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Speech Processing Experiences

o Speech Enhancement (MSC Thesis)

o Text to Speech Synthesis (Gooya System)
Research Center of Intelligent Signal Processing(RCISP) Until 2007,

o Speech Recognition (PHD Thesis)



Speech Enhancement

» Analyzing Different Speech Enhancement Approaches

» Adaptive Wavelet Based Speech Enhancement algorithm

o Proposing a chaotic silence detection system



TTS System

o A Persian Rule-based TTS System (Gooya)

o A diphon and phoneme speech database

o A database for grammar rules

» Join Gooya to a screen reader system (Shiva)

Research Center of Intelligent Signal Processing(RCISP) from 2004 to 2007
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Achievements

o Automatic speech recognition is a speech-to-
text process which is done on speech data
captured by microphones. Considering
recent advances in artificial intelligent
researches and Man-Machine interactions,
speech recognition has showed very
Important rule in resent researches and
different academic and commercial
recognition systems were developed. In such
systems, recognition is done with limited
success.



Achievements

In this research, with emphasis on feature
extraction methods, considering dimension
reduction approaches and speech reconstructed
phase space, the improvement of the accuracy
of speech recognition systems has been studied.
Dimension reduction algorithms studied in this
research includes two models of continuous
hidden variables and manifold learning
algorithms. In usage of chaos theory in speech
recognition, nonlinear modeling of speech
reconstructed Is considered.



Achievements

o The main novel technical contributions of this
thesis are as follows. As our first contribution,
theoretical foundation and structure of a model Is
Introduced based on non-linear principle
component analysis (NLPCA). In this model,
Introducing an effective algorithm, usual
frequency domain features have been
transformed to a new subspace. This method
Improves the accuracy of speech classification
about 3.7% for clean speech data and isolated
phoneme recognition tests in TIMIT database.



Achievements

o The second contribution of this research is based
on a new dimension reduction approach based
on Laplacian Eigenmaps latent variable model
for speech recognition. This feature extraction
approach has showed very interesting
Improvement in speech recognition accuracy
with about 6% improvement in isolated phoneme
recognition tests for clean data from TIMIT
database.



Achievements

o The third contribution of this research is based on
Introducing a combinational model for frequency domain
features and features obtained from non-linear modeling
of speech reconstructed phase space. This method
Improves isolated phoneme recognition accuracy about
3.4% for clean data from TIMIT database. Next main
contribution of this research is based on non-linear
modeling of speech reconstructed phase space Poincare
sections in combination with frequency domain features.
Combination of features was done using fisher
discrimination analysis. This method improves isolated
phoneme recognition accuracy about 5.7% for clean data
from TIMIT database.



Achievements

» The final contribution on this research is based on using
phase space theory and Laplacian Eigenmaps. In this
proposed method, Poincare sections of speech
reconstructed phase space are calculated and then are
transformed to a new subspace using Laplacian
Eigenmaps method. Modeling is done In this final
subspace and obtained features then will be combined
with frequency features. This method has showed very
Interesting performance in robust speech recognition
tests. This method improves isolated phoneme
recognition accuracy about 5.7% for clean data from
TIMIT database.



Methods

Continuous Latent Variable Models |

—Dimension Reduction Methods

Manifold Learning Algorithms _

Usual Chaotic Features

- Chaotic
Reconstructed Phase Space Modelling _ Analysis
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Methods

Continuous Latent Variable Models
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Methods

Continuous Latent Variable Models
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Methods

Proposed Approach Using CLVM
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Methods

Manifold Learning Approaches

o Locally Linear Embedding
« Laplacian Eigenmaps
o Isomaps




Methods

Laplacian Eigenmaps Manifold Learning Approach
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Methods

Chaotic Features Application
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Chaotic Features Application

Methods
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Methods

Proposed LE and Chaotic Subspace
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Database and Speech Recognition System

o An English Speech Database (TIMIT) and a Persian Speech
Database (Farsdat) are used in experiminets

o TIMIT Database consists of 6300 sentence from 10 speaker with
complete test set with 1344 sentence (27% of all dataset) and core
test set with 192 sentence. All phonemes categoried to 39 classes.

» Farsdat database consists of 2000 sentences from persian speakers

provided by research center of intelligent signal processing (RCISP)
in Iran.
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Database and Speech Recognition System

o Noisex.92 noise database used for additive noise signals.

o« We used HMM toolbox for matlab and HTK toolkit (Cambridge
Univeristy) for speech recognition engine in our experiments.

e 6 state with 8 Gaussian mixtures used in HMM model and frames

With 25.6 ms are used.



Results

Basic MFCC,Proposed NLPCA, PCA Features COR% For TIMIT Database

COR %
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Results

COR"%

Basic MFCC,Proposed NLPCA, LDA, LDA-MLLT For TIMIT Database
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Results

CORY%
oS8558 38

COR% For DifferentKernel Types

Basic MFCC
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Results

Basic MFCC ,Proposed NLPCA and Direct kernel obtained features COR% For TIMIT Database
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Discrimination Factor

095

09

0.85

08}

0.75

0.7

0.65

Results

Manifold Learning
Optimum Dimension Detection

Discrimination Factor across Mapping Dimension
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Results

Manifold Learning
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Results

Manifold Learning Algorithms

COR %

Basic MFCC ,LELVM, ISOMAP and LLE COR% For TIMIT Databse
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Results

Chaotic Features Application
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Results

Chaotic Features Application

COR %

COR% For MFCC,SVM and GMM modeling of Speech RPS for

TIMIT Database
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Results

Chaotic Features Application

F-ratio For Different Features
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Results

Chaotic Features Application

CORY% for MFCC,GMM and final Combined Features Set
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Results

Poincare Sections
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Results

Manifold Learning And Chaotic Analysis
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Conclusions

All Methods Results for Clean Speech Signal

OORSGImprovernent For Different Proposed Method For
TMI TOean Data
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