structure uses a network whose
elements can perform computational logical operations [8].

 The model with network structure is better for non-stationary processes
than the model with updatable knowledge base because of its capability
to interpolate new data.
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