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PREFACE

This book is intended for a wide readership including engineers, applied
mathematicians, graduate students seeking a comprehensive view of the main
results on the estimation of the solutions of four algebraic equations, namely,
the continuous- and the discrete-time Lyapunov and Riccati equations. The
Lyapunov and Riccati equations arise in many different perspectives, such as:
control and system theory, identification, root clustering, differential
equations, boundary value problems, power systems control, signal
processing, communications, electrical circuits, robust stability, singular
systems, decentralized control, linear optimal control and filtering problems,
linear dynamic games with quadratic performance index, economic modeling,
etc. Due to broad applications, both equations and their numerous
modifications remain subjects of active research work.

Many numerical algorithms have been developed for solving the Lyapunov
equation (Bartels-Stewart, Hammarling, Hessenberg-Schur methods, etc.) and
the Riccati equation (Newton’s method, the sign-function method, methods
based on eigenvalue computations and their variants, iterative refinement
technique, etc.).

Contemporary technology gives rise to some major questions. Much research
work has been devoted to the construction of numerically robust algorithms.
These methods are characterized by significant memory and computational
complexity regardless of the structure of the state matrix. Therefore, the
majority of numerical algorithms in linear control theory is restricted to
systems of a moderate order. However, a significant number of applications
lead to large-scale dynamical models. By no doubt, the direct solution of the

Lyapunov, and, especially, of the Riccati equation may turn out to be



impractical, since the computational burden increases with the system’s
dimension. Also, it can be time-consuming, computationally difficult and
inaccurate. In other applications, such as stability analysis, it is even not
necessary to obtain the exact solution, since some estimates for it are sufficient.
The solution bounds can be used to solve various control problems, such as
stability analysis of linear perturbed systems and/or systems with pure time
delays, robust root clustering, determination of the estimation size error for
multiplicative systems, etc. Solution estimates have been used to study robust
stability and performance analysis for uncertain stochastic systems, and the
estimation of a solution bound based Schur stability margin for real
polynomials. The direct computation of the exact solution for the Lyapunov
and the Riccati equations may be either impossible, impractical, or, not
necessarily required, in some cases. In other cases, estimates can be used as
approximations or initial guesses in numerical algorithms.

The book is organized as follows. A summary of proposed since the 1970s
various scalar and matrix, lower and upper solution bounds for the considered
algebraic equations is presented in Chapter I. The bounds are analyzed with
respect to the specific requirements for their validity. The main conclusion is
that the available solution estimates are dependable on some rather
conservative conditions, e.g., negative definiteness of the symmetric part of
the coefficient matrix A for the continuous-time Lyapunov equation, or,
maximal singular value of A less than one for the discrete-time Lyapunov
equation. Due to this, upper solution bounds for these equations are
inapplicable for a large set of stable matrices for which unique positive (semi)-
definite solutions for the above mentioned equations exist. Although due to

different reasons, the same refers to the Riccati equations.



The advancement made so far in the estimation problem is a topic of this
Chapter. Different approaches are presented, discussed and compared, when
possible, in order to demonstrate the efficiency and the shortcomings of a
particular method. Up to my best knowledge such a detailed summary of all
important bounds proposed during the 40 years old history of this research
problem is made for the first time.

Motivated by the conservatism in solution estimation, the author suggests a
new, alternative way to extend the sets of coefficient matrices for which
various lower and upper bounds are valid under less restrictive conditions.
The main contributions can be briefly formulated as follows.

1. It has been proved that such extensions can be achieved by taking into
account the singular value decomposition of the coefficient matrix for both
the continuous-time (Chapter 2) and the discrete-time (Chapter 3) equations.
Following this approach various bounds for the extremal eigenvalues, the
trace and the solution have been proposed. It is important to say that the
respective bounds are valid under relaxed validity constraints. In other words,
the available validity sets are extended and generalized by newly defined sets
for the continuous- and the discrete-time Lyapunov equation.

2. The author shows how the singular value decomposition approach can be
applied to estimate the solutions of the continuous- and the discrete-time
Riccati equations. The elimination of some widely used, but not realistic
assumptions regarding the state weighting matrix and the control matrix is
important.

3. Much attention is paid to the improvement of solution bounds. It is shown
how available lower and upper, scalar and matrix bounds can be used to derive

new tighter estimates.



4. Unconditional upper bounds for the solutions of all equations are proposed
for the first time. Their validity is guaranteed whenever a positive (semi)-
definite solution for the respective equation exists.

The bounds proposed in this book are illustrated by eleven numerical
examples, including four real data cases in Chapter 4. Namely, these are state
space models of an industrial reactor, gas absorber, distillation column and
fighter aircraft. The results are analyzed and compared with previously
suggested bounds with respect to tightness and validity measured by several
error indicators. The obtained results clearly show the superiority of the newly
suggested estimates in these cases. Also, the effectiveness of the procedures
of iterative improvement is illustrated. The computed bounds coincide with
the exact solution in some cases.

The book provides quick and easy references for the solution of different
related with solution estimation engineering and mathematical problems.
Because both the mathematical development and the applications are
considered, it can be useful for solving problems and for research purposes,

as well.

Academician Ivan Popchev



NOTATION

R’ set of real p x 1 vectors

R,., set of real mx r matrices; R, , =R,

M >N the symmetric matrix M — N is positive definite

M >N the symmetric matrix M — N is positive semi-definite

M =[m,]  matrix M with entries m,

MT transpose of matrix M

M” conjugate transpose of matrix M

M inverse of the nonsingular matrix M

M ¥? square root of a positive (semi)- definite matrix M ; M =(M*?)?

I identity matrix when the dimension is implicit in the context

| r X r identity matrix
0 zero matrix when the dimension is implicit in the context

mX r zero matrix block; 0,,, =0

Mg symmetric part of matrix M; M4 =%(|\/|T +M)

diag{fm;}  diagonal matrix with entries m,

tr(M) trace of matrix M

det(M) determinant of matrix M
rankM rank of matrix M

(M) I-th eigenvalue of matrix M;

s, (M) I-th singular value of matrix M

The eigenvalues, if real, of an mx mmatrix M and the singular values of a
p X r matrix N are assumed to be ordered as follows:
,(M)=>1,(M)>..>21 (M), s,(N)>s,(N)>..>2s (N),s=min(p,r)






CHAPTER ONE

SOLUTION ESTIMATES: REASONS, HISTORY, PROBLEMS

1.1 INTRODUCTORY REMARKS

The Lyapunov and Riccati equations have been widely used in various fields of modern
control and systems theory due to both practical and theoretical reasons.

The Lyapunov equation is named after the Russian mathematician, mechanician and
physicist Alexander Lyapunov (1857-1918), who in 1892, in his doctoral dissertation
introduced the famous stability theory of linear and nonlinear systems. According to his
definition of stability, so called, stability in sense of Lyapunov, one can check the stability
of a system by finding out some scalar function (Lyapunov function) and studying the sign
definiteness of its total time derivative along the system’s motion. Unfortunately, there is
no general procedure for finding a Lyapunov function for nonlinear systems, but for linear
time-invariant systems, the procedure comes down to the problem of solving a special type
of equation, called the Lyapunov equation.

The Lyapunov equation arises in many different perspectives such as:

- control and system theory,

- system identification,

- root clustering,

- linear algebra, optimization, differential, partial differential equations,

- boundary value problems,

- mechanical engineering, power systems control, signal processing,

- large space flexible structures, communications, electrical circuits, etc.,

and therefore, its solution is of great interest [34].



Since linear systems are mathematically very convenient and give fairly good
approximations for nonlinear ones, mathematicians and especially engineers often base
their analysis on linearized models. Therefore, the solution of the Lyapunov equation gives
insight into the behavior of dynamical systems.

The Lyapunov equation is encountered not only in studying the stability, but also in other
fields. The quadratic performance index of a linear system is given in terms of the solution
of the Lyapunov equation. For stochastic linear systems driven by white noise, the solution
of the Lyapunov equation represents the variance of the state vector. Many other control
and system theory problems are based on the Lyapunov and/or Lyapunov-like equations,
such as: concepts of controllability, observability gramians and estimation design [19],
balancing transformation [97], stability robustness to parameter variations [109], [141],
reduced order modeling and control [15], [51], [116], power systems [43], filtering with
singular measurement noise [43], [44], large space flexible structures [8], etc. The
Lyapunov and Lyapunov-like equations also appear in differential games [113], singular
systems [90], signal processing [2], [5], [92], differential equations [29], boundary value
problems in partial differential equations [69], interpolation problems for rational matrix
functions [89]. Another situation when the Lyapunov equation arises is in the design of
decentralized control systems. Current research in large scale systems and decentralized
control is being directed toward physical systems that, although of large dimension, have
sparse system matrices with particular structural forms. Examples of such research are the
decentralized control of a freeway traffic corridor, large scale interconnected power
systems and the various applications of the concepts of decentralized overlapping control,
connective stability and vector Lyapunov functions [129].

Due to broad applications, the Lyapunov equation has been a subject of very active research
for the past 60 years. Although the Lyapunov theory has been introduced at the end of the
19-th century, it was not recognized for its vast applications until the 1960s. Since then, it
became a major part in control, and systems theory, and other various scientific fields.
Around 1965, some researchers like MacFarlane, Barnett and Storey, Chen and Shieh, and
Lancaster presented solutions to the Lyapunov equation. In 1970s when growing use of
digital computers became part of almost every scientific field, the need for efficient

numerical methods was felt. This resulted in celebrated algorithms for numerical solution



of the continuous-time algebraic Lyapunov equation (CALE). The classical numerical
solution methods for the Lyapunov are the Bartels-Stewart method [10], the Hammarling
method [45] and the Hessenberg-Schur method [42]. Extensions of these methods for the
generalized Lyapunov equation are presented in [21], [35], [36], [110]. They are based on
the preliminary reduction of the matrix (pencil) to the Schur form [41] or the Hessenberg-
Schur form [42], calculation of the solution of a reduced form and back transformation. An
alternative approach to solve the Lyapunov equation is the sign-function method [12], [75].
Comparison of it to the Bartels-Stewart and Hammarling methods with respect to accuracy
and computational cost can be found in [12].

Digital technology in industry also spelled out the need for the solution of the Lyapunov
equation for discrete-time systems, called the discrete-time algebraic Lyapunov equation
(DALE), which slightly differs from the CALE.

Probably one of the most important results in modern systems theory, both in terms of
potential practical and theoretical applications, is the solution of the infinite time least
squares problem for stationary linear dynamical systems. It indeed gives a systematic
procedure for computing constant feedback control gains for multiple-input systems based
on a performance index which admits a simple interpretation in terms of the control effort
and the error. There are two main areas in control theory where infinite time least squares
minimization problems have been developed. On the one hand there is the standard
regulator problem of optimal control theory, and on the other hand, there are the Lyapunov
functions which lead, via the so-called Kalman-Yakubovich-Popov Lemma, to the circle
criterion and the Popov stability criterion for feedback systems. Although the least squares
minimization problem with linear differential constraints has roots going to the very
beginnings of calculus of variations, its revival and introduction in control theory may be
safely credited to Kalman [53]. In this sense, one should also mention [105], where the
least squares technique as a systematic basis for the design of stationary feedback control
systems was put forward, the papers by Kalman [54],[55], Popov [114], and the works of
Anderson [3] and Anderson and Moore [4], as well.

It is well known that the Riccati equation plays a crucial role in the solution of the optimal
control problem under consideration. Willems writes in [137]: “One often gets the

impression that this equation in fact constitutes the bottleneck of linear systems theory”. It



is named after the nobleman count Jacopo Riccati (1676-1754), born in the Republic of
Venice.

The Riccati matrix equation appears, as a consequence of variational problems to be solved,
in many fields of applied mathematics, engineering and economic sciences. The Riccati
equations belong to the simplest but the most important class of nonlinear equations. Due
to its widespread relevance in control and dynamic optimization, the matrix Riccati
equation has drawn attention within the mathematical and control theoretic literature.
Research in this large field has been considerably stimulated by classical subjects such as
[1]:

- linear optimal control and filtering problems with quadratic performance index,

- linear dynamic game and network theory with quadratic performance index,

- stochastic realization theory for linear systems,

- decoupling of linear systems of differential and difference equations,

- spectral factorization of operators,

- singular perturbation theory,

- boundary value problems for systems of ordinary differential equations,

- economic modeling for linear-quadratic control problems, etc.

Although the connections with robustness analysis and dissipation theory for dynamical

systems reach back to the 1960s and 1970s, the more recently emerging areas, such as H

- control, have stirred renewed interest in general Riccati equations and their relation with
linear matrix inequalities (LMI). The Riccati equation has been extensively studied in [17],
[70], [71], [95], [115], [138].

Many numerical algorithms have been developed for solving the Riccati equations and this
is still a subject of active research, where also new aspects are coming into account like the
treatment of large dimensional or singular systems and the algorithms for parallel
computers. Detailed surveys containing extensive lists of references on numerical methods
for the Riccati equations are given in [18] and [96]. The Newton’s method, the sign-
function method, methods based on eigenvalue computations and their variants which
exploit the Hamiltonian and sympletic structure of the related eigenvalue problem as well

as an iterative refinement technique are discussed in [40].



The Riccati equation can be algebraic, as well as differential or difference equation. As in
the case with the Lyapunov equation, the algebraic Riccati equation can appear in
continuous-time, or in discrete-time form, usually abbreviated CARE and DARE,
respectively.

In numerical problems it is very important to study the sensitivity of the solution to
perturbations in the output data and to bound errors in the computed solution. There are
several papers concerned with perturbation theory and the backward error bounds for
CALE, e.g. see [46], [47], [132] and the references therein. Sensitivity analysis for the

generalized Lyapunov and Riccati equations has been presented in [48], [67].

1.2 WHY ESTIMATES?

Complex contemporary technology and its various applications lead to some important and
not easy to answer questions. In the last 2-3 decades, much research has addressed the
construction of numerically robust algorithms that arise in context with linear systems.
Such problems are, e.g., optimal control, robust control, system identification, game theory,

model reduction and filtering. However, these methods generally have at least a memory
complexity O(’) and computational complexity O(’) regardless whether or not the n x

n system matrix A is sparse or otherwise structured. Therefore, the majority of numerical
algorithms in linear control theory is restricted to systems of a moderate order. Of course,
the upper limit for this order depends on the problem to be solved as well as on the
particular computing environment and may vary between few hundred and few thousands
[14]. The most popular approaches with cubic complexity are surveyed in [13], [24], [96],
[112], [130]. An extensive study of the computational complexity results in systems and
control theory can be found in [16]. It provides a tutorial introduction to some key concepts
from the theory, highlighting their relevance to systems and control theory and surveys the
recent research activity in these fields.

However, a significant number of applications lead to dynamical systems of larger order.
Large-scale systems may arise from the semidiscretization of (possibly) linearized partial

differential equations by means of finite differences or finite elements [9], [52], [76].



Another sources for such systems are circuit design and simulation [32], [33], or large
space mechanical structures [38], [107] and the application of the Kalman filter to the
problem of assimilating atmospheric data [22]. With some simplifying assumptions the
error covariance of the estimate of the state of the atmosphere satisfies the DALE, which
has two distinguishing properties. The system comes from the discretization of a three

dimensional continuum problem, the dimension of the matrices is large, typically of order

n=10° and the direct treatment of the DALE is impossible [133]. In principle one can
obtain the solution of the CALE by using the skew-symmetric matrix approach and solving

a system of 0.5n(n-1) linear algebraic equations [128], or by transforming the system

matrix into some canonical forms like the Jordan form [93], or companion form[131].

However such approaches require large memory and computer processing time of the order
of mn®, where m is the time for one multiplication or division. This is a very large number
for large n and becomes impractical even for moderate n > 10. The important algorithms

of Bartels and Stewart, Golub and Hammarling require O(n’) memory locations and

O(n’) multiplications. By no doubt, the direct solution of the Lyapunov and, especially, of

the Riccati equations may turn out to be impractical even in cases when the respective
solution can be found numerically, since the computational burden increases with the
systems dimension [30], it can be time-consuming and computationally difficult [25]. One
of the numerical algorithms for the solution of the CARE is a Schur-type method, which is
described in detail in [7], [78], [108]. This method is very reliable and is used in
MATRIX,,CTRL —C and MATLAB. But the number of operations required for the

solution is estimated by more than 75n° [59], [60], which takes considerable time when n
is high even though powerful computational environment may be used.

In other applications, such as stability analysis, it is even not necessary to know the exact
solution because an estimate for it is sufficient. Also, if the parameters of the system are
uncertain it is not possible to obtain the exact solution for robust stability analysis and
knowing some bounds on the solution can be useful. Furthermore, the solution bounds can
be applied to solve many control problems such as stability analysis of linear perturbed
systems and/or systems with pure delays [86], [136], robust root clustering [85], [142],

determination of the size of the estimation error for multiplicative systems [68] and so on.



Solution estimates have been used to study robust stability and performance analysis for
uncertain stochastic systems in [31] and a solution bound based Schur stability margin for
real polynomials has been estimated in [100]. Therefore, computing the exact solution of
the Lyapunov and/or of the Riccati equations may be either impossible, or impractical, or
even not necessarily required, in some practical cases.

Finally, proper estimates can be very useful even when exact solutions are computable and
necessarily required, since they may be used as approximations of the solution or initial
guesses in the numerical algorithms for the exact solution [74].

The significance of these equations as important and powerful tools used in various fields
of systems and control theory and the role they play in the solution of many practical
problems is clear. The above mentioned difficulties arising in some specific applications,
explain completely why the estimation problem for the algebraic Lyapunov and Riccati
equations has attracted such a considerable attention in the past five decades and still

remains a field of active research.

1.3 LYAPUNOV AND RICCATI ALGEBRAIC EQUATIONS

1.3.1 THE CONTINUOUS-TIME CASE
According to Lyapunov’s theory, the stability of dynamical systems can be determined in

terms of the so called Lyapunov functions. This can be done for systems both in

continuous- and discrete-time domains. Consider a continuous-time system:

(1) = AX(1), x(0)=x (1.1)
where X(t) € R"is the state vector and Ae R, is the state matrix. The following stability

definitions are well known.

Definition 1.1 The system (1.1) is asymptotically stable if all eigenvalues of the state
matrix lie in the open left half of the complex plane.

The celebrated Lyapunov stability theorem is formulated as follows (e.g. see [57]).
Theorem 1.1 An equilibrium point of a time-invariant system is asymptotically stable if
there exists a continuously differentiable scalar function v(x) such that along the system

trajectories the following set of inequalities is satisfied:



v(x)>0, Vx=0

V(X) = ovdx =-wW(x)<0, Vx=0
ox dt

It is easy to show that for a linear system (1.1), a Lyapunov function can be chosen as a
quadratic one, i.e., v(X) = X' (t)Px(t), P> 0, which with use of (1.1) leads to
v(X) = X" (t)Px(t) + X" (t)Px(t) = X" (t)(A"P + PA)X(t)
Lyapunov showed that the function w(x) can be a priori chosen as quadratic form, i.e.,
w(x) = X" (t)Qx(t), Q >0, which results in
V(X) = X" (1)(A"P + PA)X(t) = —X" (1)Qx(t), VX(t) 20 < ATP+ PA+ Q=0

Now, the original stability problem is reduced to solving the so called CALE

ATP+PA=-Q, Q>0 (1.2)
The condition for existence of a unique solution states that if | ;(A),i=1,..,n, denotes the
i-th eigenvalue of A, then |, (A)+1 ;(A) #0,i, j=1..,n, i.e., no two eigenvalues of A add

up to zero [50]. This condition is obviously satisfied if A is asymptotically stable in the
continuous-time domain.

The Lyapunov stability theory for linear continuous-time invariant systems is formulated
as follows [19].

Theorem 1.2 The system (1.1) is asymptotically stable if and only if for any positive

definite matrix Q a unique positive definite solution P of the CALE (1.2) exists. In addition,
ifQ=C'C>0, then (1.1) is asymptotically stable system if and only if (C, A) is an
observable pair and the CALE has a unique positive definite solution.

If the solution P is a positive definite matrix, the functionv(x) = X' (t)Px(t), is said to be a

Lyapunov function for the system (1.1).

The unique positive (semi)-definite solution of the CALE is given by
P= IeAT‘ Qedt
0
and the system performance is usually measured with respect to the criterion

J(%) = TXT (t)Qx(t)dt, Q>0



Since the solution of the vector differential equality (1.1) is X(t) = €*x,, then

I0%) = [ x5 QeMxydt = X5 Px, (2.3)
0

This admits to evaluate easily the system performance for arbitrarily given positive (semi)-
definite right-hand side matrix in (1.2) and initial state vector.
Consider a continuous-time invariant control system
X(t) = AX(t) + Bu(t), x(0)=x, (1.4)
y(t) = Cx(t)
where x(t)eR",u(t)eR™ and y(t)eR" are the state, control and output vectors,

respectively, and AeR,,BeR, , ,CeR,, are given matrices. Consider the quadratic

n,m’? n

performance index
J(u, %) = I[(yT (1) y(t) +u’ (t)Ru(t)]dt — min (1.5)

where Ris a positive definite control weighting matrix. If (A, B) and (C, A) are stabilizable
and detectable pairs, respectively, then (C, A, B) is said to be a regular triple. It is desired
to determine a control law u(t) = - Kx(t), which minimizes (1.5) and stabilizes the close-
loop state matrix A.= A—BK.
Theorem 1.3 [67] Let (C, A, B) be a regular triple. The control law that minimizes the
performance index (1.5) for every initial state vector is realized as a state feedback
u(t) = —R'B"Px(t) , where P is the unique positive semi-definite solution of the CARE
A'P+PA-PBR'B'P=-Q, Q=C'C (1.6)
In this case, the close loop state matrix A = A—BR'B'P is asymptotically stable and
I(U,%)= %' Px, (L7
In addition, if (C, A) is a completely observable pair, then the solution P of the CARE is a
strictly positive definite matrix.

At the same time the CARE may have other solutions, which necessarily are not positive

(semi)-definite and not stabilizing, including nonsymmetric ones, as well.

1.3.2. THE DISCRETE-TIME CASE



Consider a discrete-time system:
X(k+1) = Ax(k), x(0)=x, (1.8)
where x(k) € R" is the state vector and Ae R, is the state matrix. The following stability

definition is well known.

Definition 1.2 The system (1.8) is asymptotically stable if all eigenvalues of the state
matrix lie inside the unit circle.

Dual to Theorems 1.1 and 1.2 can be stated for the stability of the linear discrete-time
system (1.8). Consider a quadratic Lyapunov function v(k), which for the system stability
must satisfy [106]

v(k) = x" (K)Px(k), P >0,
AV(K) = V(K +1) — v(K) = —w(k), w(k) > 0
where, as in the continuous-time case, the function w(k), can be a priori chosen as a
quadratic form, i.e., w(k) = X" (k)Qx(k), Q> 0. In this case,
V(k +1) —v(K) = X" (K + D) Px(k +1) — X" (K)Px(K) = X" (K)(A"PA- P)x(k) = —~w(K)
or,
AV(K) = X" (K)(ATPA- P)x(K) = —x" (K)Qx(K), Vx(K) 20 <> A'PA-P+Q=0

which obviously converts the stability problem into the solution problem for the DALE

ATPA-P=-Q (1.9)
The condition for existence of a unique solution for (1.9) states that if | ,(A),i=1..,n,
denotes the i-th eigenvalue of A, then |, (A)l ;(A) =11, ] =1,..,n, i.e., no two eigenvalues

of A have product equal to one [34]. This condition is obviously satisfied if A is
asymptotically stable in the discrete-time domain.

The Lyapunov stability theory for linear discrete-time systems is formulated as follows.
Theorem 1.4 The system (1.8) is asymptotically stable if and only if for any positive
definite matrix Q a unique positive definite solution P of the DALE (1.9) exists. In addition,
if Q=C'C=>0, then (1.8) is asymptotically stable system if and only if (C, A) is an

observable pair and the DALE has an unique positive definite solution.



If the solution P is a positive definite matrix, the function v(k) = x" (k)Px(k), is said to be

a Lyapunov function for the system (1.1). The unique positive (semi)-definite solution of
the DALE is given by

P=> (A)TQA (1.10)
k=0
and the system performance is usually measured with respect to the criterion
J(%) = 2 x"(k)Qx(k), Q>0
k=0

Since the solution of the vector differential equality (1.1) is x(k) = A%, , then

J(%) = f‘,xg ATQAX, = X P (1.11)
k=0

This admits to evaluate easily the system performance in the discrete-time case for arbitrary
positive (semi)-definite right-hand side matrix in (1.9) and initial state vector.
Consider a discrete-time invariant control system
X(k+1) = Ax(K) + Bu(k), x(0)=x, (1.12)
y(K) = Cx(k)
where x(k)eR",u(k)eR™ and y(k)eR" are the state, control and output vectors,

respectively, and AeR,,BeR, ,,CeR,, are given matrices. Consider the quadratic

performance index
J(u, %) =i[yT(k)y(k)+uT(k)Ru(k)]—>min (1.13)
k=0

where R is a positive definite control weighting matrix. Let (C, A, B) be a regular triple. It
is desired to determine a control law u(k) = - Kx(k), which minimizes (1.13) and stabilizes
the close-loop state matrix A, = A-BK..
Theorem 1.5 [67] Let (C, A, B) be a regular triple. The control law that minimizes the
performance index (1.13) for every initial state vector is realized as a state feedback
u(k) = —(R+ B"PB) *B"PAX(k) , where P is the unique positive semi-definite solution of
the DARE

A'PA-P-A'PB(R+B'PB)'B'"PA=-Q, Q=C'C (1.14)



In this case, the close loop state matrix A = A—B(R+ B"PB)"'B'PA is asymptotically

stable and

I(U, %)= %P, (1.15)
In addition, if (C, A) is a completely observable pair, then the solution P of the DARE is a
strictly positive definite matrix.
From now on, it is assumed that the considered algebraic equations have unique positive
(semi)-definite solutions.
Theorems 1.2 and 1.4 state the necessary and sufficient conditions for stability of the linear
time-invariant systems (1.1) and (1.8), respectively, in terms of the CALE and the DALE
solution matrices, which allow to determine Lyapunov functions for them, as well. Stability
of any of these systems is equivalent to stability of the respective state matrices. A more
general formulation of the stability problem is given by the following well known results.

Theorem 1.6. A matrix A is stable in the continuous-time sense if and only if there exists

a positive definite matrix P, such that A"P+ PA<O0. If A'P+PA<O0and A is a stable
matrix, then P is a positive (semi)-definite matrix.

Theorem 1.7. A matrix A is stable in the discrete-time sense if and only if there exists a

positive definite matrix P, such that ATPA— P < 0. If ATPA—P <0and Ais a stable matrix,
then P is a positive (semi)-definite matrix.
Definition 1.3. If matrix P satisfies the assumptions of Theorem 1.6, or Theorem 1.7, it is

said to be a Lyapunov matrix for A.

1.4 SUMMARY OF BOUNDS

Many bounds for the positive (semi)-definite solutions of the algebraic Lyapunov equations
(1.2), (1.9) and the Riccati equations (1.6), (1.14) have been reported since the first results
were obtained about fifty years ago. All bounds reported during the first two decades were
summarized in [74], [101]. Since then, research in this area has brought out many new
results.

Depending on their type, the bounds can be matrix or scalar, lower or upper. As a measure

of the “size” of the solution, the following scalar estimates are proposed: for the



eigenvalues (including extremal eigenvalues), the trace and the determinant. The maximal
eigenvalue apparently means the respective solution gain. The i-th eigenvalue provides
important finer information about the solution. In view of the relations, the determinant
and the trace give the geometric and the arithmetic mean eigenvalue. Of all these
measurements, the matrix estimates are the most general and the most valuable, since they
can be used to obtain all other ones.

During the first two decades (1974-1994) the following important estimates for the
extremal eigenvalues, the trace and the solution have been derived. Note, that some of the
bounds are valid only under specific assumptions, which are explicitly specified and will
be commented later on.

Remark 1.1 It is usually assumed that R = | for the CARE and the DARE. In fact, this is
not a restriction at all, since R is a positive definite matrix, R™? exists and the equations

(1.6) and (1.14) can be equivalently rewritten as follows:
A'P+PA-PBB'P=-Q, Q=C'C,
ATPA-P-ATPB(l + B"PB)'B'"PA=-Q, Q=C'C
where B = BR™2. Without any loss of generality, in what follows, the control weighting

matrix is assumed to be identity.
Solution bounds for CALE (1.2):

MP)z% [127] (1.16)
In(P)zm Lif Q>0 [139] (1.17)
In(P)Z% [99] (1.18)
|1(P)sm [if A<0,Q>0 [139] (1.19)
tr(P)z% [135], [102] (1.20)
tr(P)>—Q _ [135] (1.21)

—2tr(A)
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tr(P) > T@g) [63] (1.22)
tr(P) < —Z% Lif A <0 [65] (1.23)
tQ
tr(P) < LA if A<0 [102] (1.24)
1 N
"E R Y O I (1.25)
1

P< iy l[Q—l/Z(ATQ+QA)Q,1/2)Q Vi AQ+QA<0 [39] (1.26)
Solution bounds for CARE (1.6):

)z 1,©
s(A+[s5(A) +s (B QI

[73] (1.27)

1

In(p)Z 1 2 -1 T 1112
-1,(AQ) +[1 :(AQ ) +1,(BB'Q )

LifQ>0 [73] (1.28)

L1Q(BE") ] .
N TN R VN PTG R

1

I, (P)< 1 2 1 T 11142
-1, (AQ™M) +[1{(AQ ™) +1 ,(BB'Q™I

.ifQ>0and BB >0  [139] (1.30)

1,(Q) i BRT
P BT s T o T BE 70 (56 [ee] (1.31)

1,(Q) [if BB" >0 [140] (1.32)

,(P)< - :
— A+ (A) +1 ,(BBTQ™I




1,(P) < I ] ——>1ifBBT>0  [58] (139
-1, [A(BB) " T+{l /[A(BB")"]+1 [Q(BB") "}

WP AT s Er @ B (134
"2 Ay s @ _—
GRS T 5(5(331—13 T BB'>0 [135] (1.36)
"< o AT ft(r,[f)(f ??&?[Q(BBTV}” FEST-0 e (30
Solution bounds for DALE (1.9):

| (P)> % [139] (1.38)
1,(P) s%; if AN <1 [139] (1.39)
tr(P) > %; [103] (1.40)
r(p):— 2 7y (L41)

1- n-lizzlj|| (A

tr(P) < 1};(?()A) if AN <1 [103] (1.42)
Solution bounds for DARE (1.14):

P2 fé'lgfffé)l G NS SI®@; 1] (14
| (P)< 2,@Q ‘N =1-s2(A)-s 2(B)I,(Q), if BB" >0 [139](1.44)

N +[N?+4s 2(B)l ,(QI*’



| ()<L BILQ) e pnr g a7y (1.45)
[4-s . (A)s.(B)

2n’ ,(Q) NS ’ .
tr(P) = — NN+ 45 2(B) Q" N = ;p (A) +tr(BB'Q)—n  [72]  (1.46)
2tr (Q) CN 2 2
tr(P)2— N IN7 £ 45 (B QT N=-1+s?(A)+s’(B)tr(Q)  [104]  (1.47)
2tr (Q) N < 2(A) a2 . T
tr(P) < N INT T dn’s 2B Q] N=1-s’(A) -s?(B),(Q);if BB" >0[66] (1.48)
P>A"(Q'+BB)'A+Q;ifQ>0 [62] (1.49)
P<A"(BB")'A+Q;if BB" >0 [62] (1.50)

In view of (1.16)-(1.50), the following general conclusions can be drawn.

1. Bounds for CALE. Validity is guaranteed for the minimal eigenvalue lower bound (1.17)
and the lower solution matrix bound (1.25) only if Q is a positive definite matrix. Although
this is not explicitly required for the bounds (1.16) and (1.18), if Q is a positive semi-
definite matrix, then the trivial estimate | ,(P) > 0is obtained. The upper bounds for the
maximal eigenvalue (1.19) and the trace (1.23), (1.24), of the solution P are restricted only
to the case in which the symmetric part of the coefficient matrix A is negative definite. The
upper matrix bound (1.26) is valid only if the right-hand side matrix satisfies the inequality
A'Q+ QA< 0 which obviously means that Q is a positive definite matrix, by necessity. It
is hard to say which requirement is more conservative. It is well known that stability of a
given matrix does not imply negative definiteness of its symmetric part and
v(x) = X" (t)Qx(t) may not be a Lyapunov function for system (1.1), even though it is
positive, in the general case. The lower trace estimates (1.20) and (1.21) and (1.22) are
valid whenever a positive semi-definite solution P exists.

2. Bounds for CARE. The three lower bounds for the solution minimal eigenvalue (1.27),

(1.28) and (1.29) provide the trivial estimate| ,(P) >0 , if Q is not a positive definite

matrix. In addition, (1.29) is valid only if BB" >0. All upper bounds for the solution
maximal eigenvalue (1.30), (1.31), (1.32) and (1.33) are valid only if BB" > 0. The same



refers to the upper trace estimates (1.36) and (1.37). The bound (1.30) requires that Q > 0,
as well.

3. Bounds for DALE. If Q is not a strictly positive definite matrix, then bound (1.38)

provides the estimatel ,(P) > 0. The upper bounds for the solution maximal eigenvalue

(1.39) and the solution trace (1.42) are valid only if AA" < | «<>s,(A) <1. This requirement
corresponds to the restriction A <0 in the continuous time case. It is well known that

stability of a given matrix in discrete-time sense does not necessarily imply that its largest
singular value is less than one. Both lower trace bounds (1.40) and (1.41) are valid,
whenever a positive semi-definite solution of the DALE exists.

4. Bounds for CARE. The lower bound (1.43) for the solution minimal eigenvalue is trivial,

ie, | ,(P)=>0, if Qis not a strictly positive definite matrix. The application of the upper

estimates for the maximal eigenvalue of the solution matrix presupposes that BB" >0 , for

bound (1.42), and AA" <4l <> s, (A) < 2, for bound (1.45). The lower and upper matrix

bounds (1.49) and (1.50) are valid if Q > 0 and BB" >0, respectively. Both lower trace
bounds (1.46) and (1.47) are applicable whenever a positive (semi)-definite solution exists.
This brief analysis of the derived during the first period in the history of solution estimation
bounds shows clearly several important facts.

(i) All lower bounds for the minimal solution eigenvalue provide trivial estimates if Q is
not a strictly positive definite matrix.

(if)The upper bounds for the maximal eigenvalue and the trace are derived under some
rather conservative assumptions: A <0 (CALE), AA" < | (DALE), BB" >0 (CARE and
DARE), etc.

It is well known that in real life applications the number of states is always greater than the
number of control inputs, i.e., n > m, sometimes even n >> m. Therefore, BB' is singular
even if B is a full rank matrix. The exact conditions for the existence of unique positive
definite solutions for the four algebraic equations are clearly stated by Theorems 1.2, 1.3,
1.4 and 1.5. Therefore, there exist too many cases in which it is not possible to get valid
bounds for the respective positive definite solution matrices and their extreme eigenvalues

and traces. By no doubt, conservativeness with respect to various validity restrictions



imposed on the parameters of the equations constitutes the main shortcoming of the

estimation problem.

After 1995, during the second period of solution estimation, more attention was naturally

paid to the problem of conservatism reduction.

An attempt to overcome the main difficulty concerning upper eigenvalue and trace bounds

for the solution of the CALE was firstly made in [30] in 1997. From Theorem 1.7 it follows

that for any stable matrix A there exists some positive definite matrix T, such that
AT?4+T2A<0TAT + T AT=AT+A<0< |, (A)<0, A=T'AT (151)

Pre- and post-multiplication of equation (1.2) by matrix T results in the modified CALE

A'P+PA=-Q, P=TPT, Q=TQT, I,(A)<0 (1.52)

for which upper bounds for the maximal eigenvalue and the trace of the solution P can be
obtained. Then, having in mind that
1, (P)=1,(PT*)21,(P) ,(T?) =1 ,(P)I 3(T)
and
tr(P) =tr (PT2) > tr (P)l ,(T?) =tr (P)I (T)

the following new upper bounds have been obtained in [30]:

l 1(QT2) . A A_T-1
Il(P)s_2| o 1(A),If 1,(A)<0, A=TAT (1.53)
tr(QT%) .o % T
tr(P)Sm, |f |1(&)<0, A—T AT (154)

1 nL(QT?) . ~ ~
tr(P)S—Zlﬁ(T)iZﬂ: (A Jif 1,(A)<0, A=TAT (1.55)

Remark 1.2. Bounds (1.53)-(1.55) generalize some previous estimates, since if

I,(A)<0, then T =1 is a Lyapunov matrix for A. Theoretically speaking, a matrix T

satisfying the validity constraints always exists and in this sense the above three upper
bounds are always valid, but a new computational problem arises. If T is obtained via some
external procedure, e.g., solving a LMI, it may turn out that the computational complexity
required in this case is comparable with the one needed for the direct solution, which may

undermine this approach.



Definition 1.4. If a given solution bound is expressed entirely in terms of the parameters
of the respective equation, i.e., the matrices A, Q, B, R and their eigenvalues, singular
values, traces, etc., it is said to be an internal bound. Otherwise, it is called external.

E.g., all bounds (1.16) — (1.50) are internal, while, forT = |, the bounds (1.53)-
(1.55) are external upper solution bounds.

Consider the matrix identity
(XT+YZ) " = X = XY(I +ZXY)*ZX (1.56)
where X, Y and Z are some matrices with appropriate dimensions such that the above
inverse matrices exist. By application of (1.56) for X=P, Y=Band Z= B' one gets
(P*+BB")'=P-PB(I +B"PB)'B'P
This allows rewriting the DARE (1.14) as
P=A"(P'+BB)"A+Q (1.57)
It was proved in [65] that the matrix inequalities 0<P, 0< B <P <R, imply
(1+PBB")'R <(P*+BB")*=(I +PBB")*P< (I +R,BB")'R,  (1.58)
If A is a stable in the discrete-time sense matrix, then the DALE (1.9) has a positive (semi)-
definite solution R, for any given positive (semi)-definite matrix Q. It is easy to see, that
the difference matrix P, = R, — P is the solution of the DALE-type equation
P,=A"P,A+ A'PB(I + BPB") 'B'PA> A'P,A= 0> AP A-P, &P, >0
in accordance with Theorem 1.7. From (1.57) it follows that matrix Q is a lower matrix
bound for the DARE (1.14) solution, i.e. P > Q. These facts and the inequalities (1.58) are
essential for the derivation of the following lower and upper matrix solution bounds for the
DARE [59]
AT(1 +QBB")'QA+Q<P<A'(I +R,BB") 'R A+Q (1.59)
The lower bound is remarkable since it is valid whenever (1.14) has a positive definite
solution. Note, that if Q is a positive definite matrix it yields the lower bound (1.49). As
far as the upper bound in (1.59) is concerned, it is applicable for arbitrary matrices B and

Q, but besides the fact that R is a solution of the DALE (1.9), its validity requirement (A

must be a stable matrix) is a rather conservative one.



Motivated by the fact that upper solution bounds for the Riccati-type equations require
usually the condition BB" >0, another attempt to overcome this not realistic assumption
was made for the derivation of upper matrix bounds for the CARE (1.6) in [60]. Since the

pair (A, B) is stabilizable, there exists some matrix K € R, , such that the close-loop matrix

A. = A—BK isstable. It was proved that the solution of the CARE satisfies P < R, , where

the upper matrix bound is the unique positive (semi)-definite solution of the CALE

AR +RA =-Q, Q=Q+K'K (1.60)
The authors observed that the solution of the CALE is obtained much more easily than the
solution of the CARE, but the problem of choosing K which provides the tightest in some
sense bound is open. They also proposed upper bounds for the maximal eigenvalue and the
trace of the solution P of the CARE, expressed in terms of the respective bounds for the
solution of the CALE (1.60) given by (1.53) and (1.55), i.e.:

1,QTY ... % i
LP<l(R)<— TCRTSE if 1,(A,) <0, A =T'AT (1.61)

1 &L@QTY) .z i
tr(P)str(FfJ)s_ZIﬁ(T); (A Jif 1 (A) <0, A =TAT (1.62)

If Ais a stable matrix, then K =0 and(s =Q. In addition, if the symmetric part of A. is

negative definite, then T = | and Eb = A.. The bounds (1.61) and (1.62) reduce to (1.53)

and (1.55), respectively, in this very special case.

The idea to use a modified DALE for estimating the solution of (1.9) was suggested in [88],
where the approach which resulted in the upper external bounds (1.53)-(1.55) was followed.
For any stable in discrete-time sense matrix A there exists some positive definite matrix T,
such that

AT?A-T?2<0e ATA<| os (A) <1, A=TAT (1.63)
in accordance with Theorem 1.7. Pre- and post-multiplication of equation (1.9) by matrix
T results in the modified DALE

A'PA-P=-Q, P=TPT, Q=TQT, s,(A)<1 (1.64)

The scalar and matrix upper bounds for the solution of (1.8) were proposed in [88]:



1,@T?) .
| (P (A) <1, A=TAT 1.65
O mu-siamy A (159

tr (QT?) 5
tr(F>)<I TS TR ifs,(A) <1, A=TAT (1.66)
r(P) <> (QT) [if 5,(A) <1, A=TAT (1.67)
1 2(T) & [1-s 2(A)]
1(QT) ATT 2 "
<o 0 AT2A+Q: ifs,(A) <1, A=T AT (1.68)

These bounds modify some obtained in [64], [87] respective estimates and actually cover
the case when s, (A)>1.

Remark 1.3 Bounds (1.65)-(1.68) generalize some previously respective estimates,
since if s,(A) <1, then T=1is a Lyapunov matrix for A. Matrix A is assumed to be stable
in discrete-time sense and their theoretical validity is guaranteed. All the practical
difficulties related with the computation of the external bounds (1.53)-(1.55), (1.61) and
(1.62), such as computational complexity, “proper” choice for matrix T, resulting in the
tightest bound, etc., apply to these bounds, as well.

Under the assumption that Q is a strictly positive definite matrix, the lower matrix bounds

P>a(Q-a’A'AY’, a<I"[QATA™]; [80] (1.69)
1(A) (Q-a’)¥?, a<I"Q); [82] (1.70)
PziD’l[D(aQ—Q’l)D]”ZD’l, D=(AQA)*?, a > 21 ©[83] (1.71)
a 15(Q)
z;(aQ—Q-l)”, a>_1 . [83] (1.72)
al{*(AQA") M)

for the solution of the CALE (1.2) were proposed and generalized by the same author:

P>S'S(Q-M)SI*S?, S=(AMA)*?, Q>M >0; [83] (1.73)
The bounds (1.69)-(1.72) can be obtained from (1.73) by means of a suitable choice for M.
In the special case when M = 0.5Q, the bound (1.73) becomes



pz%u-l[UQu FU, U=(AQ*A)*%, Q>0 (1.74)

Another lower matrix bound for the solution of the CALE was proposed in [20]. Under the
supposition that Q is a positive definite matrix, the solution P in (1.2) can be bounded from

below as follows

P> VLQ (Q) (A'QA ) (1.75)
The upper matrix bound
P<(A"+1)R(A+1)-A'PA+Q (1.76)

was suggested in [83], where P,_and R, denote lower and upper matrix bound for the

solution P of the CALE (1.2), respectively. Assuming that the symmetric part of the
coefficient matrix A is negative definite and by making use of the bound for the solution

matrix maximal eigenvalue (1.53) with T = |, the upper matrix bound in (1.76) may be

chosen as
), __LQ (1.77)
-2 1(As)
in this case. If the lower matrix bound P, is given by (1.73), then (1.76) becomes
1,(Q) — 2 _(AT+1)(A+1)-A'PRA+Q;if A<0and Q>0 (1.78)

—21,(As)
It is hard to say whether (1.77) is a tighter bound than (1.78) in the general case, but what
is sure is that the validity conditions for it combine the conservatism of the lower bounds
(Q > 0) with the conservatism of the upper bounds ( A, <0). Usually, derivation of upper
solution bounds does not require positive definiteness of the right-hand side matrix Q.
Another attempt to overcome the difficulties arising in estimation of the solution of the
CARE (1.6) was made in [81], where it is assumed that some positive scalara exists such
that the following matrix inequality holds
A+ A" <2aBB' (1.79)
Under this supposition the upper matrix bounds
P<VTHIV+D)(V+1)+1]+a’BB" +QNV ™ (1.80)
P<VT[ V+21)"(V+2)+2@*BB" +QN™* (1.81)



were proved, where Vand ] are defined as follows:

V-A-aBg | , | =V (@'BB +QV"]
' -1 VTIV+1) (V+ 1)V}

Note that the scalarj is positive if and only if inequality (1.79) holds. In addition, one more
upper matrix bound for the solution of the CARE was suggested in [81]. If the usual for
the upper solution bounds validity condition BB" >0 holds, then
P<E[E(A"SA+Q)E[**E™ (1.82)
where the positive definite parameter matrix S must be selected to satisfy BB' > S™and
E=(BB" —-S*)"2.
The validity condition (1.79) is more restrictive than the requirement for stability of matrix
A. = A-aBB' and in this sense it is more conservative in comparison with the validity
condition under which the upper scalar bounds (1.61) and (1.62) were obtained.
Nevertheless, the based on it bounds (1.80) and (1.81) may be viewed as an attempt to
reduce the existing conservatism in upper solution bounds for the CARE, since if BB >0
the existence of some positive scalar a satisfying (1.79) is guaranteed.
The following upper bound for the solution of the CARE was proved in [60]:

|,(P)<h =1 (D)’ 1[[7((355) K (1.83)

where K is any mx n matrix stabilizing A. = A— BK . The positive definite matrices D and

M are chosen to satisfy the LMI ALD + DA. <-M <0.
Under the supposition that Q is a positive definite matrix the lower matrix bound for the
solution of the CARE

P>D?[D(Q-A'RADJ’D*, D=(BB"+R")"?
was proposed in [84], where the positive definite parameter matrix R is chosen such that
Q> A'RA. The author showed that with appropriate choices of Rthis bound is tighter and

more general than the existing similar bounds.

The available lower bounds for the minimal eigenvalue of the solution of the CARE
provide either trivial, or are not valid estimates, if Q is a singular matrix (e.g. see (1.27)-
(1.29), (1.75) and (1.82). Consider the slightly modified inequality (1.79)



A+ A" <1 ,(BB")h (1.84)
where the positive scalarh is defined in (1.83). Following the approach applied in [81] to
derive the upper matrix bounds (1.80), (1.81), and under the supposition that (1.84) is

fulfilled, the following lower matrix were reported in [25]:

P>V {m[V+1)'(V+I1)+(2a +1-hl (BB"))I]+QN ™ (1.85)
P>V {m[(V +21)"(V+2l)+(4b —2nl (BB"))I]+2QN* (1.86)
P>W T{m[(A"A+ (b2 —bhl ,(BB"))I]+bQW (1.87)
where V = A—-al —1,W = A—d , the positive scalars a,b are chosen to satisfy

2a > (BB -Lal >A, b>max[l,(A)l,(BB)h]

and the positive scalars m, m,, m are defined by

- 1,V TQV ]
1-1 n{\/’T[(\/ +D"(V+1)+(2a +1-hl 1(BBT)I]\/’l}
n 1LV TQV ]

T1- ATV +D)T(V+1)+(2b +1-hl (BB)IV '}

bl W TQW™]
1-1 AW T[A"A+ (b*—bhl (BB")IW ™}

n}:

Contrary to the previously obtained lower solution estimates, the bounds (1.85)-(1.87) do
not explicitly require positive definiteness of matrix Q.

Motivated by the conservatism of the validity condition (1.79), an approach to derive upper
matrix bounds for the positive (semi)-definite solution of the CARE without any additional
restrictive conditions imposed on the parameters in (1.6) was suggested in [26]. It
resembles to the methods applied in [60], [88] for the derivation of the external upper
solution bounds (1.61), (1.62) for CARE and (1.65)-(1.68) for DALE, respectively. Since
(A, B) is assumed to be a stabilizable pair, then there always exists some mx n matrix K,

such that A. = A— BK is a stable matrix in the continuous-time sense. Also, in accordance

with Theorem 1.7, there exists some nonsingular matrix D =M "M satisfying the

inequality ALD + DA. < 0. The solution matrix can be bounded from above as follows:



P<MW T{r [W+ 1) (W+1)+1]+M T (Q+K'K)M WM (1.88)
P<W T {r[W+21)"W+21)+1]+2M T(Q+ K'K)M W™ (1.89)

where W = MA.M ™ — 1 and the positive scalar r is defined by

P LOWM)T(Q+ KTK)WM)™]
-1 W T[W+1)TW+1)+I1W'}

The validity of both bounds is not restricted by any of the usual additional assumptions, i.e.

the estimates in (1.88) and (1.89) are computable whenever a positive (semi)-definite
solution for the CARE exists.

A similar approach was applied to derive non-conservative upper solution bounds for the
positive (semi)-definite solution of the DARE in [27]. If there exists some m X n matrix K
such that

ALA <1, A =A-BK (1.90)
then the solution of (1.14) has the following upper bound
I, (Q+KK)
P<KALA +Q+K'K, k=-—1<_—"2/ (1.91)
1-s/(A)

Realizing that the condition (1.90) is rather conservative, the authors suggested a relaxed

solution upper matrix bound for the DARE:

me | [DT(Q+K'K)D™]
1-s/[D(A)D™]

where matrix D is chosen to satisfy the inequality ALMA. <M, M =D'D >0, which

P<mD'DA. +Q+K'K, (1.92)

represents the validity constraint for this estimate. Since (A, B) is a stabilizable pair, in

view of Theorem 1.7, this condition can always be met, which guarantees the validity of

(1.92).

For any positive scalar a the CALE can be equivalently represented as a modified DALE
ATPA-P=-Q, A=(A-al)*(A+al), Q=2a(A-al)"Q(A-al)* (1.93)

Therefore, (1.2) and (1.93) have one and the same solution P. From this equation it follows

that Ais stable in the discrete-time sense if and only if A is stable in the continuous-time

sense. Moreover, one can easily verify that

A <0 ATA (1.94)



First of all, note that

P>Q,va >0 (1.95)
The matrix bound (1.95) for P in (1.2) is completely independent from the usual for lower
estimates additional assumption that Q is a positive definite matrix. These facts were used
to derive lower and upper bounds for the solution of the CALE in [79], where for a =1 in

(1.93) the following estimates were proved

~z =~ . 1,@Q
P>L=A"QA+Q (1.97)

This bound (1.96) is tighter than (1.95) only if Q is a strictly positive definite matrix. If Q
is a singular matrix, the same refers to (5 and thenb =0, which means that the two bounds

provide the same lower estimate. The estimate L in (1.97) is always applicable and among
these three bounds is the tightest.
Under the supposition that the symmetric part of the coefficient matrix A is negative
definite, the following based on the representation (1.93) upper bounds for the solution of
the CALE were obtained in [79]:

- O ()
P<U=0A"A+Q, g_—l—ll(/&T,&)’lfA’Ko (1.98)
P<(A"+1)U(A" +1)- ALA+Q; if A <0 (1.99)

where matrix L is defined in (1.97).

If Q is a positive definite matrix a lower matrix bound for the solution of the CARE (1.6)
P>[eQ-e’ARAT +%h2| (R)IT?, R=1-eBB’ (1.100)

was suggested in [143]. The positive scalars e,h are defined as follows:

h 1 yh— 1
(A +hl,(BB) 's,(BB"+AQ*A" " | (AQH+[*AQY+I,(BB'QH?

The authors claim that (1.100) is tighter than a previously obtained in [20] similar solution

e<minf
Y5

estimate

P>[eQ-e’AR'AN]*?, R=1-€eBB' e< L

< 1.101
s2(BB +AQ'A) (1.101)



Assuming that Q is a positive definite matrix the authors proposed the upper matrix bound
for the solution of the CARE

P<{eQ-e’AR'A" +1,(R)[t +es,(ARF1}?, R=1-€BB’ (1.102)
in [143]. The positive scalar € is chosen to satisfy the inequality in (1.101) andt

is defined as follows:

o
g

b
m+<”f_q{ezl (ARTAT) ¢ 1(Q)_1_nfq}> }’ q=1-1,(R,m=¢,(R)s,(AR")

Although not explicitly said, the upper bound (1.102) is valid only if BB" >0, which
becomes clear from the following simple fact. Suppose that BB is a singular matrix, i.e.
| (BB")=0. This means that
q=1-1,(R)=1-1,(1 -eBB")=1-1+¢é (BB")=¢ ,(BB") =0, Ve

In other words, the inverse of g does not exist. The same refersto t and the bound (1.102),
as well.

A similar approach is applied in [91]. Under the suppositions that Q > 0 (for the lower
bound) and BB > 0 (for the upper bound) it has been found that the positive definite

solution of the CARE satisfies the matrix inequalities
P>[eQ-e’(V+1)'R*(V+1)+e%a’ +%kzl (RIT""+eal,R=1-€eBB" (1.103)

where A+ A’ <2al,V = A—(a +1)I , andk is defined by
K= ,(BB'Q™Y)
-1 (AQM +[1 1 (AQ ™) +1,(BB'Q™)}?
the positive scalar € is selected to satisfy the inequality

K 1 5}
(V+1)+hl (BB") s,[BB"+(V+1)'Q'V+I)] a

e <min{
Ys

and
P<{@-q)t +es [R*V+DIF-e*(V+1)' RV +1)+e’a’l +eQ}?+eal (1.104)
where g and Kk are the same as in (1.102) and (1.103), respectively, the positive scalara

satisfies the inequality used to derive bound (1.103), the positive scalar € is selected as



1 5}
s,[BB"+(V+1)'Q'(V+D)] a™’

e <min{

andt is given by

1 nt ;
t =a{m+ nt +Q<ﬁ—| Jetv+ )RV +1)]+ e 1(Q)>}

wherem=e(1-q)s,[R*(V +1)]+ea.
The trace estimation problem for the solution of the DARE was also investigated in [23].

Without imposing any additional restrictions, the authors derived the following lower trace
bounds for the unique positive definite solution P:

tr(P)Z Zn: Sr?—iﬁ-l(A)li(Q)

Z LTl RTrekAsn (1.105)

5 I n—i+1(Q)S iz(A)
vP= 2 T

In addition, ifr, =r, =n, then

, Ty=rank(Q)<n (1.106)

r(p) = 4187+ 41,(BB Q)
- 21 (BB")

, q=s,(A)+1,(BB") (Q-1
in this special case. The solution trace can be bounded from above as:

"G +la +4 01 (BB}

r(P)< 21 . (BB")

Jif AAT < (1.107)

where g =s(A)+1 . (BB")I,(Q) -1, h =tr(Q) + min{fa, b},

z S, (MY1,Q
a=(n-n) r(BBT){—SfEAS)LE(A?)} bl (B8 T

and r < ndenotes the rank of matrix B. If r = n, i.e. BB' >0, then h =tr(Q) and (1.107)

becomes

tr(

nig +[a” +4" Q1 (BN

tr(P) < )i (SBT) ;if AA" <] and BB" >0 (1.108)




where q=s2(A)+I ,(BB")I,(Q)-1. In particular, the maximal solution eigenvalue
satisfies the inequality

q+[q®+4l ,(BB") (BB
21 (BB")

I,(P)< ;if AA" < and BB' >0 (1.109)

A brief analysis of the bounds obtained during the second period, i.e. after 1995, reveals
the following trends in the solution estimation process:
1. Realizing the embarrassing fact that all upper bounds for the CALE and the DALE

solutions depend crucially on the conditions A <0 (for the continuous-time case) and

AA" < | (for the discrete-time case), several authors suggested the application of suitable
nonsingular transformations for the coefficient matrix A, which guarantees the bounds
validity for the solutions of the obtained modified equations. This approach gave rise to
the so called external bounds (see bounds (1.53)-(1.55), (1.65)-(1.68), (1.83)) which
include some additional computational procedure, e.g. LMI solution. Although such
bounds are theoretically always valid, they demonstrate two main shortcomings:

() the additional computational burden may be significant and even comparable with
the one needed for the direct solution of the respective equation,

(i) there does not exist a systematic way to select the “best” transformation which
results in the tightest bound.

2. Several attempts to overcome the difficulties associated with the estimation for the
CARE and the DARE solutions (requirements for strict positive definiteness of matrices Q
and BB" ) were made. E.g. using the fact that the pair (A, B) is assumed to be stabilizable,
an approach to bind the solution of the CARE from above by the solution of a respective
CALE was applied to derive the bounds (1.61), (1.62) and (1.92). Some more, or less
conservative conditions under which the bounds (1.80), (1.81), (1.85)-(1.87) hold were
obtained, as well.

3. With time, the bounds became more and more complex, often including several
scalar or matrix parameter which must be selected in accordance with some additional
requirements (e.g., see bounds (1.71)-(1.73), (1.80)-(1.82), (1.84), (1.85)-(1.87), (1.100)-
(1.103)).



4. According to the common opinion it is very hard to compare different respective
bounds, especially the scalar ones, with respect to tightness. No much attention has been
paid to the solution of the important problems of bounds sharpness and improvement.
Motivated by the significance of the estimation problem for the four considered algebraic
equations and the various open problems in this research field, we consider the following
main trends:

() extension of the set of stable coefficient matrices A for which there exist valid upper
solution bounds for the CALE and the DALE solutions,

(i) application of this extended set for deriving respective bounds for the CARE and
the DARE solutions,

(iii)  improvement of some existing lower and upper solution bounds in sense of

tightness.

CHAPTER TWO

BOUNDS FOR THE CONTINUOUS-TIME EQUATIONS

2.1 THE SINGULAR VALUE DECOMPOSITION APPROACH

Let A be an arbitrary n x n matrix. There exist orthogonal (unitary) matrices U and V, such

that A can be represented as follows [49]:
A=UzV' =UZU)UVT)=UVT)(VZV')=RF =FR, (2.1)
where X is a diagonal matrix containing the n singular values of A, F=UV' and R, R,

are matrices defined as



R=(AA)", R =(A'A" (2.2)
Therefore, any square matrix A can be represented as a product of a symmetric matrix and
an orthogonal matrix F. The eigenvalues of this symmetric matrix are exactly the singular
values of A. In addition, if Ais nonsingular, then R, R, are positive definite matrices.
Define the following matrix sets:
H ={A AeR, :det(A-11)=0=Rel <0}
H ={A AeR, :A <0}
H={A AcR, :FeH}
i.e. H is the set of stable matrices, H ~ is the set of matrices with negative definite

symmetric parts and H is the set of matrices with stable orthogonal parts F in (2.1).

Theorem 2.1. Consider the singular value decomposition of matrix A (2.1)-(2.2). Then,
1.H c H ,
2. Ac H onlyif R"and R,are Lyapunov matrices for A.

3. AcH ifand only if R*and R, are Lyapunov matrices for A.

Proof. Let Ac H ™ i.e.
0>2A,=F'"R+RF=RF"+FR,=>FeH = AcH
in accordance with Theorem 1.7. This proves the first statement.
If Ac H ~ then F is a stable matrix, but being unitary, it is normal, as well, and therefore
can be diagonalized via a unitary matrix transformation [49], i.e.
W'FW=A, A=dag{l (F)}Rel (F)<0,i=1.,n

It follows that F e H < F € H ~. Consider the matrix inequalities:

A'R*+R*A=2F,<0, A'R,+RA=2RF.R <0 (2.3)
Having in mind Definition 1.3, it follows that R *and R,are Lyapunov matrices for A, in

this case. This proves the second statement of the Theorem.

Having in mind that

AR'+R'A=2F, AR, +RA=2RF.RR,



statement (3) is obvious.
Example 2.1 Consider the following example:

1 01 =
A=| 0 -1 1], ll(A):_1,|2’3(A)=|°‘1i (p—zl) —4(1-p)
-1 0 p

Matrix A is stable for all p <1, while A; <0 for p <-0.25. It is interesting to see how

changes in the parameter p influence the maximal eigenvalues of the symmetric parts of

Aand F. The results are given in Table 2.1, where a =maxRel ,(A),i=12,3.

It is clear that the based on the condition for negative definiteness of the symmetric part of
the coefficient matrix A available upper bounds for the maximal eigenvalue, the trace and

the solution matrix for CALE are inapplicable for allp €[-0.25,1) inthis case. At the same
time, matrix F is strictly negative definite. We shall see how this important fact can help

the derivation of valid solution upper bounds.

P a (A) ] 14(Fs)

0.9 -0.05 | 1.0236 |-0.0045
0.5 -0.25 | 0.6514 |-0.1774
0 -0.50 | 0.2071 |-0.3711
-0.25 | -0.625 | 0.0000 |-0.4538
-0.5 -0.75 | -0.191 |-0.5262
-1 -1 -0.5 | -0.6421
-2 -1 -0.7929 | -0.7869

Table 2.1 Dependence of a,l ,(A),l ,(Fs)onp

2.2 BOUNDS FOR THE CALE SOLUTION

2.2.1 TRACE BOUNDS

The significance of the singular value decomposition of the coefficient matrix A for
estimation purposes was firstly investigated in [122], where new upper bound for the

solution trace of the CALE was proposed. Before presenting this result, recall some well



known properties of the trace operator (sum of eigenvalues = sum of diagonal entries). For

arbitrary square matrices X, Y, and a symmetric matrix Z, one has:

tr(X) =tr (X)), tr(X) +tr(Y) =tr (X +Y), tr (XY) = tr (YX), tr (XZ) = tr (X Z)

Theorem 2.2 Let Ac H . Then the trace of the CALE (1.2) solution has the upper bound:

tr(RQ)
tr(P) <y =—"~"— (2.4)
" -2, (RRR)
Proof. Having in mind (2.1) and (2.2) the CALE can be rewritten as
F'TRP+PRF=-Q (2.5)

Pre-multiplication of (2.5) by matrix R and application of the trace operator to both sides
of the resultant matrix equality leads to:
RF'RP+RPRF =-RQ=-tr(RQ) =tr(RF'RP+PRFR) = 2r(RF;RP) <2I ,(RFsR)tr (P)
By assumption matrix Ae H and therefore

FeH ©FeH <|,(F)<0<1,(RFR)<0

which proves the upper trace bound (2.4).

Later on, this result was extended in [124].

Theorem 2.3 Let Ae H . Then the trace of the CALE (1.2) solution has the upper bound

_r(R'Q
tr(P)<u, = 2L (F) (2.6)

Proof. Having in mind the singular value decomposition of matrix A in (2.1) and (2.2)
consider the CALE (1.2) rewritten as
RF'P+PFR =-Q (2.7)
Pre-multiplication of (2.7) by the inverse of matrix R, and application of the trace operator
to both sides of the resultant matrix equality leads to
F'P+R'PFR, =-R,'Q = —tr(R,'Q) = tr (F"P + PF) = 2tr (FsP) < 2I , (F)tr (P)
By assumption matrix AeH and therefore FeH < FeH < | 1(Fg) <0, which

proves the trace inequality in (2.6).

If Ae H ~, bound (1.23) is considered to be the tightest upper trace estimate for the CALE

solution. This fact was used in [122] to get a modified less restrictive validity condition.



Theorem 2.4 Suppose that Ac H . Then the trace of the CALE solution has the upper

bound

1 & LRY) " | (R'Q)
(P =u =min(os ) o Ry S A2 o ey @O

Proof. Consider the CALE (2.5). Pre- and post-multiplication by R'? results in the
following modified CALE equation

(RPFTR)(R?PR?) +(RPPR)(RFR?) =-R"QR”  (2.9)
Denoting F = R?’FRY? | P = R"?PR'? and Q = R”’QRY?, (2.9) can be rewritten more
compactly as

F'P+PF=-Q (2.10)

If the supposition Ae H holds, then F e H ~ and (1.23) can be applied to get the upper

bound for the solution matrix of (2.10), i.e.

tr(ﬁ)si%

Using the trace inequalitytr(ls) =tr(RP) =1 (R)tr(P)=s ,(A)tr(P), one finally gets the

trace estimate for P:

1
S, (AF-2,(F) s,(AF-2.(RF)
Consider the CALE (2.7) pre- and post-multiplied by R,*?:
(R°FTR)(R¥*PR"*) +(R"*PR"*)(R*FR®) = -R,"*QR;"* (212)
Denote F = RY?’FRY? P = R,¥’PR;Y? Q = R,Y’QR,*2. This helps to put (2.12) in the form
F'P+PF=-Q (2.13)
If the supposition Ae H holds, then F e H~ and bound (1.23) can be applied again to get

the upper bound for the solution matrix of (2.13), i.e.

tr(ﬁ)si%

The trace of the solution matrix in (2.13) can be bounded from below as follows:



tr(P) =tr(R'P) 21 ,(R)tr(P) = %tr(P) = x EA) tr(P)

This leads to the next upper bound for the solution of the CALE (1.2)
n 0O n -1

tr(P)<s l(A)iZ:1:—_ |2| (ic(%) =s 1(A)iz_1:——l2ll(lF(22chl2:)S) (2.14)
Having in mind (2.11) and (2.14), the bound in (2.8) follows.
Corollary 2.1 If Ac H , then the trace of the solution of the CALE (1.2) has the upper
bound

tr(P) <t,, =min(u,, u,,u,) (2.15)

where u, u,, u,are bounds defined in (2.4), (2.6), (2.8), respectively.

The upper trace bound (2.15) was reported in [121].
Remark 2.1 The upper trace bound (2.15) can be computed under less restrictive
conditions imposed on the coefficient matrix A in (1.2) and in this sense it is less
conservative in comparison with all known similar bounds.
Provided that the CALE (1.2) has positive (semi)-definite solution, lower trace bounds for
it can always be derived. Application of the singular value decomposition approach results
in the derivation of some lower trace estimates, as well.
Theorem 2.5 The trace of the positive (semi)-definite solution P of the CALE (1.2) has

the following lower bounds:

_ _ tr(RQ _ r(R'Q)
tr(P) 2t =max(l, 1), h=— “REFD == X (2.16)

Proof. Pre-multiplication of (2.5) by matrix R and application of the trace operator to both
sides of the resultant matrix equality results in
RF'RP+RPRF =-RQ=-tr(RQ) =tr(RF'RP+PRFR) =2tr(RFRP) > 2| ,(RFsR)tr (P)
and the bound |, follows.
Pre-multiplication of (2.7) by the inverse of matrix R, and application of the trace operator
to both sides of the resultant matrix equality leads to

FTP+R,'PFR, = —R,'Q = —tr (R;'Q) = tr (F TP+ PF) = 2tr (F,P) > 2I . (F)tr (P)

which proves bound|, and the statement of the Theorem, as well.



2.2.2 BOUNDS FOR THE EXTREMAL EIGENVALUES
The singular value decomposition approach can be applied to derive some upper

and lower bounds for the maximal and minimal eigenvalues of the CALE solution.
Theorem 2.6 Suppose that Ac H . Then the maximal solution eigenvalue for the CALE
has the following upper bound:

:min(ll(—QFs‘”) Sl(A)ll[—Q(RstRz)‘ll) (2.17)
2s (A 2 '

1, (P)<e,

Proof. Consider the modified CALE (2.9). Let x be an eigenvector for matrix R"?FRY?
corresponding to its largest eigenvalue, i.e. R¥*FR'2x=1,x. Then,

X [(REFTR?)(RIZPR?) +(RPPR?)(RPFR)Ix =21 X (R™FsR™)x=—x"R*QR*
Since Ae H by assumption, it follows that R*2FsRY? < 0. Denote (—F¢)*?R¥2x = y , to get

the following equality for the maximal solution eigenvalue of (2.9)

— yT [(_Fs)il/zQ(_Fs)im]y < l 1(_QF§1)
2y'y B 2

l 1
which can be bounded from below as
I =1 (RPFR?) 21 (R)1,(P) =s (A)l ,(P)
This proves the first upper eigenvalue bound in (2.17).

Consider now the modified CALE (2.12). Let x be an eigenvector for matrix RQ‘]/zPR;]/2

corresponding to its largest eigenvalue, i.e. R;J/ZPRZ’VZX:I ,x and consider the scalar
equality
X'[(RPFTR)(RMPRY) + (RVPPRM)(RPFR*)Ix =21 X" (R*FsR/*)x = ~R;*QR;

It is assumed that Ae H | therefore RY2F,RY2 < 0. Using the notation (—F¢)*?RY¥?x =y,

one gets
| y'[(-Fs) " R'QRM (=Fs) 1y _ I [-Q(R,F,R,) ]
' 2y"y N 2
The maximal eigenvalue of the solution of (2.12) can be evaluated as:

(P _1.(P)

= LRIPRI) 21 (RYLP) = 2 = 2



and the second upper bound in (2.17) follows. This proves the statement of the Theorem.
Remark 2.2 The upper eigenvalue bound (2.17) can be computed under less restrictive
conditions imposed on the coefficient matrix A in (1.2) and in this sense it is less
conservative in comparison with all known similar bounds.
The same approach can be applied to get lower bounds for the minimal eigenvalue of the
CALE solution matrix.
Theorem 2.7 Suppose that Q in (1.2) is a positive definite matrix. Then the minimal
eigenvalue of P has the following lower bound:

1 S (A
-25,(A),(FQ™)" -2 (RFRQ™)
Proof. Consider the modified CALE (2.9). Let x be an eigenvector for matrix R'?PR?

| ,(P)> e, = max(

) (2.18)

corresponding to its minimal eigenvalue, i.e. R**PR'’x=1 x. Then,
X'[(RPFTRA)(RPRY) + (RPPRY)(RPPFR)Ix = 21 X" (R™F;R™)x = —x" R*QRx
By assumption Q > 0, i.e. Q*2exists. Let

QR/*x=y=x=R"Q"y=2 y'Q"*FQ¥"y=-y'y
or,

I S
-2l n (FSQil)

The minimal eigenvalue | , of RY?PR'? can be additionally bounded from above as

TA-Y2 -1/2
1=2 YRR, o

n

n(FSQ_l) = l n 2

[, <I,(R)I.(P)=s,(A) ,(P) and the first bound in (2.18) is obtained.

Consider the modified CALE (2.12) Let x be an eigenvector for matrix R**PR,*?
corresponding to its minimal eigenvalue, i.e. R,**PR;*?x=1_x and consider the scalar
equality

X'I(RPPFTRP)(RPRY) + (RPR ) (R FR)Ix = 2| X" (R*FRI*)x=-R"*QR,"*

Define the vector Q”ZRZ’J/ZX = yand having in mind that Q > 0 by assumption, one gets

y'Q’R,FRQ ™%y 4 1
12 >2 | (RF, | > .
“ vy L (RERQD= 102 o R EROY




1.(P) _1.(P)
(R s.(A

As all available similar estimates, the lower eigenvalue bound in (2.18) is dependent on the

Using the inequality| . <I ,(R)I (P) =

, the bound in (2.18) is proved.

condition Q > 0. The next result is an attempt to relax this restrictive requirement.
Theorem 2.8 Suppose that(s =Q+ A"QA> 0. Then the minimal eigenvalue of the CALE

solution has the following lower bound

1
-2 {[(A"A+1)AIQ "}
Proof. Consider (1.2) multiplied by A and A™ from the left and from the right,

I.(P)ze,= (2.19)

respectively. i.e.
ATP+PAT=—-ATQA™.
Then P is the unique solution of the CALE
(AT +ATP+PA+ A =-Q=-ATQAY, Q>0 (2.20)
Denote A = A+ A™. Application of the valid in this case bound (1.17) leads to the estimate

N P R— ! - L ~
-2l (AQ™Y) -1 [(A"+A+ AT+ AHAQTAT] -1 [(ATA+ATA+ A"+ AQ]

which proves the bound in (2.19).

Application of the singular value decomposition approach helps to derive the
next lower eigenvalue bound.
Theorem 2.9 Suppose that(s =Q+ A"QA> 0. The minimal eigenvalue of the solution of
the CALE (1.2) has the following lower bound

| (P)>e, = max( ! S«(A o

where A= A+ A =FR,, R, = (AT A)*? is the singular value decomposition of matrix A.
Proof. Having in mind that the bounds in (2.21) are based on the applied to the solution of
the CALE (2.20) bounds in (2.18), the proof follows easily and is omitted.

Remark 2.3 The lower bounds for the minimal eigenvalue of the CALE (1.2) solution

relax the condition (Q > 0) under which available similar estimates are valid. It is clear that

if Q is a positive definite matrix then@ =Q+A'"QA>0. Up to our best knowledge the



bounds (2.19) and (2.21) are the first ones which are computable in some cases when the

right-hand side matrix in (1.2) is not strictly positive definite.

2.2.3 MATRIX BOUNDS
The next simple statement gives the key to the problem of matrix bounds derivation for the

solution of the CALE.
Lemma 2.1 Suppose that there exist symmetric matrices P, R, such that
AR, +RA<-Q<A'R +RA (2.22)

Then, P <P<R,.
Proof. Consider the CALE (1.2), rewritten as follows:

A" (P-P)+(P-P)A=—(Q+A'P +PA) (2.23)

AT(R, -P)+(R, —~P)A=Q+A'R, +R/A (2.24)
If the inequalities in (2.22) hold, it follows that P> P, and P<R,, in accordance with

Theorem 1.7.
Remark 2.4 The problem of computing matrix bounds for the CALE solution reduces to

the solution of the problem (2.22) for some symmetric matrices P, R, . It is desired to do

this without performing some additional computational procedure, e.g. LMI solution
(Remark 1.2).
If Q> 0, it follows from (2.22) that R, must be a Lyapunov matrix for A.

Theorem 2.10 Suppose that the symmetric part of A in (1.2) is negative definite. Then,

P<Ru Ru=MAA m=Z1,[-QAAA] 2.29)

P<R. Ro=m(A)’, m= I{QUA)'AY  (229)

Proof. Matrices A"A (AA")™ are Lyapunov matrices for A if and only if Ac H ~, i.e.

A < 0. From the definition of the scalar m in (2.25) it follows that

m| 2%(—ATASA)]/2Q(—ATASA)V2 = 2mA"AA>Q= AR, +R,,A+Q<0



Therefore, R),is an upper bound for the CALE solution in accordance with Lemma 2.1.

The upper matrix bound in (2.26) is proved using similar arguments.

The requirement for A, <0 is a rather restrictive one. Usage of the singular value
decomposition approach helps to get less conservative upper trace and eigenvalue bounds
for P.

The next result illustrates the application of this approach for the derivation of upper matrix

solution estimates.

Theorem 2.11 Suppose that Ac H . Then, the solution matrix in (1.2) can be bounded
from above as follows:

P<Rs Ra=MRY My=2l {QR'ANI R=(A)" (227
P<Ru Ru=MiR, M= {QRAY R=(NA" (229

Proof. Matrix A< H if and only if R™*and R,are Lyapunov matrices for A in accordance
with Theorem 2.1, statement (iii). Consider the scalar m,,in (2.27). From its definition it
follows that

—2m;(R'A)s =-m;(A' R+ R'A) =—(A'R); + R;;A) 2Q
According to Lemma 2.1 R,,in (2.27) is an upper matrix bound for the solution of the
CALE.
Having in mind the definition of m,, in (2.28) one gets the matrix inequality

—2my,(RA)s =-M, (AR, + R,A) = (AR, +R,A) 2Q

Application of Lemma 2.1 shows that R, , in (2.28) is an upper bound for P in (1.2), as well.
Remark 2.5 The upper matrix bounds (2.27) and (2.28) hold under the condition Ae H .
In view of Theorem 2.1 this means that these bounds are less conservative with respect to

validity than the similar bounds (2.25), (2.26) and the matrix bound (1.77), which may be
improved in sense of tightness as

P< F{J5=%I1(—QA51)I if AcH ™ (2.29)

It easy to see that



LQ _ 1,@Q
(A 1, (A)

Therefore B, is always tighter than the suggested upper matrix bound (1.77). Both bounds

I 1(_QA51) <l 1(Q)| 1(_A§l) =

are computable under the one and the same restrictive condition (Ac H ).
The solution bounds (2.27) and (2.28) can be used to derive different upper trace and
eigenvalue bounds for the solution of the CALE. They are summarized in the following
result.
Lemma 2.2 Let Ac H . The following scalar solution bounds hold for the CALE:

tr(P) <t,, =min(u,, uy) (2.30)

where the trace bounds u,, u. are defined as follows

1 51
u4:§%3;m' us =tr(R,,) = ZS (A
1, (P) <&, =min[l ,(R,), 11(R),)] (2.31)
- ”b4
1,(Rs) = 25 (A) I (Ry)=—"s.(A)

and m,,and m,, are given in (2.27) and (2.28), respectively.

Proof. The proof is based on the well known fact that for arbitrary symmetric matrices X
and Yone has X <Y = tr(X) <tr(Y), I ,(X) <1 ,(Y).
The problem of getting lower matrix bounds for the CALE solution is always solvable if
the right-hand side matrix Q is strictly positive definite. The next theorem illustrates this
fact.
Theorem 2.12 Let Q> 0in (1.2) and X be an arbitrary positive definite matrix. Then,

1
=21, [(XA)sQ™]

Proof. From the above definition of m and P, it follows that

P>P,=mX>0,m,= (2.32)

1=-21 [(XA)sQ'Im =1 2-mQ™*(A"X + XAQ ™ =—Q**(A'R + R AQ™*
or,

Q>-AP-PA=Q+AP+PA>0=P>P,



in accordance with Lemma 2.1. Since X is arbitrary, but positive definite matrix, then

positive definiteness of the matrix bound P,_depends entirely on the sign of the scalar m) .
Suppose thatm <0, which, due to positive definiteness of Q, is possible if and only if

2l [(XA)]=1,(ATX +XA) >0 ATX + XA>0 < X' (AT X + XA)x >0, VX

Let x be an arbitrary eigenvector of the stable matrix A, i.e. Ax=1x| =-a + jb,a >0.

Then, —2ax” Xx>0 <> x" Xx<0, which contradicts the assumption that X is positive
definite. Therefore, m > 0and P, is a positive definite lower matrix bound for P in (1.2).
Remark 2.6 If Q> 0, various lower matrix bounds for the CALE solution can be obtained,
e.g. see (1.69)-(1.75). Generally speaking, they are based on the usage of a scalar or matrix
parameter M and some of the well known matrix inequalities
Q=-A"P-PA<PAM*ATP+M, 0<M<Q
Q=-A"P-PA<A'M'A+PMP, M>AQ'A

In accordance with the fact that X >Y > 0implies X*? > Y2 (but not vice versa) respective
bounds for P are obtained. It will be shown later on why the approach applied in Theorem
2.11 to obtain lower matrix bounds is preferable.

A way to overcome the lower matrix bound problem for the CALE when Q is a singular
matrix is to use the equivalent DALE-type representation (1.93) of (1.2). This helped to
derive the always valid lower bound (1.97). Another possibility lies in the usage of the
CALE-type equation (2.20).

Corollary 2.2 Suppose that@ =Q+ A'QA> 0. Then the CALE solution has the following

matrix and scalar lower bounds:

! __ A
—21 [(XA)sQ 1]

P2R,=mX>0,m,= =A+A" (2.33)

for any positive matrix X, and
tr(P)>t,=tr(R,), 1.,(P)>e,=1,(R,) (2.34)

Proof. It is entirely based on Theorem 2.12 and is omitted.

2.3 IMPROVEMENT OF MATRIX BOUNDS



It will be shown how under the assumption that some lower and upper matrix bounds for
the CALE solution are available, they can be additionally improved in sense of tightness
in this section.

Theorem 2.13 [125] Let there exist some symmetric matrices P, R, such that

A'R, +P,A<-Q< A'P._+P A . Then, the solution of the CALE can be bounded as:

-~ ~. i-1 ~ . ~~
P>L =(A) RA+> (A) QA VI=012,. (2.35)
j=0
~. ~. i-1 ~ . ~~.
P<U, =(A) RA +> (A) QA Vi=01,2,. (2.36)
j=0
where
A=(A-1) (A+1), Q=2(A-1)TQ(A-1)" (2.37)
Further,
L>L, Vi=12., L=P (2.38)
U, <U,,, Vvi=12.. U,=PR (2.39)

Proof. Consider (1.93), where P denotes the solution of the CALE (1.2). For a =1 one
gets the coefficient and the right hand-side matrices in (2.37). If the supposition of the

Theorem holds then B, R, are a lower and an upper matrix bound for the CALE solution,
respectively, in accordance with Lemma 2.1.

From the DALE P = AT P;\+(3 in (1.93) one gets the following lower bounds
P>A'TPRA+Q=L;
P>(A) P A2+ ATQA+Q=L,;
P>(A) P A +(A) QA?+ ATQA+Q =L,

P>L =(A) RA+> ATQA’, Vi=012,.
j=0

and the upper bounds

P<A'RA+Q=U,



P<(A)"RA?+A"QA+Q=U,
P<(AY)TR A +(A?)TQA2+ ATQA+Q=U,

~. -~ i1 ~ . ~~ .
P<U, =(A) RA +> ATQA!,Vi=0,1,2,.

j=0
This proves the first statement of the Theorem. Denote AL;;, =L; —L;_;and for any given

i consider the difference matrix
~ ~ i1 . . i-2 o
AL, = (A)RA +) ATQA! —(A™)TRA™-> ATQA’
j=0 j=0

=(A)RA +(A)TQA? - (AR A
= (A)T(ATRA+Q-PR)A™
Having in mind (2.37), one gets
ATPA+Q-P =(A-D)T[(A+ 1) P (A+1)+2Q—(A-1)"P (A-DJ(A-1)"
=2(A-1)T (AP +P A+Q)(A-1)">0
in accordance with the supposition made in the statement of the Theorem. Therefore,
AL, >0=>L>L,, Vi=12.; L =R

This proves the inequalities in (2.38). Denote AU, , =U; —=U,_, . In a similar way one gets

~. ~. i1 ~. ~~ ~. ~. i-2 ~. ~~
AU, = (A)RA+Y ATQA —(A™) R AT -3 ATQA
j=0

j=0
_ (R )T th Ai n (Ai—l)T QAH _ (Ai—l)T FL Ai—l

= (A7) (AR A+Q-R)A™

"R,A+Q-R, =(A- 1) T[(A+1)T R, (A+1)+2Q~(A-1)TR, (A= )](A-1)"
=2(A-1)T(A'R, +R,A+Q)(A-1)1<0

one finally gets

AU, ,<0=U,<U,,, Vi=12.; U,=R,

This completes the proof of the inequalities in (2.39) and the Theorem.



Lemma 2.3 For arbitrary given positive (semi)-definite matrix Q, such that the CALE (1.2)

has a positive definite solution, the matrix inequalities in (2.35) are satisfied for
R=L=0Q.
Proof. From the proof of Theorem 2.13 it follows that the inequalities (2.35) hold if and
only ifQ+ A"P_+P,_A>0,where P, is obviously a lower bound for the CALE solution in
accordance with Lemma 2.1. Since@ in (1.93) is a lower matrix bound for P for any
positive scalara , it remains to prove that AT(S + (5A+ Q >0. From the definition of matrix
6 in (2.37) one gets
ATQ+QA+Q=2[A"(A-1)TQA- 1)+ (A-1)TQ(A-1)"A]+Q=S
Note, that matrices (A—1)"and A commute, i.e. (A—1)"A= A(A—1)". Therefore,
S=(A-1)T[2(A'Q+QA) +(A-1)"Q(A-N]I(A-1)"
=(A-1)T(AQA+ AQ+QA+Q)(A-I)"
= (A=) T(A+1)TQ(A+1)(A-1)" = ATQA>0
It follows that ATQ + (5A+ Q=0 and this proves the statement of the Lemma.

Remark 2.7 Theorem 2.13 states that under some matrix inequality conditions any lower
and upper matrix bound can be additionally improved in sense of tightness. These
inequalities play an essential role since they guarantee the successive improvement of any
given bound satisfying them. Lower matrix bounds can be obtained using different
approaches. The estimates (2.32), (2.33) are preferable to the similar ones in (1.69)-(1.75)
(see Remark 2.6).

Lemma 2.4 Suppose that Q in (1.2) is a positive semi-definite matrix and (Q, A) is an

observable pair. For some integeri < nthe lower solution bound L, in (2.35) is a positive
definite matrix for any given P, = L,,.

Proof. The following statements are equivalent for (Q, A), Q= C'C > 0to be an observable
pair:
(i) rankM =n, M =[A"-1"1 C"1eR,, ., VI es(A

(ii) ranko=n, O=[C" A'C" (A)'CT.. (A")'C"]eR,,,



wheres (A) denotes the set of eigenvalues of A. Consider (i) applied for the pair (f&, (5) in
(2.37), i.e.
rankM =n, M =[A" -1 1 C']&R, 2, C" =~2(A-1)TQ"
wherel , denotes eigenvalue of the transformed matrix A. Matrix M takes the form
M=[(A-1)T(A"+ 1) =11 J2(A-1)TQ™]=(A-1)T[A" +1 - (A" =1) 2Q"*]
= (A=1)T[A-1 A +@+17)1 2Q¥]

=(1-1))A-D)T[A"+Z'1 b"'Q"], =%, b*—l:/?;

Having in mind that the eigenvaluel , of A is

P!

| -1
it follows that
z=-|
or
M=@1-15)(A-DTIA =11 b'Q¥]

Then, rank M = nif and only if

rank[A" =11 b"Q"*]=n
The above condition is equivalent to observability of the pair ( |b|2Q, A) . From statement
(i) it follows that the coefficient b cannot affect the observability of pair (Q, A). Therefore,

the pair ( Q, A) is observable if and only if the pair(@, Z\) is observable. Then, according

to the supposition of the Lemma, the transformed matrix pair is observable. From (1.10),
(1.93) and the applied for the transformed pair statement (ii), it follows that the solution of
the CALE (1.2) can be bounded from below as follows:

s} ~. ~—~ n-1 ~. ~—~ ~ o~
P:Z(AI)TQAI > Z(AI)TQAI :OTO>O,
i=0 i=0
Consider (2.35) fori =n, i.e.

~ ~ -l ~ ~ ~ ~
P>L,=(A") PA"+Y ATQA =(A")'P,A"+0"0 >0
i=0



Therefore, there exists some positive integer i <nwhich guarantees the statement of the
Lemma for any given positive (semi)- definite P, .
Remark 2.8 Up to our best knowledge, the lower matrix bound (2.35) for the CALE
solution is the first one which is proven to be strictly positive for somei <n. Also, this
bound is applicable for any initial lower matrix bound B =L, >0forP.If B =L, = 6 >0
then
- — n-2 _ _ -
P>L ,=(A"") QA"+> ATQA'=0"0>0 (2.40)
i=0
and therefore the existence of a strictly positive lower matrix bound for the CALE solution
is guaranteed for some i <n-1.
Remark 2.9 Consider the lower matrix bounds for the CALE solution (2.35). Under the
supposition that Q is a positive (semi)-definite matrix and (Q, A) is an observable pair,
there exists some i <n, such that
-~ -~ i1 ~ m— e~
l.(P)>ey; =1,(L)=I ,[(A) RA+> ATQA']>0, Vi=0,12. (2.41)
j=0
for any given matrix positive (semi)-definite matrix B_. If in addition, the inequality
Q-+ A"P_+P A>0holds, then
eL5,i 2 eL5,i—1' Vl
tr(P) >t =tr(L) >tr(L_,), Vi

Having in mind (2.36), the following upper eigenvalue and trace bounds for the CALE

solution hold:
1,(P)<ey, =1, [(A) RA +> ATQA’] Vi=0,12.. (2.42)
j=0
. . i-1 _~ o ——
tr(P) <ty,; =tr[(A)" R A +ZA'TQA’], Vvi=0,12,. (2.43)
j=0

QJS,i = eJ3,i—1’ tU 3, = tU 3,i-11 v'
for arbitrary P, satisfying the matrix inequality A'R, + P,A+Q<0.

The main difficulty arising in estimating the CALE solution from below is due to the fact

that the guaranteeing positive definiteness of P observability condition is usually not taken



into account. Exceptions in this sense are the bounds due to Corollary 2.1 and Lemma 2.4.

The next result is another attempt to overcome the problem with the singularity of matrix

Q.

Theorem 2.14 Suppose that (Q, A) is an observable pair. If some nx n matrix K exists such

that A. =—(A+KQ) H , then the solution of the CALE (1.2) has the following bounds:

P>P,=—R’ R=(AA)"” m=2[-KQK'(AR)] (2.44)

3

PR = R R=(A) m=2. KK (ARYT (45
Proof. If (Q, A) is an observable pair the solution of the CALE is a positive definite matrix.
Then, (1.2) can be rewritten as:
PY(-A-KQ)" +(-A-KQ)P*=P'Al + AP =(P'-K)Q(P'-K")-KQK" =-Q
The conditions for observability of (Q, A) is equivalent to the condition for controllability
of the pair (A", Q), or in other words there always exists some matrix K such that

A. =—(A+KQ)is a stable matrix. Consider the singular value decomposition of matrix
A e,
A=RF=FR, R=(AAD" R=(AA)" FF=I
and suppose that A. € H . According to Theorem 2.1, Ii[l and ﬁzare Lyapunov matrices
for A., or equivalently, R and R;*are Lyapunov matrices for AT (Definition 1.3). This,
having in mind the defined in (2.44) and (2.45) scalars m, m, , guarantees the inequalities
0>m(RAl +A-R)+KQK™ = RAT + AR+ KQK™ 2 RAT + AR +Q
02 m(R'Al + AR+ KQK™ = BA + AP, + KQKT 2 AT+ AP, +Q
where I?; = n]ﬁl, F~>2 = n;ligl. From Lemma 2.1 it follows that FE I52are both upper bounds

for P, or their inverses, denoted B ,and P, respectively, are lower bounds for the

solution of the CALE (1.2). This completes the proof of the Theorem.
Remark 2.10 The validity of the lower matrix bounds (2.44) and (2.45) depends only on

the condition A. =—(A+KQ) € H , which is less conservative than the usual requirement



A. =—(A+KQ) € H . If this condition is satisfied, than two positive definite lower matrix
bounds for the CALE solution are computable. This makes possible to derive nontrivial
lower bounds for the minimal eigenvalue of P, as well.
Corollary 2.3 If the suppositions of Theorem 2.14 hold, then the minimal eigenvalue of
the positive definite solution of the CALE (1.2) has the lower positive bound

I ,(P)=max[l ,(P,),!,(P.,)] (2.46)

where matrices B ;and P,_, are given in (2.44) and (2.45), respectively.

2.4 IMPROVEMENT OF SCALAR BOUNDS

The problem of trace and eigenvalue bounds improvement for the CALE solution in sense
of tightness is discussed. Before that we need the following useful result due to [77]. Let X
and Y, Y >0, be some n x n symmetric matrices. Then, the trace of the product XY can be

bounded as follows:

S O0L M) SV <1, (X1 (V) (2.47)

i=1 i=1

For arbitrary symmetric matrices X and Y > 0 define the nonnegative scalars
g (GY) =2 1) =1 OON, G (X YV) =21 (X) =1 ,(X)]; (2.48)
i=2 i=2

where |, (Y)>1. >20,i=2,..,n.

Some of the results given below are new, and the others were presented firstly in [117],
[120], [123].

Theorem 2.15 Letl,, denotes some nonnegative lower bound for the i-th eigenvalue of the
solution Pin (1.2), i =2,..,n. Then, having in mind (2.48), the trace of the CARE solution

can be bounded as follows:

Q)+ 0,(ALP) Sr(Q-0.(AP)
=t,, <tr(P)<t,,

(2.49)
~1 . (A) ~1.(A)

S1(RQ)+0.(RFR.P) S1(RQ-0,(RFR.P)
<t =tr(P) <ty = (2.50)
- n(RlFSRi) ~ 1(R1FSR1)




;tr(Rz_lQ)‘l‘gz(Fs’ P) ;tr(Rz_lQ)_gl(FQ P)
<t =tr(P)<ty, (2.51)
-1 n(Fs) =1 1(Fs)

The upper estimate in (2.49) holds if Ac H ™ and Ae H is the condition under which the
upper estimates in (2.50) and (2.51) are valid.

Proof. Pre-multiplication of the CALEs (2.5) by R and (2.7) by R, respectively, leads to

the matrix equalities:
RF'RP+RPRF =-RQ (2.52)

F'P+R'PFR, =-R,'Q (2.53)
Application of the trace operator to both sides of (1.2), (2.52) and (2.53) results in

2tr (—AP) =tr (Q)
2tr(-RFsRP) =tr(RQ)
2tr (-FsP) =tr (R,'Q)

Using (2.47), the following trace inequalities are obtained:

SUQ=UEAR)> Y1 AN () =31 (A (P
=L AP+ 0T, (A) -1 (AT (P)

21, (A (P + I (A) (A
1L (A (P) + G, (AP) (254)
%tr(Q) :tr(—ASP)SZn‘,l (=A (P)

L CANP) XA -1 AT (P)
—-1 AP+ X0 (A1 AN (P)

—-1 (AP = Y0 (A1 (AN (P)



< (ANTP)= X0 1 a(A) -1 (A

== ,(Atr(P)—9,(As, P) (2.55)

The bounds in (2.49) are easily obtained from (2.54) and (2.55), respectively. Following
the same proof scheme and having in mind (2.48), bounds (2.50) and (2.51) follow easily.
Remark 2.11 The lower and upper trace bounds in (2.49)-(2.51) are always tighter than
the respective similar lower estimates (1.20), (1.21), and the upper estimates (1.24), (2.4)
and (2.6). This is due to the fact that for any symmetric matrix X the quantities
9,(X,Y),9,(X,Y) in (2.48) are always nonnegative. If, in addition, all required lower
solution bounds |, are positive, theng,(X,Y)=0<0g,(X,Y)=0. Ifg,(X,Y)=0, then
X =al . The respective lower and upper bounds coincide and are equal the solution trace,
in this special case. Thus, the usage of any available nonnegative lower bounds for the
eigenvalues of the CALE solution matrix helps to improve both lower and upper existing
trace estimates.
Available lower eigenvalue bounds are used in Theorem 2.15 to make previous bounds
sharper. A lower and an upper matrix bounds are used to derive the next result for the same
purpose.
Theorem 2.16 Let

Q =AP +PA+Q=>0

Q,=AR, +P,A+Q<0

for some symmetric matrices B and R,. The solution trace can be estimated as follows:

tr(P) 21, =tr(R) + o (AS)J (m) (2.56)
oy ARTQUNE + 2r([A 1 (A)1QM +1r(Q)

1(P) <ty =U(R)+ 5 ] () (2:59)
|y~ TANQE £ 2A (A Q)

s; (AN +1



where the parameters m , m, in (2.57) and (2.59) are defined as:

_ s; (A © a :slz(A)tr(;&sQ,_), b =tr(AQ,) (2.60)

M= 2a
-b+ /b2+?2A
m = — Si . 4 s 2(Ar(CAQ,) b =trCA)Q, (261)

and A, =A -1 (A)l, A=s2(A)l - AA".
Proof. It follows that P> P, and P < R, in accordance with the suppositions and Lemma
2.1. Then, some positive (semi)-definite matrices L and U exist, such that P=P, + L and
P=R, —-U. The CALE (1.2) can be rewritten as:
A'L+LA=—(Q+AP +PA)=-Q_ <0 (2.62)
AU +UA=Q+A'R +RA=Q, <0 (2.63)

Therefore, matrices L and U are unique solutions of (2.62) and (2.63), respectively.

Consider the following based on them matrix inequalities:
nfA'LA+L>mQ,,vm >0
nf AAlUA+U >-mQ,, Vm, >0
There must exist some positive (semi)-definite matrices A, (m ), A, (m,) denoted A, A,
for simplicity, such that
MALA+L=mQ, +A, =L=mQ_+A —nfA'LA (2.64)
M AUA+U =—-mQ, +A, =>U =-mQ, +A, -nfATUA  (2.65)
Substitution of L and M in (2.62) and (2.63) leads to a new couple of CALEs
AA +AA=—Q -m(A'Q +Q A +nfA (ATL+LAA
ATA, +A,A=Q, +m (A'Q, +Q,A) + nf AT (AU +UA)A
In view of (2.62) and (2.63) the above CALEs take the form:
ATA, +A A=—(MA” +1)Q (MA+1)=-Q,_<0 (2.66)

ATA, +A A= (MA" +1)Q,(MA+1)=Q, <0 (2.67)



By making use of (1.20) one gets the following nonnegative lower bounds for the traces

of A and A,

Q) tr(A,) , Q) (2.69)
—2 (A =21, (A)

Taking into account (2.64) and (2.65) one finally gets the following expressions for the

tr(A) >

traces of L and U:
tr(nf ATLA+ L) =tr[(nf AA" +1)L]=mtr(Q)+tr(A,)
tr(nf ATUA+U) =tr[(nf AA" +1)L]=-mtr(Q,) +tr(A,)
which result in respective trace inequalitites

mtr(Q)+tr(A,)
tr(L) > L+s 2(AnT

—mytr(Q,) +tr(A,)
1+s /(AN

tr(U)>

SinceP=PR +Land P=R, —U, the next lower and upper bounds are obtained

_ mtr(Q.) +tr(A,)
tr(P)=tr(P)+tr(L)>tr(P)+ 1+s 2 (AN (2.69)

b myir(Q,) ~tr(A,)
tr(P)=tr(R,)-tr(U) <tr(R)) + 1+s 2 (AnE (2.70)

With the estimates (2.68) for the scalars tr (A, ) and tr(A, ) the trace inequalities (2.69)

and (2.70) can be rewritten as follows:

tr(Q.)
tr(P)>tr(P)+ mtr(QL)+_2l (A) =tr(R)+ ! — (M)
B 1+s /(AN T =2,(A)
wherej (m ) is givenin (2.57) and
tr(Q)
) t
tr(P) <tr(R,)+ S LS| —2,(A) _ =tr(R))+——j (m,)
=T 1+s (At V-2l (Ps) ;

andj (m,) is defined in (2.58).



The rational functions j (m) and —j (m,) are always nonnegative since Q>0 and
Q, £0by assumption and X -1 (X)I >0 for any given symmetric matrix X. Simple
computations show that that their maximal values are achieved for m andm, defined in

(2.60) and (2.61) respectively. This proves the statements of the Theorem.

Remark 2.12The lower and upper trace bounds in (2.56) and (2.58) are always tighter than
the bounds tr(R ) <tr(P)<tr(R,) for any lower and upper matrix solution bounds,
satisfying the inequalities in (2.22).

Provided that certain matrix inequalities hold the next result helps to improve lower and
upper eigenvalue bounds for the CALE solution.

Lemma 2.5 Let P_and R, denote some lower and matrix bound, respectively, for the

solution of the CALE (1.2). The following eigenvalue bounds hold for P

| (P)z 8 =21 [Q+2aR )al - A) ] @7

1 _
11(P) =&, <J1LI(Q+2bR)(bI - A) '] (2.72)
for any positive parametersa >1,(As) and b >1,(As) . If, in addition there exist positive

scalarsa “and b " such that

Q+2a’[P I, (P)I1+2 ,(R)A, >0 (2.73)
Q+2b7[R, —1,(R)IT+21,(R)A <0 (2.74)
the bounds in (2.71) and (2.72) satisfy the inequalities:
e.>1.(P), a=max[l,(A)a’] (2.75)
e, <1,(P,), b=>max[l,(A) b’] (2.76)

Proof. For any given scalar parameterp the CALE (1.2) can be rewritten as:

(pl —=A)TP+P(pl —A) =Q+2pP
Let p be chosen to satisfy the inequalityp >1,(As), which guarantees that pl — A; >0

If x is an eigenvector for P any eigenvalue of the solution matrix satisfies the equality



2 (P) = yT (! _AS)_]/Z(Q;SZ/pP)(pl _AS)_J/zy; Px = | (P)X, (p| _As)l/zx= y

and can be estimated as follows:
| [(Q+20P)(pl — A) 1< 2l (P)<I,[(Q+2pP)(pl — A))™]

If B and R, are such that B, <P <R,, then for some positive scalarsa and b satisfying

a>1,(As) and b >I,(A) any solution eigenvalue satisfies the inequalities

1 [(Q+2aP)@l - A))'1<2l (P)<I,[(Q+2bR,)(bl - A)™]
which proves the bounds in (2.71) and (2.72). The inequalities in (2.75) and (2.76) hold if
and only if (2.73) and (2.74), respectively, are satisfied. This proves the statements of the

Lemma.

2.5 UNCONDITIONAL INTERNAL UPPER BOUNDS

All known upper bounds for the CALE depend on some, more or less, conservative
condition concerning the coefficient matrix A. Motivated by this fact an approach to derive
always computable upper eigenvalue, trace and matrix solution bounds for P in (1.2) is
suggested. These bounds use only the fact that A is a stable matrix, which guarantees that

a unique positive (semi)-definite solution of the CALE exists.
Consider the Schur decomposition of the stable matrix A [49], i.e. A=U"TU , where U is

a unitary matrix and T =[t;] is an upper triangular matrix defined as follows:

Il(A)!lfIZJ
T=[t] =1t fi<j; 1 (A=—r+jw,r>0i=L.n=T=A+T (277)
0, ifi>]

where Ais a diagonal matrix containing the eigenvalues of A, and Tisan upper triangular
matrix, containing the off-diagonal entries of T. If T is real, then U can be chosen as an
orthogonal matrix. The following result is essential for the main result.

Lemma 2.6 [126] A nx nmatrix Ais stable if and only if a positive scalare <1exists, such

that Z=U"EU is a Lyapunov matrix for A, where E is a diagonal matrix with entries

g =e',i=1.,n.



Proof. Let A be stable and consider the matrix
AZE+EA=UTEU+UE’TU=UE(ET'E'+E'TE)E''U =UE"'®(e)E'U

In view of (2.77) matrix ®(e) is defined as follows:

o) =[f ], f,=f =) 20 =] 2.78
e=[f;l f;=f;= ej—itij, i< | (2.78)
This helps representing (2.78) in the form
n-1
Dd(e) =-2A+) €T, (2.79)

k=1

where A is a diagonal matrix with entries r, >0, i =1..,n, and the entries of the symmetric

matrix T, k=1.,n-1,are t;,i < J, j—i=Kk. Then ®(e) is a negative definite matrix if
and only if
~ 1o ~
D(e)=-21 + ) e"T, <0, T, = AV*T A (2.80)
k=1
or equivalently,
-1 _ n-1
2>1,0 e T)=1,[0(e)], O()=> e TA" (2.81)
k=1 i=1
where
0; =]
et ..
— i<
O(e) = [Qij] =1 ; L =t (2.82)
et
D>
r.i

It is clear that there always exists some sufficiently small positive € satisfying (2.80),or

equivalently, (2.81) which proves the necessity part.
Let £=U"EU be a Lyapunov matrix for A, i.e., f (x) = X' (A2 +ZA)x< 0, vx=#0. If x
is an eigenvector corresponding tol ; (A), then

f(x)=-2rx'Ex <0<r, >0,i=1..,n=Ais a stable matrix

This proves the sufficiency part and the statement of the Theorem.



There exist different ways to obtain € satisfying the equivalent matrix inequalities in (2.79)
and (2.80). Some of them are given in the next Lemma. Before that we need some
preliminary results.

Theorem 2.17 [49] If Xis a n x n Hermitian matrix with negative diagonal entries and

pal> 2.

L=

X i=1...n (2.83)
then X is negative definite. It is said that X is a strongly diagonal dominant matrix.
Theorem 2.18 [49] Denote |X| = [‘xij ‘] and let A and B are arbitrary nx ncomplex matrices.
If |[A[<]B, thenr (A)<r (|A)<r (B), wherer (X)=max|l (X)|is the spectral radius of
matrix X and|A[<]B means that b, > ‘aﬂ ‘ vi, j.

Lemma 2.7 Z=U"EU is a Lyapunov matrix for A if:

n-1 ~ ~
(i) 2> > e"l,(T,), where matrices T, are defined in (2.79)
k=1

(i) e <—2—

n-1

ZI 1(I-k)
k=1
(i) d(e) in (2.78) is a strongly diagonal dominant matrix, i.e.,

2r, >an“e“‘t”‘, i<j, 2r >Zn:e"j‘tij‘, i>j; i=1.,n
=

i

(iv) e <min 21,

n

P

;, where 'FS is the symmetric part of T obtained from T by setting its
-1

NN A

diagonal entries| ,(A)=0,i=1..,n.

(vi) [e.] < . e,=(e’.e™’, T=[NT,.T, leR,, .,

s,(T)

and matrices 'Fk k =1,..,n—1are defined in (2.79).



Proof.
N N

(i) Taking into account the well known inequality | 1(2 X)) < ZI (X))
i=1 i=1

it follows directly from (2.80).

(ii) If Ac H ~, then for e =1, matrix2=U"EU = | is a Lyapunov matrix for A. In the

opposite case, a solution exists ife <1. Therefore,

Sef,M)<eS (@)

since | 1(ﬁ) >0,k =1,.,n—1, and the statement is proved.

(iii) 1t follows from Theorem 2.16.
(iv) Using similar arguments as in the proof of (ii) the statement follows.
(v) Consider the inequality condition (2.81). From the definition of the spectral radius and

Theorem 2.18 one has
LS e =1 [oEN < [oEl<r (o)

In view of (2.82) one gets

|®(e)|=[‘qij‘]’ h”‘: r, ;

Let fj are the entries of 'FS .Since e <1one gets

}qij‘gfj :y Vit = |®(e)|[£]{1'|:s‘1\_1},

e Ty =1 o< r (o) <er fTfa’



in accordance with Theorem 2.18. Therefore, fore chosen as in (v), the inequality condition
(2.81) is sufficiently satisfied.
(vi) The inequality (2.80) holds if and only if

n(n-1),n

1 s ~
2>|1(Zeka):|1(TE), E=]e eZI...e”‘ll]T eR
k=1

Since | ,(X) <s,(X)for any symmetric matrix X and s, (XY) <s,(X)s,(X) for arbitrary
matrices X and Y [94], the above inequality holds by sufficiency if
2>s (T)s,(E)=s 1('I:)||ev|| >s ,(TE) , which proves the statement.

Provided that A is a stable matrix a Lyapunov function of the form =Z=U"EU always
exists for it in accordance with Lemma 2.6. Lemma 2.7 suggests several ways to compute

it. Now, let the problem be stated in a slightly different way. It is desired to determine a

positive scalar e <1such that the matrix inequality
ET'E'+E'TE+2D<0 (2.84)
holds for some chosen positive diagonal matrix D =[d.], d, <r,,i =1,..,n. Then the matrix

in (2.79) takes the similar form

c'1“>(e)=—2]i+§eka, A=[F1=[r -d],F>0 (2.85)

The problem of computing some appropriate e <1such that &)(e) in (2.85) is a negative
semi-definite matrix reduces to the application of some of the sufficient conditions stated
in Lemma 2.7.

Lemma 2.8 Let the inequality (2.84) holds for some e . The solution matrix P for the CALE

has the following always valid upper bounds:

P<P,=mUE", m, =%I (QU'EDEU) (2.86)
m
|1(P)SQJ5:I1(PUG):e_LZJ,:3 (2.87)
noq]
tr(P) <t,, =tr(PU6)=mUGZ? (2.88)
i=1

Proof. Let (2.84) be satisfied, i.e.
A (M) +(m ) A<—2mD<0, Vm,,>0, A=E'TE



Having in mind the Schur decomposition A=U TU of matrix A, consider the CALE (1.2)
pre- and post-multiplied by matrices S= EU and S’, respectively:

AP+PA=-QS =-Q, P=S, Q=, A <D<0
If m, is chosen as in (2.86), negative semi-definiteness of matrix —2%6D+6 is

guaranteed, which means that mI is an upper bound for the transformed CALE solution
matrix due to Lemma 2.1, i.e.
P<m,l < P<R,=m(SS) ' =mUEU")"=mUEU"

This proves the matrix bound in (2.86). The upper bounds for the maximal eigenvalue and
the trace (2.87) and (2.88), respectively, follow easily and this completes the proof of the
Lemma.

Remark 2.13 The bounds (2.86)-(2.88) are computable whenever A is a stable matrix. As
far as we know, these bounds are the first upper estimates for the CALE solution which do
not presuppose some additional restrictions imposed on the coefficient matrix A. Although

the matrix bound (2.86) may be a Hermitian matrix, the rest of the bounds are real. Note,
also, that the matrix bound satisfies the inequality A'P, + P,,A+Q <0, which means that

it satisfies the suppositions of Theorems 2.13 and 2.16 and in accordance with them the

respective upper solution estimates can be additionally improved in sense of tightness.
2.6 FURTHER EXTENSION OF VALIDITY SETS

Having at disposal a Lyapunov matrix expressed entirely in terms of the coefficient matrix
A is crucial for the derivation of internal upper solution bounds for the CALE, i.e. bounds
which do not demand additional procedure for the computation of T, in order to achieve a
transformed coefficient matrix TAT " with negative definite symmetric part. The
application of the singular value decomposition approach of A led to the extension of the
conservative set H ~and this fact makes possible to get various upper solution bounds in
cases when other similar estimates are not computable. An attempt to extend further this
result is made now.

Example 2.2 Consider the following stable matrix:



Ao -1 -1 A= -1 0
|1 03] "* |0 03
Therefore, A¢ H ~ and none of the upper solution bounds based on the condition Ac H ~

can’t be used in this case. Now, consider the matrix sum:

3 10] [ 4

A A—l_ -1 -1 ? 7 __? 0
TR 0.3+_£> 100, 79

7 7 70
i.e. the sum of A with its inverse is a negative definite matrix, or this sum belongs to the

set of stable matrices with negative definite symmetric parts H ~ . It will be shown how this
fact can be used to extend the set of stable coefficient matrices for which valid upper
bounds for the CALE exist.

Theorem 2.19 For any given square matrix A define the set
H,(T.a)=H,={TeR, rankT =na >0:3T,a = A+aA' e H , A=TAT }
The following statements hold:

(i)(T,a) e H, if and only if there exists some nonsingular matrix T and a nonnegative
scalara such that

P.=AT'TA+aT'T
is a Lyapunov matrix for A

(if) If H, denotes the set of Lyapunov matrices P for A, thenH, c H,,
(i) H,(1,)cH c H,(R"?,a)=H ,(R/*,a), where matrices R, R, are given in (2.2)
(iv) H,(l,a)cH,(R",a)=H,(R"a)
(v) H,(T,a)cH, (E’VZT,a) =H, (@”ZT,a) , Where matrices Iil ﬁzare given by
R =[T(A+aA )T T) (A+aA?) TT]¥2 = (AAT) V2
R =[T"(A+aA™) (TTT)(A+aA"T '] = (AT A)"?
where A=A+aA™.

Proof.

(i) Having in mind the definition of the matrix set H , one gets:



0>(A+AY) +A+aAl < 0> ATA+ ATA’ +a (A + A)
=AT(A"A+al)+(ATA+al)A
=TTAT (TTATTAT '+al)+ (T TA'T'TAT " +al)TAT
<0 0<A (AT TAT +aT ' T)+ (AT TA+aT ' T)A
=A'P.+P.A
I.e. P. is a Lyapunov matrix for A, which proves the second statement.
(ii) This is obvious, since H, = H . (P**,0) .

(iii) Consider the singular value decomposition of matrix A in (2.1) and (2.2) and suppose
that

0>A"+A+AT+A'=F'R+RF+R'F+F'R'=F'(R+R)+(R+R"YF
Therefore, F is a stable matrix in accordance with Theorem 1.6 and therefore
H,(1,1) gﬁ . Since F is normal, it is a stable matrix if and only if its symmetric part is

negative definite. The following symmetric part inequalities are valid for arbitrary given

a=0:
0>[RFR”+aR™FTRY]; =[R**(RF)R" +aR™*(FTR™)R"]
=[R"AR" +aRV’'A'R|; = H c H,(R" a)
0>[R*FR” +aR " F'R]s =[R*(FR)R" +aR*(R'F")R,*]s
=[RAARY +aR* (AR =H cH, (R a)
The statement H , (R*?,a)=H . (R}?,a)is obvious.
(iv) Suppose that there exists some nonnegative scalara , such that
0>(A+AY) +a(A+aAtl) =F'/R+R'F+a(RF+F'R"
=F'(R+aR")+(R +aR")F
Then, F must be a stable matrix, due to Theorem 1.6, i.e. Ac H . According to (iii) H
c H,(R¥*,a)=H (R a), which proves the statement.

(v) Let there exists some appropriate couple (T,a )e H . (T, a) . From the definition of the

set in (2.87) this is equivalent to the inequality[(;\+a,ZCl)]S < 0. Application of Theorem



2.1 for matrix A=A+aA™ leads to the conclusion that AeH and therefore,
R =(AAT)™ R, = (AT A)¥? are Lyapunov matrices for A, i.e.

0>[R (A+aAl)]s < 0>[R"T(A+aAHT'R¥] = (R¥T,a) e H, (R"*T,a)
Using similar arguments the fact H,(T,a)c H, (@/ZT,a) is proved in a similar way.
Corollary 2.4 The equivalent sets H . (R*?,a)=H , (RY/?,a)are not empty for a given
matrix A if and only if some nonnegative scalara exists such that

P,=A"R'A+aR", P, =A"RA+aR, (2.89)

are Lyapunov matrices for A.

Proof. It follows from Theorem 2.18, statement (i), for T = Rl’]/z,T = Ri/z, respectively.

Example 2.3 Consider Example 2.1 illustrating the conservativeness of the set H ~in

upper bounds derivation. The inverse of matrix Ais computed as:

pc 0 -c .
Alt=|c -1 —-c| c:l—
c 0 -c P

Matrix A, and consequently, its inverse, are stable for allp <1. It was verified that the
symmetric part of A is negative definite for allp <—-0.25. It is interesting to see whether
there exists somea >0, such that (I,a)e H, forp >-0.25. If this is so, the set of
parameter matrices A(p) for which upper solution bounds for the CALE is obviously

extended in this case. Fora = 0.25andp =0.7 the maximal eigenvalue of the symmetric

part ofﬂswas computed as| l(,&S) =-0.1206 . According to Theorem 2.18, statement (i),
P, = ATA+0.251 is a Lyapunov function for A in this case. In other words, while the

bounds based on the restriction Ae H ~are valid only forp <-0.25, various computable
upper solution bounds can be obtained for allp <0.7.

The result obtained in Theorem 2.19 can be further extended to get even less restrictive
conditions.

Theorem 2.20 For any given square matrix A define the set

H,(T,a)=H,={TeR, rankT =n,a >0:3T,a = A+aA' e H, A=TAT '} (2.90)



The following statements hold:
() H, <H,
(i) Denote A = A+aA™. Then, (T,a)e ﬁE if and only if some nonsingular matrix T and
a nonnegative scalara exist such that
P,=AT RTA+aT'R'T, R=(AAT)" (2.91)
P,=AT'RTA+aT'RT, R =(AT A)"2 (2.92)
are Lyapunov matrices for A.
Proof.
(i) Due to Theorem 2.1 we know that H ~ cH,ie, if(T,a)e H, , or equivalently,
A=A+aAlcH  then A=A+aA'eH ,and(T,a)eH, , by necessity.
(ii) By the definition of the set in (2.90) and Theorem 2.1 the condition (T,a) eﬁE is

equivalent to the existence of some appropriate T anda , such that Ii[l and I52 in (2.91) and
(2.92), respectively, are Lyapunov matrices for A , i.e.
0>ATR*+R'A= (A+aA) R +R*(A+A™)
—TT(A+aAY) T'R*+R'T(A+aA )T
0> (A+aA ) T RIT+T'RIT(A+aA?)
< 0> (A +al) T RITA+ ATTTRIT(A? +al)
- A(AT'R'TA+aT 'R 'T) + (AT'R 'TA+aT 'R 'T)A
— AP, +P,A
The proof for the Lyapunov matrix in (2.92) is done in a similar way.
IfT=1,and a =0thenA=A, R =RandR, = R,in (2.2) in this special case.
The set of stable matrices A for which upper CALE solution bounds are computable can be

further extended by considering the matrix sum

A=A+bAt=(A+aA)+b(A+aA ), A=TAT? a,b>0



2.7 BOUNDS FOR THE CARE SOLUTION

The presented in Chapter | bounds for the solution of the CARE (1.6) admit to characterize

briefly the estimation problem as being crucially dependent on the conditions BB > 0 for
the upper and Q > 0 for the lower estimates. Also, the derived bounds include many scalar
and matrix parameters involved in various inequalities, which makes them rather complex
and not easily computable. Motivated by these awkward facts our main purpose is to get

simpler respective bounds which hold under more realistic, i.e. less restrictive conditions.

The main difficulty in deriving bounds for the CARE solution matrix consists in the

conservative assumption that either matrix BB" and/or the state weighting matrix Q are
assumed to be positive definite (see e.g. (1.27)-(1.33), (1.36), (1.37), (1.82), (1.84), (1.100),
(1.102), (1.103), etc.). Such restrictive assumptions can be compared only to the
requirement for negative definiteness of the symmetric part of the coefficient matrix A and
positive definiteness of Q for the CALE solution estimation problem.

Having in mind Theorem 1.3, it assumed that the triple (C, A, B) is regular, which
guarantees that the solution P of the CARE (1.6) is a positive definite matrix. Also, it is
assumed that the control weighting matrix R=1 (Remark 1.1).

For any given mx n matrix K consider the CARE (1.6) rewritten as:
(A-BK)"P+P(A-BK)=PBB'P-K'B'"P-PBK + K"K - (Q+ K"K)
=(PB-K")(B'P-K)-(Q+K'K)
= S—(Q+K'K) (2.93)
where S= (PB-K")(B"P—K) . Multiplication of both sides of (1.6) by P* results in:
P1(~A-GC)" + P{(~A-GC)=P QP - P'C"G" ~GCP + GG' — (BB" + GG")
—(PCT-G)(CP*-G")—(BB" +GG")
=M —(BB" +GG") (2.94)
for any given n x mmatrix G , where M = (P'C" —G)(CP™" -G"). Using the notations
A, = A-BK (2.95)
A =-A-GC (2.96)



the modified CAREs (2.93) and (2.94) can be written more compactly as the following
Lyapunov-like equations:

AJTP+ PA, =S—-(Q+K'K),S>0 (2.97)

P'AT+AP'=M—-(BB"+GG"),M >0 (2.98)

Theorem 2.21 Consider the matrix in (2.95). Suppose that some appropriate matrix K

exists, such that A, eH . The positive definite solution of the CARE (1.6) has the

following upper matrix bounds:

P<R,=m;, _Ul’ my; :%l 1{_(Q+ KTK)( _ulAJ)_l]s}v Ry = (AJ AJ)M (2.99)

P<Ry=MaRu, My =21 f-Q+KTOMRLA) T Ry = (A (2100

Proof. Under the supposition for regularity of the triple (A, B, C) it follows that (A, B) is a
stabilizable pair, i.e. some matrix G always exists such that the close loop matrix in (2.95)

is a stable one. Also, according to the supposition A, belongs to the set of matrices with

stable orthogonal partsﬁ , Which is a subset of the set of stable matrices H . According to
Theorem 2.1, this is possible if and only if R,R,, , defined in (2.99) and (2.100),

respectively, are Lyapunov matrices for the closed loop stable matrix in (2.95), i.e.
0> ARy +RyA, =2(RyA)s © 0> ARy + Ry Ay =2(RyA))s
For the scalars m,,, m,, chosen as above, one gets:
~(Q+KK)=2m,, (RyA))s
=my(A)Ry +RyA)
= AR+ RuA,
—(Q+KTK)22m,,(RyA))s
=M, (A Ry + Ry A)
=AR, + R, A,

Matrix S(2.93) is positive (semi)-definite and therefore

S-(Q+K'K)2~Q+K'K) > AjR,, + R, A,



S—(Q+K'K)=—(Q+K'K) > AR, + R, A,
Application of Lemma 2.1 with respect to (2.97) results in the upper matrix estimates (2.99)
and (2.100), which proves the Theorem.

Theorem 2.22 Consider the matrix in (2.96). Suppose that some appropriate matrix G

exists, such that A eH . The positive definite solution of the CARE (1.6) has the

following lower matrix bounds:

P2PRy= Rl M=) {-(B8+GE)AR) I R =(AN)" (@101

1 1\
PR, =Ry, m=71,[-(BB"+GG)(AR}),"] Ry =(AA)” (2102)
Proof. The same arguments used to prove Theorem 2.21 are applied. Under the supposition
for regularity of the triple (A, B, C) it follows that (C, A) is a detectable pair, i.e. (A",C")

is a stabilizable pair, and some matrix G always exists such that the close loop matrix in

(2.96) is a stable one, in this case. Also, it is assumed that A belongs to the set of matrices
with stable orthogonal partsﬁ . According to Theorem 2.1, this is equivalent to
0> AR +R!A, & 0> AR, +R, A
where R, R, , defined in (2.101) and (2.102), obviously are Lyapunov matrices for the
closed loop stable matrix in (2.96).This also means that R, , R, are Lyapunov matrices for
A, or
0>RA +AR =2(AR)s 0> RA + AR =2(AR,)s
If the scalars m),, m, are chosen as above, and having in mind the notations in (2.101) and

(2.102), one gets:
-(BB" +GG") > 2m; (AR )s
= rn_l(RlLAT + A_Ril_)
=PyA +ARY
~(BB' +GG") > 2m,(A Ry()s

=M, (RA +AR,)



=P, A +AR;
Matrix M in (2.94) is positive (semi)-definite and therefore
M-(BB"+GG")>-(BB'+GG") >P'A" + AP
M —(BB" +GG')> —(BB' +GG") >R A + AP
Application of Lemma 2.1 with respect to (2.98) results in the upper matrix estimates for

the inverse of the solution matrix:
P~ < Pl_il =m;R,, P™< PLEI =m, sz

These inequalities imply respective lower estimates for the CARE solution P
P>R, = (mlRiL)_l’ P>R,= m:;RZL

This completes the proof of the Theorem.

Corollary 2.5 The minimal and maximal eigenvalues, the trace of the positive definite
solution P of the CARE (1.6) and the performance index J in (1.3) have the following

bounds:
1,(P)<e,, =min[l ,(R,,),1,(R,)],if A, eH (2.103)
|, (P)=e, =max[l ()|, (R, if A cH (2.104)
tr(P) <t,, =min[tr(R,),tr(R,,)], if A, e H (2.105)
tr(P) > t,, = max(tr (P,),tr(P,)], if A eH (2.106)

Proof. It follows easily having in mind that R),, R,, are upper matrix bounds for P.
Consider the singular value decomposition of matrix Ain (2.1) and (2.2). Then, the singular
value decomposition of A, in (2.95) and A in (2.96) is:
A =R,F =FRy, Ry =(AA)*, Ry =(AA)" (2107)
A =R F=FR,, R =(AA)", R, =(AA)" (2.108)
Theorem 2.23 Suppose that A, e H . Then, the maximal eigenvalue and the trace of the
CARE solution has the following upper bounds:

_ ming L@+ KTKICF] s, (A)LIQ+ KTKYERyFRy) ™y 5 100y
25 ,(A,) 2 |

1, (P)<e;,



()<t —mingTRUQ+K'K) RS Q+K'K), (2.110)
o ~21,(RyFsRy) " —21,(Fs) |

o 1 &1L [RL(Q+KTK)] " R (Q+KTK)
tr(P)stUS_mln{Sn(AJ)iZ:l: o (RLE) ,sl(AJ)iZl: 2 (RUE) } (2.111)

If A e H , then the minimal eigenvalue of the CARE solution has the lower bound:

— i 2 $n(A_)
e A [BF +GENRER) T 1[BBG T

Proof. Consider the Lyapunov-type equation (2.97) and the singular value decomposition

in (2.107). If A, e H , then application of the CALE eigenvalue bounds (2.17) for (2.97)

results in the following upper eigenvalue bounds for the CARE solution:

|(P) < min(2[CS+Q* K'K)(Fs™) s ,(A)[(-S+Q+KK)(-Ry FsRy, )y
R 25,(A) | 2

It is well known that
| (XY)<1,(ZY), tr(XY)<tr(ZY)
for arbitrary symmetric matrices X, Y and Z, such that0 < X <Z andY >0, and the bound
in (2.109) follows since S>0 and therefore, —S+(Q+K'K)<Q+K'K.

In a similar way, the trace bounds (2.110) and (2.111) for the CARE are easily obtained
when the bounds (2.4), (2.6) and (2.8) for the CALE (1.2) are applied for (2.97).
By making use of (2.108), the CARE (2.98) can be rewritten and estimated as

P'F'R, +R,FP'>—(BB" +GG")
P'R,FT+FR,P*>—(BB" +GG")
Pre- and post-multiplication by Fx’iL"]/2 and RZL]/2 of both inequalities, respectively, results
in:
(RIPIRINREFTRY) + (REFRI(RIPIR) 2 -R *(BB" +GG")R
(REPPRI(RFTRY) +(REFRI(RIPIRY) 2 Ry (BB + GGT)Ry!
Using the notations
REFR=F, R*P'R/” =R, R(BB' +GG"R* =Q

RZFRYZ = F,,RI2PRY? = B, R(BB" +GG' )R = Q,



the above inequalities can be rewritten in a compact form as:

PlFlT + Flpl 2 _Ql

PZFZT + FZPZ 2 _QZ
respectively. If the supposition A e H holds, than IES < 0and therefore, the symmetric
parts Fg, F, of matrices F,, F, are negative definite, as well. Let x be an eigenvector
corresponding to the maximal eigenvalue of B, i.e. Bx=1,(R)x and consider (2.98). It

follows that

Qe 2XT (RN (B) = 1,(R) < ¥ CFie) "QEFRI ™Y LIQCF)

2y'y 2

where y=(—F)"’x. The maximal eigenvalue of matrix P can be estimated from below
as:

1 1

L(R)=1.(RIPH) 21 (RO (P = RI(P)~ s,(A)(P)

1 _LIQEF)™'T_-1.(QFs)
si(A),(P) 2 2

_ - 1L,[R(BB" +GGT)R™*(RI’FsRi*) ]
2

_—1,[(BB" +GG")(R, FsR.) ']
2

which proves the first bound in (2.112). The second one is obtained in a similar way. This

completes the proof of the Theorem.

Remark 2.14 If there exists some matrix G such that matrix A in (2.96) belongs to the set

H , then positive definiteness of the lower matrix bounds (2.101), (2.102) is guaranteed.
Also, the minimal solution eigenvalue lower bounds (2.104) and (2.112) are not trivial, in
this case. The derived upper and lower CARE solution bounds (2.99)-(2.106), (2.109)-
(2.112) do not require the usual validity conditions, i.e. BB" >0 and Q > 0. These bounds
are based on two assumptions:

(i) the triple (A, B, C) is regular, which guarantees positive definiteness of the solution P



(i) the close loop matrices in (2.95) and (2.96) belong to the setH .
In fact, (i) is not a restriction at all. The assumption (ii) is less conservative than the

assumption (1.79) according to which some positive scalar a exists, such that
A" + A—2aBB" <0. Due to Theorem 2.1 this is possible only if A—aBB" € H , which
means that A, = A-BK € H , K=aB", andall upper bounds based on the singular value

decomposition approach are valid in this case, as well. This fact can be illustrated by the
following simple example.
Example 2.4 Let

12 . [oo] 2 1
A= , BB'= = A"+ A-2aBB' =
-1 0 01 -1 1-2a

Obviously, the condition A" + A—2aBB" <0 can’t be satisfied and the upper matrix

bounds (1.80), (1.81) are not valid, in this case. Now, consider the matrix
A, =A-aBB" = 1o
- -1 -a

which is stable for all 1<a < 2. Let a =1.5. The unitary matrix F in (2.109) is stable,
ie. A e H and all bounds due to Theorems 2.22, 2.23 and Corollary 2.3 are computable.
Remark 2.15 The lower and the upper matrix bounds obtained for the CARE are both
based on the fact that if A, e H and A cH , symmetric positive definite matrices M, and
M exist, such that

AM, +M_ A, +Q, <0, Q, =Q+K'K (2.113)

M A +AM, +Q <0, Q =BB" +GG' (2.114)
where, M, =P,,,R,, and M_ = P}, P are defined in (2.99), (2.100) and (2.101),
(2.102), respectively. It was proved, that M, and M are upper matrix bounds, for the

CARE solution and its inverse, respectively, or M,*= P, P, are lower bounds for P in

(1.6). The inequalities (2.113) and (2.114) play an essential role in the improvement of
both lower and upper CARE matrix bounds.
Theorem 2.24 Suppose that the inequalities (2.113), (2.114) are satisfied. Then, the

solution of the CARE can be bounded as follows:



P> Vi=012,.. Li:Z{ML(Z{)ufﬂgéL(@)T,w=o,1,2,.. (2.115)

and
P<U =(A) M,A, +i(Aj)TQAi,Vi =0,1,2,.. (2.116)
where
A=(A-1)NA+1),Q =2(A -1)"Q(A -1)T,Q =BB"+GG"  (2.117)
A =(A -1 MA+1),Q =2(A 1) TQA -1 Q =Q+K'K  (2118)
Mu = Puv Puz' ML = PLl’ PLZ (2-119)
Further,
L'>LY, Vvi=12,.., (2.120)
U <U.,, Vi=12.. (2.121)

where R);, R,,and B, P, are given in (2.99), (2.100) and (2.101), (2.102), respectively.
Proof. Consider the equivalent representation of the CALE (1.2) in (1.93). Leta =1.Ina

similar way, the Lyapunov-like equations (2.97) and (2.98) can be represented in an

equivalent DALE-type form as:
pio AP Ni+G <APA 40,
P=APA -S+Q, <A'PA, +Q,
where matrices A , AJ ,(5L : Q, are given in (2.117)-(2.119) and M,S are arbitrary

positive (semi)-definite matrices.
The proof is based on Theorem 2.12 and the simple fact that if X and Y are some symmetric

matrices such that
AP'A +Q <X, AIPA +Q, <Y
then
P'<XoPx2X" P<Y
If the matrix inequalities (2.113) and (2.114) are satisfied, thenM,=R,;, R, and M =

P, P, are upper bounds for the CARE solution P and its inverse P, respectively.

Therefore, the suppositions of Theorem 2.12 are met with respect to (2.97), (2.98). By



means of an appropriate replacement of matrices A, A, (5 R, R, in (2.37) by matrices

(A, A) (A, A)(Q,, Q)M M, , the inequalities in (2.115) and (2.116) actually
correspond to (2.36). The same refers to (2.121) and (2.39). Since matrices L, (2.15) are

upper bounds for P satisfying in accordance with Theorem 2.13 the inequalities
L <L,,Vi=0,12,.., the lower matrix bounds (2.114) for P satisfy the inequalities

(2.120)., which proves the statements.

Remark 2.16 Theorem 2.12 can be applied to get tighter matrix bounds for the CALE
solution. In a similar way, Theorem 2.23 suggests a possibility to improve both lower and
upper matrix bounds for the CARE solution. The only restriction in its application concerns

the existence of matrices K and G, such that the matrices in (2.95) (for the upper bound)

and (2.96) (for the lower bound) belong to the set H . This restriction is less conservative
than the usual and rather not realistic assumptions for positive definiteness of matrices BB’

and Q. If this is so, there always exist positive scalars b and g, such that the matrices
A, =A-BK=A-bBB",K =bB’
A =-A-GC=-A-gC'C=-A-0Q,G=qC",C'C=Q

belong to the set H and even to the set H - .
Corollary 2.6 Suppose that the inequalities (2.113), (2.114) are satisfied. Then, the

extremal eigenvalues and the trace of the CARE solution can be bounded as follows:

1 .(P)ze, =1, (L"), e, =e,., Vi=12. (2.122)

1, (P) <&y, =1,U,), &5 <@s., Vi=12. (2.123)

tr(L') =t Str(P)<ty,, =tr(U;), to,, 2t, ., ty, <ty Vi=12.. (2.124)
where matrices L;,U,, i =1, 2,... are given in (2.115) and (2.16), respectively.

Proof. The bounds (2.122)-(2.124) follow easily from Theorem 2.24.

Theorem 2.25 Letl,, i=2,.,n, denotes some nonnegative lower bound for the i-th

eigenvalue of the CARE solution P in (1.6). The solution trace of the CARE has the

following bounds:



Q)+, (As.P) Q) -0(AsP)

A =t <tr(P) <t A (2.125)
L (R,Q)) +0,(RyFsRy P) L (R,Q,)~6(RyFosRy. P)
2 <t =tr(P)<t,, =2 (2.126)
=1 n(RU FusRiu) —1 1(Ru FusRlu)
L (REQ) + 0, (Fos P) Lir(REQ)) - 0i(F . P)
2 <t =tr(P)<t,, =2 (2.127)

—1(Fye) —11(Fye)
where the upper estimates hold if A, e H ™ (2.125), A, eH ((2.126) and (2.127)),
and the scalarsg, (X,Y), g,(X,Y) are defined in (2.48).
Proof. Consider the modified CARE (2.97) and the associated with it matrix inequality:
ATP+PA, > -Q, (2.128)
Having in mind the singular value decomposition (2.109) of the stable matrix A, (2.95)
the above inequality can be rewritten as:
FTR,P+PR,F >-Q,
R,F'P+PFR, >-Q,
Pre-multiplication of the first inequality by R,, and of the second one by R,; results in:
RuF'RyP+R,PR,F>-R,Q, (2.129)
FTP+RPFR, >-R;IQ, (2.130)
Application of the trace operator to both sides of (2.125)-(2.127) leads to the following
respective scalar inequalities:

tr(Q,) = —2tr (A)sP) (2.131)
tr(RyQ,) = -2tr (R, FsRy, P) (2.132)
tr(R,1Q,) > —2tr (FP) (2.133)

The upper trace bounds for the CARE solution follow easily when the used to improve
trace bounds for the CALE solution Theorem 2.14 is accordingly applied. E.g., the right-
hand side of (2.128) can be evaluated as in (2.54) and (2.55), having in mind that here P

denotes the CARE solution, and instead of A; we consider now A,g. The same refers to the



rest of the trace bounds by replacing F — F, R—->R,, R —>R,,Q—>Q, and using
(2.132) and (2.133).

Theorems 2.23 and 2.24 show how lower and upper bounds for the CARE solution can be
used to improve matrix and trace bounds in sense of tightness, respectively. The statements
are based on the modified CARE’s (2.97) and (2.98). Now, a based on the CARE (1.6)

similar approach, is suggested to derive lower bound for the solution trace.

Theorem 2.26 Suppose that nonnegative scalars|. <1, (P),i =2,..,n exist. The trace of the

CARE solution has the following lower bound

b++/b?+ac

tr(P)2 = (2.134)

where

a=s/(B),b=1(A), c=g,(BB",P*)+g,(A;,P)+2s/(B)g; +1r(Q)  (2.135)

The scalars g,(BB", P?), g,(As, P) are defined in (2.48) andg, = D_Il .
=l
i<j

Proof. Consider the CARE (1.6) and the associated with it trace equality
2tr[(As)P]+1r (Q) = tr (BBTP?) (2.136)

Having in mind (2.47) and (2.48) the next trace estimations can be done:

CIAIPT= Y1, (AN (P
(AP YT (A -1, (AN (P)

> (AP + X a(A)H (A
21 (AN (P)+ G,(AP) @2.137)

tr(BB'P?) < il (BB, (P%)

i=1

_1,(BBN(PY) + Y11 (BB) -1 ,(BBNII, (PY)

i=2

<1,(BBN)r (P?)- Y11 (BB") -1 (BB

i=2



=s 2(B)tr(P?) —i[sf(B) -s /(B

=s/(B)tr(P*)-g,(BB", P%) (2.138)

Additionally,

w(P) =Y 1 H(P)=[X 1. (P -22 1 (P),(P)

i,j=1
i<j

—[r(P)F -2>1,(PI,(P)

i,j=1
i<j

<[tr(P)]’ —2ili|j

=[tr (P)I* - 2g, (2.139)
By making use of (2.136)-(1.139) and using the notationtr (P) =t, one finally gets the
following quadratic in the solution trace inequality

at’—2bt-c>0

The parameters a, b, and c are given in (2.135). This completes the proof of the bound
(2.134).
Remark 2.17 If the eigenvalue bounds I, <I,(P),i =2,..,nfor the solution P are not taken
into account the bound (2.134) is equal to the lower trace estimate (1.35). In the opposite
case, (2.135) is tighter than (1.35) for all appropriate matrices A, B and Q. This fact
illustrates the advantage of using available solution bounds in the estimation process.
Finally, lower and upper bounds for the CARE solution can be applied to estimate the

performance index J (1.7). For any lower and upper matrix bound one has

X P X =J <J <], =xP,x VX =0

2.8 THE CASE TAT ‘e H "~

Motivated by the fact that upper bounds validity depends crucially on the conservative

condition Ae H —, an attempt to overcome this difficult problem in solution estimation was



firstly made in 1997. It was suggested in [30] to replace the condition for negative
definiteness of the symmetric part of the coefficient matrix Ain (1.2), with a less restrictive
one. i.e.,, TAT e H ~, for some nonsingular matrix T which needs to be computed. The
nonsingular transformation preserves the eigenvalues of matrix A, but it changes the
eigenvalues of its symmetric part. Finally, due to Theorem 1.6, the desired property for the
transformed matrix A can always be achieved. As a result, the upper trace and maximal
eigenvalue solution bounds (1.53)-(1.55) were obtained.

Our purpose is to show that if such an approach is applied, respective based on the singular
value decomposition approach computable upper bounds for the CALE can always be

obtained, as well.
Suppose that TAT * = Ae H ~, for some matrix T and consider the modified CALE (1.52).
All upper scalar and matrix upper bounds for the CALE solution hold, if Ac H . In the
opposite case, i.e. Ag¢ H , one has AcH , in accordance with Theorem 2.1. Having in
mind (2.1) and (2.2) the transformed matrix can be represented as:

A=USV' =RF =FR,, R = (AA")"?, R,=(ATA)*?
Then, the CALE (1.52) is rewritten as:

FTRP+PRF =-Q
or,

RETE+PER, =-0
where the transformed solution P and right-hand side matrix C~) are given in (1.52). Various
based on the singular value decomposition approach lower and upper, scalar and matrix
bounds can be derived for the solution of the transformed CALEs and using some suitable
estimation technigues they can be used to obtain respective bounds for the CALE solution
(1.2).
As it was already said, such a transformation based estimation approach may result in
serious problems concerning the computational complexity. This is the main reason why,

our main purpose is to extend the bounds validity via the derivation of internal bounds
(Definition 1.4).



CHAPTER THREE

BOUNDS FOR THE DISCRETE-TIME EQUATIONS

3.1 THE SINGULAR VALUE DECOMPOSITION APPROACH

As far as upper bounds are concerned, the main difficulty in the estimation problem for the
DALE solution consists in the rather conservative assumption that the spectral norm of the
coefficient matrix in (1.9) is less than one. It may be compared to the assumption that the
symmetric part of the stable in continuous-time sense matrix A is negative definite. An
approach to overcome to a certain extent this shortcoming for the CALE bounds was
suggested in the previous chapter. The extension of the set of stable in discrete-time sense
matrices for which upper bounds for the DALE solution are computable, will be

investigated now.

Consider the singular value decomposition of an arbitrary n x n matrix Ain (2.1) and (2.2).

If A is stable in the continuous-time sense, then positive definiteness of matrices
R = (AA")*?, R, = (A" A)is guaranteed. Since a stable in the discrete-time sense may be
singular, then R, R, are positive (semi)-definite matrices, in the general case. Having in

mind this and (2.1) the singular value decomposition of the coefficient matrix in the DALE
(1.9)is

A=UsV', UUT=WT"=| (3.1)

Z_ E‘r Or,n—r (32)
| 0, O '

wherer =rank(A) <n and the diagonal matrix =, contains the r positive singular values

of A. Consider the accordingly partitioned orthogonal matrix



F,eR

n-r,r!

F,eR (3.3

rn-r,' n-r

F, F
F:VTU:{ 1 12} FeR, F,eR
21

22

Define the matrix sets:
S ={A AcR, det(A-11)=0= | <1}

={A AcR, s, (A<}

S ={A AcR, :s,(E’FE) <1}

—

where the r X r matrices =, and F, are given in (3.2) and (3.3), respectively. Sis the set of

stable matrices, S 'is the set of matrices with spectral norms less than one and S is anew
matrix set, which shall be extensively used to get less restrictive validity conditions for the
upper solution bounds.

Define the matrices

~ ~ = 0
@, =UzUT, zl{ T } r,>0 (3.4)
On—rr r.l In r
<~ \ /T - Er Or n-r
®,=VZV', 3,= L 1, >0, (3.5)
On—rr rl2|n—r

Theorem 3.1 The following statements hold:
(i) S'cS
(i) AcS ,ifand only if some positive scalars r, r, exist, such that ®;*, ®,are Lyapunov
matrices for A.
Proof Suppose, that Ae S, or equivalently, s,(A) =s,(Z,) <1. Since F is an orthogonal
matrix, its spectral norm is equal to one, which means thats,(F;) <1, by necessity. The
spectral norm of matrix Z¥?F,,="?can be evaluated as follows:

s, (B F,EY%) <s,(8,)s,(F,) <s,(8,) <1

Therefore, AeS’ only if AeS , which proves the first statement.

Suppose that some positive scalar r ; exist, such that (3.4) is a Lyapunov matrix for A, i.e



0> AP A-D o | > DVATDADY? <155, (A), A = OV2ADY?
Taking into account (3.2)-(3.4) one gets:
A =UZ, YUTUSVTUS Y UT = ug, VsRs Y UT

—1>s,(A)=s,E, *sFL*)

22 0 [ = 0 2 0
=S r r,n-r r U = r r.n-r
l( 0n—r,r r.:L_lln—r 0n—r,r On—r } 0 rl )
=7 0, ] =" o,
:51( ’ }F ' })
_S( E“]I’/2 0r,n—r Fll F12 Elr/2 Or,n—r )
' _On—r,r On—r I:21 I:22 On—r,r rlln—r
(=V2F BV

—12
PCM G

:Sl( 0 or :|):Sl(rl)

n—r,r n-r

Since s,(I;) <1< 1 ,(I'T;) <1, one finally has

V2 =Y2 =12 —12 = T—1/2
1 | FFT _l —r Fll‘—‘r r1‘—‘r F12 ‘:‘]r/ I:111—‘:‘1/ 0r,n—r
S =1, T uS Qe
n-r,r rFLE 0

n-r

12=r r,n—r

0n—r,r 0

n-r

=2 = ETsY2 | » 212 T1/2
—| ({djr/ Fllc‘rFllzjr/ +r1‘:‘]r/ R, =2 0 })
=

=1, (BY’F, 2 FlZ¥%) =s 2(2Y*F 2¥*) <1

11=r 11=r
s, (B FE?) <1
which proves the necessity part of statement (ii) for ®;*.
Now, consider the case in which ®,(3.5) is Lyapunov matrix for A, i.e
0>AD,A-D, < | >0V AD,ADY2 < 1>5,(A), A = D2 AD,Y?
Having in mind (3.2), (3.3) and (3.5) one gets:
A =VE, 'V TUSVVE, YAT = Vs, Fss, VAT

—1>s,(A)=5s,(E,"*F2, %)

(3.6)



M =12 1T 7 = ——1/2
=S( ‘z‘lr/ Or,n—r F ‘:‘r Or,n—r ‘:‘r]/ 0r,n—r )
"o rl 0., O, A,

n—r,r 2'n-r |

r rnrop
0 r 2I n-r_| 0n—r,r On—r

=5 (_ E‘]r/2 0r,n—r Fll I:12 E‘]r/2 Or,n—r )
o O r I I:21 I:22 On—r,r On—r

n-r,r 2'n-r

=5(

[ =12 T [ =y2
‘:‘1/ 0 :‘lr/ Or,n—r:|)

(2Y?2R EY? 0
_Sl( 1%_ rynr})zsdrz)
L r 2|:21“‘]r/2 0n—r

Since s,(I;,) <1< |, (I, T,) <1, one finally has

EVFIEY 1 ,EVF) | [EY2F,EY?
1> | l(FTF )—I 1(|: r 11 2 21:| |: 171 Oryn_r:|)

0, 0., r,F,="% 0,
. (rﬁﬁ[: F2Y2 41 22Y2F) F, 5Y2 omr}) a7
! 0 0 '

=1 1(H1/2 FII: 11:1/2) S (—1/2 Fll:‘l/z) <1
os,(BYFE?) <1
which proves the necessity part of statement (ii) for @, .

Suppose that Ac S, i.e
1(H]/2 Fll:l/z) <l= Y = E‘lr/2 Fllgr FIIE]r/Z < If

r—]/2 H]/Z _:]/2 T :!]/2
l(‘—‘ Fll‘—‘ )<1:>\Pz_h‘r I:11‘—‘rF11‘—‘r <Ir

and consider (3.6) and (3.7). Obviously, there always exist some positive scalarsr, r,,

such that
| >W, +r EV°F,F 2" (3.8)

| >, +1 [E°F F,EY (3.9)

These inequalities guarantee that
s, (D, ADY?) <1, s,(DPYAD,Y?) <1



Therefore, ®;*, ®, for r, r, satisfying (3.8) and (3.9), respectively, are Lyapunov
matrices for A.

Lemma 3.1 The following statements hold:
(iYAeS ', onlyif @', ®,in (3.4), (3.5) are Lyapunov matrices for some r ,, r , satisfying
(3.8) and (3.9)
(ii) AeS ifandonlyif | (RR,) <1where
R=(AA)"?, R =(ATA" (3.10)
(i) LetAeS . Ifthe positive scalars r,, r ,are chosen to satisfy the inequalities
RPRRZ+r1/R <l < ,[R(R+r/1)]<1 (3.11)
RPRR?+rR <l < 1,[R(R +r21)]<1 (3.12)
then, ®;"and @, are Lyapunov matrices for A

(iv)If Ais a nonsingular matrix belonging to the set.S* , then R, R, in (3.10) are Lyapunov
matrices for it.
Proof. Statement (i) follows from Theorem 3.1.
(if) Having in mind (3. 1)-(3.3) and (3.10) consider the matrix
R2RRZ =Uz?UTVvEVTUSYUT =USY’FTsFzYU "
=1,(RR) =s/(="*Fz")

=3 2( E“lr/2 0r,n—r Fll F12 E‘]r/2 Or,n—r )
' 0n—r,r 0n—r FZl F22 0n—r,r On—r

2512 (E]r/2 FllE]r/z)
Therefore, if A belongs to the setS , it follows that s 2(Z2F,,Z"?) =1,(RR,) <1and vice

versa

(iit) Suppose that for some positive scalar r , one has:
| > RPRRY? +1 /R, =Vx"A/TUZU VAT 4+ r AVzVT
o1 >2ATUZUTVE 41 23

=3V FIFTEY? 41 22



(=12 = =Tvy12 2
:‘r Fll‘:"r I:1lzr + r‘l‘:‘r Or,n—r
n—-r,r

(EY?F B RISV 4 BEVPE R Y or,n_,}

2
on—r,r

—1/2 —1/2 —1/2 — —_
]/ F j/ rl‘:‘]r/ F12:| |: 1/2|:111—h‘1/2 Or,n—r:|

— 1=y
T—=12
0 O —r r Flzh‘]/ on—r

11=r

VR EY? r BYVR,
<:>1>sl({ )
Y2
r

—g ( = r n-r F11 F12_ Eyz Or,n—r )
! 0n rr 0n—r FZl I:22 0n—r,r r.1In—r
=20 =20,
=S,4( - F )
_On—r,r On—r _On—r,r s I n-r
:;]/2 0r n—r E‘r Or n—r :]r/2 Or n-r
=Sl( 0 a4 F )
L “n-r,r 1 l L On—r,r On—r On—r,r r 1 I n-r
%0, | = 0 =¥2
=s l(U r j]jnfl' U TU r r,n-r VTU r
0n—r,r I 0n—r,r n—r On—r r
=S 1(CI)1_]/2 Acpi/z)

< A0 A-D <0
It follows that &;"is a Lyapunov matrix for A, in this case. Now, let
| >RPR R +r2R =UZ"UVaVTUZYUT +r2UzUT
o1 >ZVPFTEFEY 412y

=2ETe 12 2=
= Fll‘—‘rFler +r.Zh‘r Or,n—r
0n—r,r n-r
:1/2 Te 1/2 2:-]/2 T :]/2
= Fll‘—‘rFllzr +r2‘—‘r I:21F21‘—‘r Or,n—r
On—r,r Onfr



n-r,r n-r

=y2ET=12 —2eT ] = _
:|::‘]r/ Fll‘:‘]r/ I’zz]r/ F21:| |::‘]r/2|:ll‘:‘]r/2 Or,nrj|
—1/2
0 0 r,F,="% 0

EVRE? 0
©1>Sl(|: r lij;z r,n—r :|)
M=y 0

n-r

=S ( E]r/z or'nir Fll Flz E]r/z Or,n*r )
! On—r,r r2|n—r F21 I:22 0n—r,r 0n—r

=s, (DY AD,Y?)
& AD,A-D,<0
which proves that @, is a Lyapunov matrix for A, in this case.
(iv) IfAeS’, ie. AA =R <l & A'A=R’ < , and in addition A is a nonsingular
matrix, then r = rank(A) =n and
=% ,®, =R, 0,=R o R<l &R <I
Consider the following inequalities:
AR'A-R*=(VEUT)US UT)UEVT) - R*
=(VEV)-R'=R,-R’
=R -R’
<I-R*
<0

and
AR A-R <AA-R,
-R-R
=R*(R - R

<0



This proves the statement.
Remark 3.1 Theorem 3.1 and Lemma 3.1 can be viewed upon as corresponding to

Theorem 2.1 for the discrete-time case. They show how the conservative set S’ can be
extended to the setS . Also, a natural accordance between the sets H ™, H (continuous-
time) and S’ S (discrete-time) exists, i.e. H~ corresponds to S”, H corresponds to S,
and H cH , S’ gf. The extension of the matrix set for which computable upper
bounds for the DALE solution exist is based on the fact that if the coefficient matrix A in

(1.9) belongs to the setS , then easily computable Lyapunov matrices exist for it.

Example 3.1 Consider the stable matrix

Op O
A=l0 0 05| 1,,,(A=0, s, (A =max(p|0.5)
00 O

If |p| >1, then s (A) >1and none of the upper bounds (1.39), (1.42) is computable. The

application of the upper bounds (1.65)-(1.68) requires an additional computational
procedure (see (1.63)). The next table illustrates how the parameter p influences the

singular value of A and the eigenvalue of the matrix product RR, .

P [ s,(A) |[1,(RR)
4 4 1

3 3 0.75

2 2 0.5

1 1 0.25
0.25 0.25 0.125
0 0.25 0

Table 3.1 Dependence of s, (A) and | ,(RR,)on p

It follows that A S is satisfied for|p| <1, while AeS , forp|<4.



3.2 BOUNDS FOR THE DALE SOLUTION

3.2.1 TRACE BOUNDS

The significance of the singular value decomposition approach in getting less restrictive
conditions for the validity of various scalar and matrix upper bounds will be illustrated.
Before that, consider the following result.

Let X be a Lyapunov matrix for A. Then, one has:
ATXA- X <0< 1>s,(XY2AXY?)

=s (X VPATXY?)

o AXTTAT - X <0 (3.13)
Therefore, X is a Lyapunov matrix for A, if and only if X is a Lyapunov matrix for A" .
Remark 3.2 In what follows, it is assumed that under the condition Ae S , the parameters
r,, r,are chosen to satisfy the exact conditions (3.8), (3.9), or the sufficient conditions
(3.11), (3.12) , respectively, i.e. ®,, ®, givenin (3.4), (3.5) are Lyapunov matrices for the
coefficient matrix A.

Theorem 3.2 Suppose that Ae S . The trace of the DALE solution (1.9) can be bounded

from above as follows:

r(P) <t,, = min(— () r(®,Q (3.14)
v | (@, - AD,AT) | (D' — AD,'AT) '

Proof Due to Theorem 3.1, AeS if and only if ®;*, @, are Lyapunov matrices for the
coefficient matrix A for some positive scalarsr,, r ,. By making use of (3.13), one gets

AD, A" -®, <0

AD;'AT - D' <0
Now, consider the DALE pre-multiplied by @, , i.e.

®,A'PA-O,P=-,Q
and by @' :
®,'ATPA-D,'P=-d,'Q

Application of the trace operator to both sides results in:



tr (®,Q) =tr[(d, — AD,A")P] (3.15)
>| (D, — AD,A)tr(P)
which proves the first bound in (3.14), and
tr (®,'Q) =tr[(®," — AD,'A")P] (3.16)
> (D, - AD,AN)tr (P)
and the second bound in (3.14) follows.

Theorem 3.3 Let AcS . The trace of the DALE solution (1.9) has the following upper

bound:

n n 1
) e o MU e e
where @, @, in (3.4), (3.5), are Lyapunov matrices for A.
Proof AcS ,ifand onlyif ®;*, ®,are Lyapunov matrices for A. Consider the DALE (1.9)
pre- and post-multiplied by CI>]1/2
— Y’ Qd;? = Y ATPADY? — O PDY?
= (O} AT, ) (@) PO}?) (@ AD}?) - )P
=A'RA-R (3.18)
and by @,"?
~0,Y°Qd," = 0,V A'PAD,Y - @,V Pd,"?
= (@, ATD°)(@;Pw; ") (@3 AD, ) - 0P,
=A'RA -P, (3.19)
where A = @YADY and A, = Y2AD;Y2. Note, thats (A) <1, ands,(A) <1, which
makes possible to apply the estimates in (1.65), (1.67) for the modified DALEs (3.18) and
(3.19), which leads to the bound in (3.17).
Theorem 3.4 The trace of the DALE solution has the following lower bounds:
tr(P) >t , = max(,, t,, t;) (3.20)

where



__ wr(@Q) _r(9,'Q) PN i
@, AL A (@) ADAT) t~°»—”{§[A(A) 1Q}, k=01,..

Proof The left hand-sides in (3.15) and (3.16) can be estimated as follows:
tr (@,Q) =tr[(®, — A®,A")P]
<I,(d, - AD,A)Htr (P)
and
tr (0,'Q) =tr[(®,' — AD,'A")P]
<1 ,(D;' — AD,ANtr (P)

and the first two bounds in (3.20) are proved. Having in mind (1.10), the third one follows.

3.2.2 UPPER EIGENVALUE BOUNDS
The singular value decomposition approach can be applied to derive bounds for the

maximal eigenvalue of the DALE solution matrix under relaxed validity constraints.

Theorem 3.5 The maximal eigenvalue of P in (1.9) has the following upper bound:
I (P) < gy =min(u, Uy, u,) (3.21)
u=1,[QU-A"A"], AeS’

1L [Q(@ - AT A
° |, (®,)

u, =1,[Q(®, - Aqu)zAz)il]l (@), AeS

Proof Suppose thats,(A)<1, let x be an eigenvector corresponding to the maximal

, Ae§

eigenvalue of P and consider the DALE (1.9) pre- and post-multiplied by the vectors X', X,
respectively, i.e.
X"Px=1,(P)x"x=x" ATPAX+ X" Qx
<1, (P)x" A" Ax+ X" Qx

=X (I - A"A)X ,(P) < X' Qx

SN P
X (I —A Ax



T o-12~c-1/2
=M,S=(| ~ATA),y = S¥x
y'y

<1,(QS™),vx=0
This proves the first bound in (3.21).
LetAcS , i.e. @', ®,are Lyapunov matrices for A. Having in mind, thatsl(;‘l) <1, and
S 1('&2) <1, application of bound u, for (3.18) and (3.19) results in the following bounds for
their solution matrices I5l F~’2 ;
1,(R) <1,[0V2QDY(1 - ATA)™]
=1,[QP}(1 - ATA) @}’]
=1 {QIo,*(1 - ATA)®,**T}
=1, [Q(@," - A'D,"A)7]
and
(R < 1,[0;°Q0 (1 - ATA) ]
=1,[Q@, (1 - A/A) "0, *]
=1 {QIo¥*(1 - ATA)DYT}
=1,[Q(®, - AD,A) ]

The maximal eigenvalues of I51and F~>2 can be estimated from below as:

LB =L@P)21,@)(P), 1,(E)=1,@ P>, @), = g))

and the respective bounds in (3.21) are proved.

Remark 3.3 Theorem 3.4 can be generalized for arbitrary positive definite matrix T, such
thats,(A) <1, where A=TAT , i.e. T2is a Lyapunov matrix for A Consider the
modified DALE (1.64) and the applied for A and Q replaced with Aand (5 =TQT , bound
u, in (3.21), which results in the following estimate for the maximal eigenvalue of
P=TPT in (1.64) and P in (1.9):

(I - ATA)™]
1.(T%)

hﬁwgh@u—ﬁhﬂ:ﬂngWQ (3.22)



The upper bound (3.22) for the maximal eigenvalue of the DALE solution P is tighter than
the bound in (1.65), since

QU - AR <1, @) 10 - A A= - W

Ifs (A) <1, then for T = I, one has A=A, and the bound u in (3.21) is obtained. This
estimate is tighter than the similar bound in (1.39).

Corollary 3.1 Let A be a nonsingular matrix belonging to the setS . The trace and maximal

eigenvalue of the DALE solution can be estimated as follows:

—mi tr(RQ) tr (R;'Q)
tr(P)StU?,_mln(I n(Rl—ARlAT)’ I n(Rgl—ARglA)) (3.23)

(! [QR-AR'A]
(A

where R = (AAT)Y? and R, = (A" A)¥2.

1,(P) <, =min S (ALIQR, -A'RAT])  (3.29)

Proof Having in mind (3.1), (3.2), (3.4) and (3.5), if Ais a nonsingular matrix, one has
r=rank(A)=n, & =R, ®,=R,
In accordance with Theorem 3.1, Lemma 3.1 and (3.11), it follows that R, R, are

Lyapunov matrices for A, or, equivalently, R, R;*are Lyapunov matrices for A". Bounds

(3.23) and (3.24) follow from the respective estimates (3.14) and (3.21), when the non-

singularity of A is taken into account.

3.2.3 MATRIX BOUNDS
Theorem 3.6 Suppose that Ae S’ . For arbitrary p=12,..,a,q=0.12,..., the following
statements hold:

(i) the DALE solution matrix has the following upper bound:

1

m(Ap) AP]-5S(a,q) (3.25)

P<R,—Q+|, QLI (A) A +

S(a,q) = A(a) + Q(a) (3.26)



A@ =1L QY T IAT AN, Q=S (A A (327
AA:Sf(A)I_ATA, AQ=|1(Q)I_Q (3.28)
(i Rup <R ps VP

Proof Having in mind (3.28), the solution of the DALE (1.10) can be rewritten as follows:

P=§;(N)TQA‘

=Q+§;(A‘)TQA‘
=Q+|1(Q)2(N)TN—2(N)TAQN
=Q+|1(Q)iZ:‘,(A‘)TA‘ -Q()

= Q1L QUXIA) AT+ (AT + 3 (A) ATA}-Q() (329)
Consider the matrix
()T A = (AT ATAA)
=S (AAHT (A - (AH)TA A
=5 (A(A)(A2)=s (A(A)TAAZ—(AT)TAA

=S (A =) s (A AN (3.30)

s=0

Substitution of (3.30) into (3.29) results in:

P=Qu 1 (QULIAY AT+t 352 (ALY (A)T =35 s 259 (A )" 4,47} -Qo)

=Q+l 1(Q){_pZ_:[(/°~i )" AT+ 1+ is £ (A1(A)(A")} = Aeo) ~Q(w0)

= Q1L QETIA) AT+ Y 2 (WA (A1}~ S )

It is well known, that for any given scalar g, g* <1, one has:



> g¥ =1+9°+g" +g° +....=
i-0 1-9

Therefore, the solution of the CALE is given by:

2

P= Q+|1(Q){Z[(A') Al+— L oz A A S

The matrices in (3.28) are positive (semi)-definite, which makes possible to estimate the
sum S(oo0,) in (3.26), (3.27), as follows:

S(o0,0) = A(0) + Q(0) = S(a, q) = A(a) + Q(q)
for arbitrary finite integersa=0, 1,..,and g =0, 1, .... This proves statement (i).
Consider the difference matrix:
_ _ 1 _ _
Ri.p =R =1 QLA A +m[(Ap)T A” —(A")T AT}

1

ATA-1)]AP
“SIA )( )]

=1L (QA™ )T 1

_ Q) At
- 1(A)[AAs(A)l]

__ L@
1-s} (A *

<0

=R, —PUYHSO

P
This proves the second statement of the Theorem.

Theorem 3.7 Suppose thats 1(;&) <1, A=TAT, for some positive definite matrix T. The
solution of the DALE (1.9) has the following upper matrix bound:

1 PMTT-2AP71_ @

P<R,,=Q+1, @I (A)T A
forallp=12,...,a,q=012,.., where (5 =TQT and
S(a,0) = A(@)+Q(q) (3.32)

_ ~ a i-1 _ _ _ -
A@)=1,(QD D s HTIAN AN, A =si(AT?-AT?A (3.33)

i=1 s=0



— a . R . — ~
Q(a) =[D_(A) A,AL Ay=1,(QT7-Q (3.34)
i=1
Proof. Consider the modified DALE (1.64). Ifsl(,&) <1, then application of the bound
(3.25) for the solution P=TPT in (1.64) results in the estimate

%/&(/‘&pf A%]-5(a.q)

P<R,=Q+LQILAY A+

where

S(a,q) = A(@) +Q(q)

A@)=1,@QY s IR RAY, Gla)= () BeA

Az=si(AI-ATA, As=1,QI-Q

Since, A' = T*A'T, Vt = 0,1,.., we obtain the transformed matrices

a i-1

A@) =1, QT s 9 (A A, AT

Q@) =TIY(A) BATT

where A,, A, are given in (3.33), (3.34), respectively. Then,

- - - pt , ~
P=TPT <R, ,=TQT +I l(Q)T[Z(A‘)TT*ZA' +%(AP)TT*2AP]T -S(a,0)
' i=1 1_51 (A)
Finally, the DALE solution matrix P is estimated as:
_ ~ _ _
PSR, =Q+1, QLY (A) T?A + — (A" T*A"]-S(a.q)
’ i=1 1_51 (A)

where the positive (semi)-definite matrix S(a,q) is given in (3.32)-(3.34). This proves the

upper matrix bound (3.31).
Remark 3.4 Consider the upper matrix bounds R, (1.68) and R, ;(3.31). For p=1, and

a=qg=0,onegetsR, =R, ,. Inaccordance with statement (ii) in Theorem 3.6, it follows

thatR, >R, ,,Vp>2,va q=0.



Corollary 3.2 Suppose that Ae S and consider the bound in (3.31)-(3.34). The DALE

solution matrix has the upper bounds
PSPUl,pzﬁu,p’ T =0, (3.35)

P< PUZP=E T?=0; (3.36)

bt
for arbitrary p=12,...,a,0=0,12,..., where the upper bound Epis given in (3.31), ®;*
(3.4) and @, (3.5) are Lyapunov matrices for A in accordance with statement (iii) in
Lemma 3.1. Also,

RipSRuips R2pSR2p0 VP (3.37)
Proof. Under the supposition that A belongs to the setS , and having in mind Lemma 3.1,
it follows that ®;*(3.4) and ®, (3.5) are Lyapunov matrices for A, i.e.

s, (A) <1, TIAT, T=0¥, T=0,"

The bounds (3.35), (3.36) and the matrix inequalities (3.37) follow from Theorem 3.7,
when applied for T = @Y% T = ®,"?
Theorem 3.8 [118] If AcS , the following upper matrix bounds for the DALE solution
hold:
<R =m,®@ m, =1,[Q@" - A0 A7 (3.38)
<R,=m,D,, m,=,[Q®,-ATd,A™M] (3.39)
where the matrices @;"(3.4) and @, (3.5) are Lyapunov matrices for A in accordance with
statement (iii) in Lemma 3.1

Proof. Under the supposition that AcS , the matrices in (3.4) and (3.5) can be always
chosen to satisfy the inequalities:

ADA-D <0, AAD,A-D, <0
Consider the positive scalars m,;and m,,in (3.38) and (3.39), respectively. From their
definition it follows, that
my,l = [@;" - ATO Al Q[ — ATD T A

= my,[®; - A0 'A1>Q



=0>Q+ AT(%l‘DIl)A— (%1(1)[1)
=Q+ ATRJ3A_ Ris

and
e [(Dz - ATquA]_MQ[q)z - 'A‘T(Dz'a‘)]_]/2

3

= m,,[®, - AD,A1>Q
=0>Q+A (m,D,)A-(m,D,)
=Q+ AR A-R,
Consider the DALE (1.9) rewritten as:
A (R~ P)A=(R);—P) =Q+ AR, A-R,; <0
AT (R~ P)A- (R, ~P) =Q+ AR ,A-R,, <0
From Theorem 1.8 it follows that
R,-P>0, R,-P>0

This proves the bounds in (3.38) and (3.39).

Corollary 3.3 The maximal eigenvalue and the trace of the DALE solution have the
following upper bounds:

l.(P)<&ys,=1.(R,), VP=12..,va,q=012.. if AcS’ (3.40)

1,(P) <&, ,=min{l ,(R.,). 1 (R,,)}, VP=12,..,Va,q=012.. ifAcS  (3.41)

tr(P)<t,,,=tr(R ,), vp=12..,va,q=012.. if AcS' (3.42)

tr(P) <tys , =min(ty, ,, t,7) (3.43)

tr(P) <ty , =min{tr(Ry, ), tr(Ry, )}, VP=12...,Va,q=0L2.. if AcS  (3.44)

tr(P) <t,, = min{tr (R,,), tr (R, )} ifAcS  (3.45)

where the upper matrix bounds R, ,, Ry, ,, Ry, ov Ris Ry4, for Pin (1.9) are given in (3.25),

(3.35), (3.36), (3.38), (3.39), respectively.
Due to (1.10), the DALE solution matrix can be estimated from below as:

k
P>F = Z(AK)TQAK, vk=0,12...
i—0



If Q=C'C is a singular matrix, but (A, C) is an observable pair, then P is the unique
positive definite solution of the DALE (see Theorem 1.4). This condition is equivalent to
0<Q+AQA+(A) QA +..+ (A" QA =R,

Therefore, the solution P can be always bounded from below by a strictly positive definite
matrix R_,withk <n-1, inthis case. Also, using this lower bound, the minimal eigenvalue

of P has the nontrivial lower estimate

(P =e,=I,(P,), B, >0 k<n-1 (3.46)

The bound R_, is actually used to get the lower trace boundt; in (3.20).

3.3 IMPROVEMENT OF BOUNDS

Under some condition there exists a procedure via which any upper matrix and scalar
bound for the DALE solution can be improved in sense of tightness.

Theorem 3.9 Suppose that there exists a matrix R, , satisfying the inequality

A'R,A-R, +Q<0 (3.47)

Then, for any i =1, 2,... one has:
U <U, (3.48)
P<U, =(A)" +Z(A') QA (3.49)

Proof. Denote A;; , =U,-U,,,i=12,..,U,=R,, and consider the difference matrix

= (A) +Z(A‘) QA — (AT Z(A') QA

—(A) R A — (A7) RA™+(A) QA"
= (A" [ARA-R, +QIA”
<0

This proves the inequalities in (3.48). Now, if the inequality (3.47) is satisfied, then the
DALE is rewritten as

A'(R,~P)A-(R,~P) =Q+ A'R,A~R, <0



Having in mind, that A is a stable matrix, this is possible only if P<R, =U,. From the
DALE (1.9) one gets:
P=APA+Q
= P<A'RA+Q=U,
= P<AUA+Q
=(A)'R,A*+ A QA+ Q=U,

This proves that U,, i =1,2,... is an upper matrix bound for the DALE solution.
Corollary 3.4 Let (3.47) holds for some symmetric matrix R, . The maximal eigenvalue

and the trace of the DALE solution have the bounds

1.(P) <&, =1,U,),i=12,.. (3.50)
tr(P) <ty =tr(U,),i=1,2,. (3.51)
with
€4 S =12, (3.52)
tye; Stugiai =1 2,... (3.53)

Corollary 3.5 Let AesS . For any given positive integer i, the DALE solution matrix, its

maximal eigenvalue and its trace have the following upper bounds:

P<U, =(A)'R,A +iZ_1:(Aj)TQAj, U, <U, (3.54)
P<U, =(A)'R,A +iZ_1:(Aj)TQAj , U, <U, (3.55)
I, (P) <&y, =min{l (U, ), 1,(U,)}, &5 <€si4 (3.56)
tr(P) <tyo; =min{tr(U, ), tr(U, )}, tyo; <tyois (3.57)

where matrices R),, R, are given in (3.38), (3.39), respectively.



Proof If AcS , the upper matrix bounds (3.38) and (3.39) for the DALE solution satisfy
the inequality (3.47). In other words, R,;, R, meet the supposition made in Theorem 3.8
and the inequalities (3.49) hold for R, = R,,, R,,, which proves the matrix bounds (3.54)
and (3.55). Then, the scalar bounds (3.56) and (3.57) follow.

It has been shown how upper matrix bounds can be improved in sense of tightness. As a

consequence, such an improvement can be achieved for the maximal eigenvalue and the
trace bounds. Moreover, all upper bounds based on the condition AeS are less

conservative, with respect to validity requirements, than the ones requiring A S’ .
The next results illustrate another approach for improvement of upper trace bounds for the

DALE solution matrix.

Theorem 3.10 Let R, be a symmetric matrix satisfying the inequality (3.47) and some
nonnegative scalars |, <I,(P),i=2,..,n exist. The trace of the DALE solution has the
upper bounds:

tr(Q+A'R,A-R))

1(P) Sty =R+~ S (3.58)
tr(P) <ty = (Qiiglz((AAA)T’ P ifAcS’  (3.59)
r(P) <ty - PGP ADALP) oy & 3

| (D, — ADA")

-1 =) 1 AT
tr(P) <t,,, = Dz Q|) (q?{ququ)ﬁi)z AP it aeS (3.61)
n 2 2

where the positive scalar g,(X,Y) is defined in (2.48).
Proof. If R, satisfies (3.47) it is an upper matrix bound for P in (1.9), or, some positive
(semi)-definite matrix A, exists, such thatP=R, —A, and (1.9) is rewritten as:
ATA,A-A, =Q+ AR A-PR,
Application of the trace operator to both sides of this DALE results in:
—tr(Q+ ATPUA— R)=tr[(I - AAT)AU]

The right-hand side of the above trace identity can be estimated as follows:



tr[(1 — AAT)AL T, (1 - AA )t (A,)
=[1+1 ,(-AA]tr (A,)
=[1-1,(AAD]tr(A,)
=[1-s (A)tr (a,)

_ —r(Q+A'RA-R))
1-s2(A)

<tr(Ay)

This proves the first trace bound (3.58).
Consider the DALE (1.9) and the trace equality:

tr(Q) =tr[(I1 — AA")P]

Denote A = | — AA". Having in mind (2.47) the right hand-side can be estimated as:

[l - AP YL (A)(P)

| n(ﬂ)tr(P)+i[| (A= (AT (P)

where

| (A)=1-s2(A), | . (A=1+1_, (-AA)=1-1 (AA)=1-s*(A

n—i+1 n—i+1

This results in the inequality:

tr[(l —AAT)P]2[1—Sf(A)]tr(P)+_Zn:[Sf(A)—Si2(A)]| i(P)

> [L-S 2N (P) + Y[ 2(A) - (A,

=[1-s/(A)r(P)+g,(AA", P)
This proves the bound (3.59). If AcS , then ®;*, ®,are Lyapunov matrices for A, in

accordance with Remark 3.2, or equivalently, their inverses are Lyapunov matrices for A’
(see (3.13)). Consider the trace equalities (3.15) and (3.16). Application of the same
scheme leads to the proof of the bounds (3.60) and (3.61).

Remark 3.5 The following general conclusions can be drawn from the trace bounds (3.58)-
(3.61):



(i) Bound (3.58) is an always tighter upper estimate for the DALE solution trace than
tr (R,) for any satisfying the inequality (3.46) upper matrix bound R, for P. Note, that
A'R,A-R, +Q<0, by definition. If t,,, =tr(R,), then tr(A'"R,A— R, + Q) =0, which is
possible if and only if AR, A—P, +Q=0. By uniqueness of the DALE solution it follows
that P=R, and tr(P) =t ,, =tr(R)), in this case.
(if) By definition, the scalar g,(X,Y) is always nonnegative. Therefore, the following
concerning similar bounds relations hold: (1.42) > (3.59), (3.14) > min{(3.60), (3.61)}.
If the lower eigenvalue bounds I, <I.(P),i =2,..,n are all positive, the equality sign is
possible if and only if

s,(X)=s,(X),i=2,...,ne XXT =s 2(X)I

If this is so, the bounds coincide and provide the exact solution trace.
3.4 UNCONDITIONAL MATRIX BOUND

The existence of upper matrix and scalar bounds for the CALE solution which are always
valid has been already proved. Following the same approach it will be shown that such
unconditional bounds can be derived for the DALE solution, as well.
Consider the Schur decomposition of matrix A in (2.77). Having in mind that Aiin (1.9) is
a stable in the discrete-time sense matrix, one gets for the diagonal elements of matrix T
the condition |I i(A)|2 <li=1.,n With this preliminary remark the following
corresponding to Lemma 2.7 condition can be formulated.
Lemma 3.2 A n x n matrix A is stable in the discrete-time sense if and only if a positive
scalare <1 exists, such that ==U"EU is a Lyapunov matrix for A, where E is a diagonal
matrix with entriesg, =e',i =1,..,n.
Proof. Let A be a stable matrix and consider the matrix

AZEA-Z=UTUU EUUTU -U'EU

=U(T'ET-E*)U=UEYETE*TE-I)E'U

Matrix A'ZA- Zis negative definite if and only if



ET'E’TE=d(e) =" (e)D(e) <| (3.62)

where the upper triangular matrix ff)(e) is defined as follows:

II(A)1I :j
d(e) =[f,1.f, =1e't,i< ]
0, i>]

This makes possible to rewrite it as:
- n-1
D) =A+ ) eT,
k=1

where A is a diagonal matrix containing the eigenvalues of A, and T,, k=1,..,n—-1, is an
upper triangular matrix containing the off-diagonal entries t;, j —i =k >0 of T. Condition

(3.62) can be now rewritten as:

n-1 n-1
| >d(e)=(A+) eT) (A+D eT)
P} pa}

n-1 n-1 n-1
=NA+) e (AT, +T A+ O e T) O e'T)
k=1 k=1 k=1

2n-1)  _

=ANA+ D €T, (3.63)
k=1

Since A is a stable matrix, then | —A"A > 0. Obviously, some sufficiently small e <1
always exists, such that (3.63) is satisfied. In particular, ifs (A) <1, ie., AeS', the

condition (3.63) holds for e =1 and Z=U"EU = | is a Lyapunov matrix for A,
Obviously, if (3.63) is satisfied, Ais a stable matrix. This completes the proof of the Lemma.
Remark 3.6 As in the continuous-time case (see Lemma 2.8), there exist different ways to
compute an appropriate e <1, i.e. to construct a Lyapunov matrix for A . Note, that for
e=1

2(n-1)_

ST, =T, T=A+T,
k=1

2(n-1)

2T
k=1

Having in mind (3.63), application of Theorem 2.17 helps to compute e (if e <1)from the

- \f \ (3.64)

inequality



e< = 1 )
r[T|( -A'A)"]

=04

which actually corresponds to condition (v) in Lemma 2.8 for the continuous-time case.

When appropriately modified, the rest of the sufficient conditions for the satisfaction of
(3.63) in Lemma 2.8 can be also applied for the computation of the parameter e, which
completely defines the Lyapunov matrix = for A. As it was already emphasized, having at
disposal a Lyapunov matrix for the coefficient matrix guarantees the existence of all types
of upper bounds for the CALE and the DALE solutions. The based on Lemmas 2.7 and 3.2
bounds are always computable, in sense that no additional restrictive suppositions are made
with respect to the coefficient matrix A, and they depend entirely on the parameters of the
respective equation, and no additional computational procedures, like LMI solution, is

needed, in this case.
3.5 FURTHER EXTENSION OF VALIDITY SETS

The application of the singular decomposition approach helps to extend the set of the stable

matrices for which computable upper bounds for the solution of DALE exist. This resulted

in the definition of the less conservative matrix.§ . It has been shown how the fact that
matrix A belongs to this set can be used to derive upper bounds under less restrictive

conditions for validity. Now, in an attempt to decrease further this conservatism, we shall

try to extend the validity sets S*andS . Considera simple motivating example.

Example 3.2 Let the following matrix be given:

0 a
A:[O b} s A =at+b?: 1, (A=b I|,(A)=s,(A)=0
Obviously, Ais a stable matrix if o < 1. Suppose that @’ +b* =1, which guarantees stability

of A buts, (A) =1, in this case, and none of the upper bounds for the DALE solution

requiring Ae S’ can be used, in this simple case. Consider now matrix

0 ab
AZ:{O bz}, s 2(A?) =b(a® +b?) =b?



Therefore, if Ais a stable matrix, then s, (A?) =|p|<1, or A*eS".

It will be shown how this fact can be used to extend the conservative matrix setS*. Also,

an attempt to extend the set S will be made. Before that, all important results concerning
the conditions for validity of upper bounds obtained in this Chapter will be briefly

summarized.
The sets S*and S are characterized by the conditions s, (A)<land | ,(RR,) <1 (see
Lemma 3.1), respectively, where matrices R and R, are defined in (3.10). Since
s,(A)=1,(R)=1,(R), the first condition can be represented in terms of matrices R and
R, as:

1>5,(A) ©1>s (A =1,(R)I ,(R)
It has been proved in Theorem 3.1 that S’ g§ , and the above inequality illustrates also

this fact, sincel ,(R)I ,(R,) =1 ,(RR).
Consider the matrix A*. Having in mind the singular value decomposition of A in (3.1),
(3.2) and the notation (3.3), one gets:

s, (A’) =s,(UzV'UZVT)
=s,(ZVUY)
=s,(VzVTUzZU")
=s,(RR),i=1.,n
rank(A?) = rank(ZV'UT)
e T | el | .

—
—
—

F
— k rt 11 r,n-r
ran {_ 0, }}

r
r,r

=rank(E, F,Z,)

- rank(z, )



It follows that the singular value decomposition of A’ is given by:

[

~~r o~~~ ~ 0
AZ=UzVT, UU'=WT=1, z:{ ! ”‘f} (3.65)
On—f,f On—f

where f =rank(A?) <r =rank(A)<n and the diagonal matrix if contains the positive

singular values s, (A’) =s,(RR,),i=1..,f , of A%,

Denote

R =[AY(A)T]2, R, =[(A})" A’ (3.66)

~ - 0
@, =UzU", 21:[0 f ;i”f} r,>0 (3.67)

- _ _ _ Tz o0
D, =VEV, zz{of A } r,>0, (3.68)

n-r,r 2'n-r

Lemma 3.3 X is a Lyapunov matrix for A, k =2, 3.., if and only if

X, =Y (A) XA

i=0
is a Lyapunov matrix for A.

Proof. It follows from the matrix equality
k-1 k-1
(A)TXA = X = AT (A)TXATA- D (A) XA = ATX A- X,
i=0 i-0
Lemma 3.4 Define the extended matrix sets:
S} ={A AcR, s, (A)<1}
S, ={A A<R,:|,(RR)<1}
(i) The following statements are equivalent:
(@) AeS]
(b) s,(RR,) <1, where matrices R, R,are defined in (3.10)
©1,(R)! ,(R) <1, where matrices R and R, are defined in (3.66)

(d) P. = A"A+1 is a Lyapunov matrix for A



(if) The following statements are equivalent:
(@) AcS,
(b) there exist some positive scalarsr , r ,, such that
P, =A® A+ (3.69)
P,=AD0,A+D, (3.70)
are Lyapunov matrices for A, where &)1, 52 are given in (3.67), (3.68).
(i) S' S} S,
Proof Statement (i):
(2) = (b) Suppose that Ac S} . From (3.65) it follows thats ,(A*) =s,(RR,) <1.
(b) = (c) Lets,(A%) <1. Having in mind (3.66), one obtains| ,(R) = I,(R)=s,(A),
which implies statement (c).
(c) = (d) If (c) holds, then the proof follows from Lemma 3.3 applied for k=2
(d) = (a) Due to Lemma 3.2, this implication is obvious.
This completes the proof of statement (i)
(ii) Statement (ii):
@ = (b) If AefE , then application of statement (ii) in Theorem 3.1 for A? with singular
value decomposition (3.66) and &)1, Ebzgiven in (3.67), (3.68) guarantees that &Jl‘land &)2
are Lyapunov matrices for A%, in this case. From Lemma 3.3 applied for X = 5131’1, X= &)2
and k=2, one gets (b).
(b) = (a) According to Theorem 3.1, statement (ii), but now applied for A? it follows, that
Ae §E .
This completes the proof of statement (ii).
(iii) Let Ae S, then
I>1, (R (R) =s,(R)s,(R)2s,(RR,)

and in accordance with statement (i), (b) it follows, that Ac S} . Let Ae S}, which is

equivalent to the inequality | 1(I51)I l(F~\’2) <1, in accordance with statement (i), (c). Since

I, (R)I (R)=1,(RR,), it follows that Ac S, .



This completes the proof of the Lemma.

Obviously, the process of set extension for stable matrices for which computable upper
bounds for the DALE solution can be continued by considering the cases A, k>2 . E.g.
Lemma 3.3 provides exact condition under which a Lyapunov matrix for A exists, if a
Lyapunov matrix for A has been defined. The observed decrease in conservatism is due

to the fact that as the integer k increases, one gets less and less restrictive requirements for

validity of all upper bounds considered here.

3.6 BOUNDS FOR THE DARE

Various scalar, matrix, lower and upper bounds for the positive definite solution of the
DARE (1.14) have been suggested. With only two exceptions, they require positive
definiteness of matrix Q for lower bounds (e.g. (1.43), (1.49)) and positive definiteness of
matrix BB' for upper bounds (e.g. (1.44), (1.45), (1.48), (1.50)). The first exception is due
to the lower matrix bound (1.59), which is always applicable. The other one is the upper
bound in (1.59), which is valid for BB' singular, but requires stability of the coefficient
matrix A, which is not realistic, as well.

The fact that (A, B) is a stabilizable pair by assumption (see Theorem 1.5) is important, but
usually it is not taken into account. An attempt to overcome to a certain extent the main
stated difficulties will be made in this part.

Having in mind Remark 1.1, consider the DARE (1.14) rewritten as follows:
(A" -K'B")P(A-BK)-P-A'PBS'B'PA+K'B'PA+ A'PBK - K'B"PBK =-Q

whereK e R and S=1+B"PB. Using the notation A. = A- BK , and by adding and

subtracting KB SBK in the left-hand side of the equation, the DARE takes the form
AIPAb ~P-(A'PB-K'B'S)S*(B"PA-SBK) +K'B"SBK - K'B"PBK =—Q

It can be compactly represented as a DALE-type:

AIPA.-P=S-K'K-Q (3.71)



where S=(A'PB-K'B"S)S*(B'PA—SBK) . The pair (A, B) is stabilizable, and
therefore some matrix K always exists, such that A. = A— BK is a stable in the discrete-

time sense matrix, i.e. from now on we shall assume that A. in (3.71) is stable.

Lemma 3.5 The solution P of the DARE (1.14) is bounded from above by the solution U
of the DALE

AlUA.-U+Q=0, Q=K'K+Q (3.72)
and, consequently, by any upper bound for it.

Proof. Matrix S is positive (semi)-definite, and (3.71) implies the inequality

ALPA.-P+Q >0, Q=K'K+Q

Therefore,

ALPA.—-P+Q > AlUA. -U +Q
= A U-P)A.-U-P)<0

Since A. is a stable matrix, this is possible only ifU > P. Obviously, if R, >U , then

R, is also an upper bound for the DARE solution P.

Theorem 3.11 The solution of the DARE (1.14) has the following upper bounds:
P<R,=m,®  m,=1,[Q(@ - AD'A)"],  if AeS (3.73)
P<R,=m,®, m,=,[Q@®,-A®,A)", if A.eS (3.74)

where Q =K'K +Q, ®;*(3.4) and ®,(3.5) are Lyapunov matrices for A. in accordance

with statement (iii) in Lemma 3.1,

1
1-s/(A)
for arbitrary p=12,...,a,0=0,12,..., where

S(a,q) = A.(a) +Q(a)

P<R,, =0+, QLY (A) A+ (R A)-S@.0), ifAES' (375)

i-1

>3 s I ALY AL AT, Q@)=Y (A A

a
i=1 s=0

An=si (A -AA, A;=1,Q)1-Q

A(@)=1,(Q)



P<R, =0+ LA T A+ s ()T A-Slaa). itA ' (376)

for arbitrary p=12,..,8,q=012,..,where A.=T*AT,Q=TQT,
S(a,q)= A.(8)+Q()

A@)=1,(Q)D > s NI (AN AN, A =sHAIT - AT?A

a i
i1 50
QD =[Y, (A BAL By =1,QT-Q

, T2=d,, ifA.eS (3.77)
T2 =0}, if AeS (378)
for arbitrary p=12,..., &, =0.12,..., where the upper bound ﬁ,ypis given in (3.76), ®;*

(3.4) and @, (3.5) are Lyapunov matrices for A. in accordance with statement (iii) in
Lemma 3.1. In addition, for all p=1, 2,.., one has
F?J,PSF?.J,p—l ’ I?,ll,pgl:bl,p—l’ I:EJz,pSFfJZ,p—l (379)

Proof. Having in mind Lemma 3.5, the proof of the upper matrix bounds (3.73)-(3.78) is
entirely based on Theorem 3.8 (for bounds (3.73), (3.74)), Theorem 3.6 (for bound (3.75)),
Theorem 3.7 (for bound (3.76), and Corollary (3.1) (for bounds (3.77) and (3.78)), when

the respective statements are applied for A. and Q in (3.72) instead of A and Q in (1.9).

The same refers to the matrix inequalities (3.79).

Remark 3.7 Due to Lemma 3.5, it is possible to estimate the DARE solution from above
by the upper bounds for a respective DALE solution. In other words, it is very important
to have less restrictive with respect to validity upper bounds for the DALE solution matrix.
The bounds (3.73), (3.74), (3.77) and (3.78) are preferable to the estimates (3.75) and (3.76).
Moreover, the bounds (3.73), (3.74), (3.77), (3.78) are valid whenever the bound (3.75) is

computable. When the upper estimate (3.76) is obtained as a result of the computation of a
satisfying the validity condition A eS8’ unknown matrix T, it is an external bound. The

upper matrix bounds given above can be used to derive upper bounds for the maximal

solution, i.e.



1,(P) <&, =minfl (R.I (R,)}, ifA.cS (3.80)
1,(P)<e,,=1,(R,) Vp, if AcS’ (381)
L(P) <@, =11(R ;). VP, ifAes’ (382)

1,(P) <, =min{l,(R,).1,(R,.)} Vp, ifA.eS (3.83)
and for the trace of the DARE solution:

tr(P) <t,, =minftr (R,,), tr(R,,)} , ifA.eS (3.84)
tr(P)<ty,, =tr(R, ), vp, if AeS’ (3.85)
tr(P)<ty,,=tr(R,), VP, if A eS’ (3.86)

tr(P)<ty,, =minftr(R,,,), r(R, )}, Vp, ifA.eS (3.87)

where matrices R,;,R),, R, ;. E’p, R o1 Rz pare defined in Theorem 3.11.

The upper matrix bounds due to Theorem 3.11 are obtained in accordance with Lemma 3.5,
which states that the DARE solution can be bounded from above by the respective upper
estimates for the solution of the DALE (3.72). This means that under the respective
conditions for validity and having in mind that the matrix pair (A, Q) must be suitably
replaced with the pair (A., Q), all upper bounds for the DALE (3.73) are actually bounds
for the DARE solution (see, e.g. Theorems 3.2 and 3.3).

Besides the fact that due to the inequalities in (3.79) the respective eigenvalue (3.80)-(3.83)
and trace (3.84)-(3.87) bounds are getting tighter and tighter as the parameter p increases,
some upper DARE estimates can be improved in sense of tightness, as well. Consider the
upper matrix bounds (3.73) and (3.74). They are based on inequality (3.47), which in these

particular cases takes the form
AR A ~R; +Q <0, AR,A -R,+Q <0 (3.88)
This means that the bounds R,,, R,,for the DARE solution can be improved in sense of

tightness in accordance with Corollary 3.5, i.e. for anyi =1 2,..., one gets the matrix

bounds:

P<U, =(A) RA+ D (AVTQAL, Uy <U, 389



PLUL=(A) RA T TN, U, <, (3.90)
This helps to get respective scalar bounds:
I,(P) <& =min{l ,(U,), 1,U,)}, &5 <854 (3.91)
tr(P) <tys; =minftr(U, ), tr(U,)}  tyo <tyq, (3.92)
Having in mind that S in (3.71) is a positive (semi)-definite matrix, and
tr(Q-9)<tr(Q), Q=Q+K'K
application of Theorem 3.10 for (A, Q) replaced with (A ,Q) in (3.72) results in the

following tighter upper trace bounds for the DARE solution P:

tr(P)<t,, =tr(R,) + tr((j;_psg?(iﬁs)_ R) (3.93)
tr(P)<t,, = ”(Giisg}(&';g' P) ifAcS’  (3.94)
tr(P)<t,, = (q’@l)n‘(ill(i; qug@)lpg, P itacS  (3.95)
tr(P)<t,, = @2 -G(P; — AP ALP) e & (305

| (D' — AD,'A)
where R, =R,,, R, are defined in (3.74) and (3.75), respectively, |. <l (P),i=2,..,n, the
positive scalar g,(X,Y) is defined in (2.48) and ®,*(3.4) and @, (3.5) are Lyapunov
matrices for A. in accordance with statement (iii) in Lemma 3.1. The nonnegative scalars
l,,i=2,..,ncan be chosen as the eigenvalues of the given in (1.59) lower matrix bound for
P, which holds for any positive semi-definite matrix Q. Note, that P> Q, which means

thatl, =1,(Q),i1=2,..,n, is an admissible choice, as well.



CHAPTER FOUR

NUMERICAL EXAMPLES

The applicability of the suggested bounds for the four algebraic equations will be illustrated
by numerical examples and compared with available similar bounds with respect to validity

and tightness. Before that, define the percentage errors in lower and upper scalar bounds

as follows:
d, (b) = (1—2erboundy 149 (4.1)
exact value
d, (b) = (2ePeroound 1y 160 (4.2)
exact value

Also, the nonnegative scalars
d=mind, D=maxd, d =I|,(R -R) i=1.,n 4.3)
(R, R)=tr(R -R) (4.4)

1 . 1

S ZEI (R, +R),i=1..,n, t,(R,,R) :Etr(PU +R) (4.5)

will be used to evaluate the quality of the respective bounds, where R, R, are a lower and
an upper matrix bounds for P, respectively. In fact, d and D represent the minimal and the
maximal eigenvalues of the “error” matrix, and s denotes the i-th eigenvalue of the

“average estimation” matrix. The “average” eigenvalue of an n x n symmetric matrix M is

defined as

0= (4.6)

4.1 THE CALE BOUNDS
Example 4.1.1 Fifth order industrial reactor [6]



Consider a stable coefficient matrix:

[ -16.11 - 039 272
0.01 -16.99 0

A=| 1511 0 —-53.6
—53.36 0 0
| 227 601 0

-16.57

0
12.47
71.78

232.11

2273 -102.99 |

ForQ = |, the trace and the eigenvalues of the positive definite solution for the CALE

(1.2) are: tr(P)=0.4859 and

| ,(P)=0.3473,1 ,(P)=0.1115, | ,(P) =0.0172, | ,(P) =0.00724, | .(P) = 0.0026

Although Ais a stable matrix, its symmetric part is not negative definite (I,(As) =17.1),

and therefore, none of the based on the condition Ae H~ upper bounds can be used in

this case.

Lower bounds for the minimal eigenvalue and the trace of P:

0.0017,
0.0011,
0.0022,
0.0022,

| (P) =0.0026 >

tr (P) = 0.4859 >

| .(P)>0.0022,

bound (1.16)
bound (1.17)
bound (1.25)
bound (1.74)

0.0108, bound (1.20)
0.0084, bound (1.21) ,
0.0421, bound (1.22)

tr (P) > 0.0421

d, =34.60%
d, =57.7%

d, =15.38%
d, =15.38%

d, =97.8%
d, =98.3%
d, =91.3%

(4.7)

(4.8)

(4.9)

Using the obtained here bounds the following estimates have been computed:

(i) Lower bounds:

0.0022, bound (2.19)
| ((P)=0.0026>1{ 0.0017, bound (2.21) ,
0.0022, bound (2.71)

wherea =34.61in (2.71),

d, =15.38%
d, =34.60%
d, =15.38%

(4.10)



0.3349, bound (2.16)  d, =31.07%
tr(P) =0.4859 > {0.4071, bound (2.35),  d, =16.22% (4.11)
0.4334, bound (2.35)  d, =10.80%

where the two bounds in (2.35) represent the traces of the lower matrix bounds L,, L, , with
P =mR"*, m =05 R =(AA")" (see Theorems 2.12 and 2.13), i.e.

| .(P)>0.0022, tr(P)>0.4334 (4.12)
Although A¢ H ™, the orthogonal matrix F in (2.1) is stable (max Rel (F)=-0.2955), i.e.

Ae H and all upper bounds based on this condition are computable, in this case.

(if) Upper bounds:

0.4246, bound (2.17) d, =22.26%
0.4447, bound (2.42 d, = 28.04%

|, (P)=0.3473< ound (2.42) v ’ (4.13)
0.3967, bound (2.42) d, =14.22%
0.3876, bound (2.42) d, =11.60%

where the three bounds in (2.42) represent the maximal eigenvalues of the upper matrix

bounds U,,U,,U,, with P, =mR™*, m, =1.6918, R =(AA")"? (see Theorems 2.11 and

2.13).
1.1331, bound (2.15) d, =133%
0.6948, bound (2.43) d, = 43%
tr (P) = 0.4859 < : (4.14)
0.6095, bound (2.43) d, =25.44%
0.5802, bound (2.43) d, =19.41%

where the three bounds in (2.43) represent the traces of the upper matrix bounds U,,U,,U,,

with B, =mR™, m, =1.6918, R =(AA")"? (see Theorems 2.11 and 2.13), i.e.
I,(P)<0.3876, tr(P)<0.5802 (4.15)

From (4.12) and (4.15) one gets the following lower and upper bounds for the extremal

eigenvalues and the trace of the solution matrix in (1.2):
| (P)>0.0022, 1,(P)<0.3876, 0.4334<tr(P)<0.5802 (4.16)

Finally, consider the indicators in (4.3)-(4.6), computed for the lower matrix bound L, and

the upper matrix bound U, as follows:



d=0.004, D=0.12, t(L,U,)=0.176
5 =0.357, s, =0.13, 5,=0.0165, s, =0.0142, 5 =0.0038; t,(L,,U,)=0.5214
| .(L,)=0.0086, |_(U,)=0.116
Conclusions. Having in mind the obtained results, the following conclusions can be drawn.

(i) Due to the application of the singular value decomposition approach all kinds of upper

bounds for the CALE solution are computable, while the based on the conservative
condition Ae H " available estimates are inapplicable, in this case.

(if) From (4.9) and (4.16) it becomes clear, that the presented here bounds are tighter than
the existing similar estimates.

(iii) The eigenvalue “error” varies between d = 0.004 and D = 0.12 and the trace “error” is
t.(L,,U;)=0.176. The indices 5,i=1,..,5,and t (L,,U,)are very close to the solution
eigenvalues and trace, which means that the respective bounds are rather satisfactory. E.g.
s —1,(P)=0.0097,s,-1,(P)=0.018, etc., t (L, U,)—-tr(P)=0.035.

The “average” solution eigenvalue

1,(P) =P _ 0972
5
belongs to the tight interval
0.0867 = I (5"2) <1 (P < (:3) 0.116

with lower and upper error 10.8% and 19.3%, respectively.

Example 4.1.2 Six-plate gas absorber [28]
The stable coefficient matrix in (1.2) is given by:

[-1.173 0.6341 0 0 0
0.539 -1.173 0.6341 0 0
0 0539 -1.173 0.6341 0
0 0 0539 -1.173 0.6341
0 0 0 0.539 -1.173 0.6341
0 0 0 0 0.539 -1.173 |

o O O o




The symmetric part of A is negative definite (I,(A;) =-0.11161) and the same refers to
the symmetric part of the orthogonal matrix F (maxRel (F)=-0.99=1 (F),i.e. Ae H ,

by necessity. This means that all upper bounds based on the condition A< H " are also
applicable, in this case. For Q selected as an 6 x 6 identity matrix, the solution’s eigenvalues

and trace have been computed as:
| ,(P)=4.2635,1 ,(P) =1.1333, | ,(P) = 0.5485,
| ,(P)=0.3487,1 (P) = 0.2626 | ,(P)=0.2242 , tr(P) = 6.7809.
(i) Lower bounds:
| ,(P) = 0.2242 = bound (1.16) = bound (1.17) = bound (1.18) = bound (1.74)  (4.17)
1.3453, bound(1.20)  d, =80.16%

tr(P) =6.7809>10.8525, bound (1.21),  d, =87.43%
1.3453, bound(1.22)  d, =87.43%

The coincidence of three lower bounds for the minimal eigenvalue of P with the exact
value is a remarkable fact. The lower trace bounds are not tight at all.

(i1) Upper bounds:

I, (P)=4.2635<4.3076 bound (1.19), d, =1.0344%

tr(P) =6.7809 < 6.8236 bound (1.23), d, =0.63%

Both upper bounds are very sharp.

The following estimates for the CALE solution have been obtained using the suggested
here bounds.

(i) Lower bounds:

I ((P)=0.2242 = bound (2.18)

tr(P) =6.7809 > 6.7357 bound (2.16),  d, =0.67%

(i1) Upper bounds:

| (P) =4.2635<4.2763 bound (2.17), d, =0.3%

tr (P) =6.7809 < 6.8046 bound (2.6), d, =0.35%



The computed for the lower matrix bound P, = mR™, m =0.500072, in (2.32) and the
upper matrix bound P, =m,R™*, m,, =0.500505588 in (2.27), estimation indicators in
(4.3)-(4.6), are:
d=0.0023, D=0.0422, t(P,,R,;)=0.0671
5 =4.2552, s, =1.2786, s, =0.5490, s, =0.3490, § =0.26373, 5, =0.22534;
t.(R,,R,,) = 6.771039
|.(R,)=1.123, | (U,)=1.341

Conclusions. The obtained via the singular value decomposition approach bounds are
again tighter. All lower and upper estimates produce almost the exact values. This fact is
confirmed by the values obtained for the error indicators and the *“average” solution
estimates. Also, the lower and the upper matrix bounds P, and R, represent very
satisfactory approximations of the solution matrix P, in this case.

Now, consider the same coefficient matrix A with singular right-hand side matrix
1 0 0 0 0 O]

O O O o o
o O O O -
o O O +— O
o O —, O O
O B O O O
O O O o o

The eigenvalues and the trace of the solution P are:
|, (P)=4.07843,1 ,(P) =0.00019, | ,(P) =0.461198,
I, (P)=0.293449, | . (P) =0.23018, 1 ,(P) =0.0429, tr(P) = 6.105423.

Matrix Q is singular and the available lower bounds for the minimal eigenvalue of P are
either inapplicable (bounds (1.17), (1.25), (1.69)-(1.75)), or they provide the trivial

estimate | ,(P)>0 (bounds (1.16), (1.18)). Matrix Q =Q+ A'QA s positive definite,
withl ((Q) = 0.1842 , which means that the supposition made in Theorem 2.8 is satisfied.

This helps to get the lower eigenvalue bound:
| (P)=0.0429>0.03578 bound (2.19), d, =16.6%



The upper eigenvalue bound (1.19) requires positive definiteness of Q, and therefore can’t
be computed, as well. For the solution trace we obtain the estimates:
tr(P) =6.105423 >1.12111, bound (1.20), d, =81.64%

6.601, bound (1.23) d, =8.1%

tr(P) = 6.105423 < ,
21.54, bound (1.24) d, = 249.4%

Obviously, bounds (1.20) and (1.24) are not satisfactory, while the upper trace bound (1.23)
is a tight one. The bounds based on the singular value decomposition approach are

computed as follows:

tr (P) = 6.105423 > 6.0646, bound (2.16), d, =0.67%
tr (P) = 6.105423 < 6.125023, bound (2.6) , d, =0.32%
| ,(P) = 4.07843 < 4.276286, bound (2.17) , d, =4%

Conclusions. The available lower eigenvalue bounds are not computable in this case. The
obtained here estimates (2.19) and (2.17) are rather satisfactory. Both the lower (2.16) and
the upper (2.6) trace bounds are very tight and are preferable to the respective estimates
(1.20) and (1.23).

Example 4.1.3 Distillation column [111].

Consider the stable coefficient matrix

[-0.1094 0.0628 0 0 0
1.306 -2.132 0.9807 0 0
A= 0 1.595 —-3.149 1.547 0
0 0.0355 2.632 —4.257 1.855
| O 0.0023 0 0.1636 -0.1625 |

ForQ= A"A, the eigenvalues and the trace of the CALE solution P are computed as

follows:

| (P)=3.2518,1,(P) =1.7462, | ,(P) =1.0129,
| ,(P)=0.049, | ,(P)=0.0068, tr(P) = 6.0667.
Sincel ,(As) =0.2746, the upper bounds based on the condition A< H ™ can’t be applied,

in this case. The following scalar solution bounds were computed:



0.00065, bound (1.16) d, =90.44%
0.005, bound (1.17) d, =26.47%
| .(P)=0.0068 >
0.00065, bound (1.18) d, =90.44%
0.004, bound (1.74) d, =41.17%
4.1313, bound (1.20) d, =31.91%
2.5804, bound (1.21) d, =57.47%
tr (P) = 6.0667 > ,
5.9381, bound (1.22) d, =2.12%
5.3969, bound (1.74) d, =11.04%

The tightest lower scalar bounds are due to (1.17) and (1.22), i.e.
| ;(P)>0.005, tr(P)>5.9381 (4.18)

Since the orthogonal matrix F is stable, i.e. Ae H ,all upper bounds based on the singular
value decomposition approach are applicable.

By making use of (2.28) and (2.32), an upper and a lower matrix bounds for the CALE
solution have been computed:

P<R,= U4R171’ m, = 0.9688
P>P,=mX™?, m=05X=R =(AA)"
These bounds were used to compute the improved estimates L;, U,from (2.35) and (2.36),

respectively. The following results were obtained:

| .(P)=0.0068> | .(L,) = 0.0043, bound (2.41), d, =36.76%
tr (P) = 6.0667 > tr (L,) = 6.0371, bound (2.35), d, =0.49%
| ,(P) = 3.2518 < 3.6260, bound (2.42), d, =11.5%
tr(P) = 6.0667 <tr (U,) = 6.4828, bound (2.43), d, = 6.85%

The lower eigenvalue bound in (4.18) is sharper, in this case. The upper eigenvalue bound
(2.42) is satisfactory, while both trace estimates (2.35) and (2.43) are rather tight. As a
whole, the obtained bounds are good, which also becomes evident from the indicators in
(4.3)-(4.6), computed for the lower matrix bound L, and the upper matrix bound U, as
follows:

d=0, D=0.3964, t(L,U,)=0.4457
5 =3.4301 s, =1.7577, 5,=1.0135, s, =0.0528, 5 =0.006; t(L,,U,)=6.26



The “average” solution eigenvalue

tr(P)
5

|.(P)= =1.2133

belongs to the tight interval

1.2074= ") o) (py< T W)
5 5

=1.2966

The eigenvalues of the matrix bounds and the exact solution are presented below:

eigenvalues L, P U,
I 3.2347 3.2518 3.6260
I, 1.7435 1.7462 1.7715
l, 1.0091 1.0129 1.0178
I, 0.0456 0.0490 0.0599
l'g 0.0043 0.0068 0.0076

Table 4.1 Eigenvalues of the solution P and its bounds (Example 4.1.3)

Example 4.1.4
Consider the stable coefficient matrix
[-120 =22 0 05 0 06 0 07 0 08]
1 0 0 0 0 0 0 0 0 0
0 05 -140 -24 O 0.5 0 0.6 0 07
0 0 1 0 0 0 0 0 0 0
A 0 0.6 0 05 -160 -26 O 0.5 0 06 cR,
0 0 0 0 1 0 0 0 0 0
0 0.7 0 0.6 0 05 -180 -28 0 05
0 0 0 0 0 0 1 0 0 0
0 0.8 0 0.7 0 0.6 0 05 -200 -3
| 0 0 0 0 0 0 0 0 1 0

ForQ=1,,, the trace and the eigenvalues of the CALE solution are: tr(P) = 586.2329,
|, (P)=486.7447,1 ,(P)=27.9072,1 ,(P) = 26.0579, | ,(P) =24.0854,1 .(P) =21.4215,
| ((P)=0.0042, | ,(P)=0.0036, 1 4(P)=0.0031, | ,(P)=0.0028, | ,,(P)=0.0025.



The symmetric part of A is not a negative definite matrix (1 ,(As) =0.0206) and hence the

upper bounds requiring that A< H - are not applicable.
(i) Lower bounds:
The lower bounds for the minimal eigenvalue of P (1.16)-(1.18), and (1.74) provide the

exact valuel ,,(P) =0.0025, and

0.0250,  bound (1.20) d, =100%

0.0063,  bound (1.21) d, =100%
tr (P) =586.2329 > ,

0.0625,  bound (1.22) d, =100%

578.7848, bound (1.74) d, =1.27%

With the exception of the lower trace bound (1.74), the above estimates are useless.
By means of the singular value decomposition approach the following lower and upper

estimates have been obtained.

| ,,(P)=0.0025=0.0025, bound (2.18), d, =0.00%
tr (P) = 586.2379 >578.7848, bound (2.16), d, =1.27%
| ,(P) = 486.7447 < 486.9776, bound (2.17), d, =0.048%
tr (P) = 586.2379 < 587.6213, bound (2.6), d, =0.024%

The trace and the eigenvalue bounds are very tight, in this case. The lower and upper matrix

bounds
P>P,=mX, m =05 X=R"=(AA")"
P<R,=m,R*, m,=05076
have been obtained from (2.32) and (2.28), respectively. The indicator (4.6) computed for
R,,P,and R,,, defines the following sharp interval for the “average” solution eigenvalue
Ia(P):
57.8785=1 (P,) <! ,(P)=58.6233<1 (P,,) =58.7621

The next table contains the eigenvalues of the lower matrix bound R, of the upper matrix

bound, R, , and the solution matrix P:



eigenvalues P, P P,
I, 479.6545 486.7447 486.9776
I, 27.8875 27.9072 28.31313
I, 26.0310 26.0579 26.4285
I, 24.0435 24.0854 24.4124
I 21.1503 21.4215 21.4732
I 0.0042 0.0042 0.0042
|, 0.0036 0.0036 0.0036
4 0.0031 0.0031 0.0032
Iy 0.0028 0.0028 0.0028
I 1o 0.0025 0.0025 0.0025

Table 4.2 Eigenvalues of the solution P and its bounds (Example 4.1.4)

Obviously, R,and R,, are very good matrix approximations of the solution matrix P.

For more examples illustrating the application of the singular value decomposition

approach for the estimation of the CALE solution see [119], where some of the proposed

here bounds are used to solve the problem for power system models.

4.2 THE CARE BOUNDS

Example 4.2.1 Consider the matrices Aec R,, Be R®, Qe R, given by:

1 1 0 o1

-1 0 0 0

0 01 -1 1
A:

0 0 -1 0

0 01 0 01

0 0 0 0

Matrix A is unstable, BB' and Q are singular matrices. Moreover, (C, A) is not a detectable

pair. The CARE (1.6) has a positive semi-definite solution P with the following

eigenvalues and trace:

0 01
0 O
0 01
0 O
-1 1
0

R O O O O O

O O O O o

O O O +— O
o O O +— O
o O O O O

0

O O O O o o

R O O O O O




| ,(P)=1.88,1,(P)=1.76,1 ,(P) =1.02,

| ,(P)=0.68,1.(P)=0.68,l ;(P)=0, tr(P) = 5.1924
The available lower and upper eigenvalue and matrix bounds for the CARE solution are

valid under the suppositions that BB and/or Q are positive definite matrices (see bounds
(1.27)-(2.33), (1.36), (1.37), etc.) Since the triple (A, B, Q) is not regular, the lower matrix

bounds (2.101), (2.102) can’t be applied in this case, as well.

Note, that a satisfying (1.79) scalar a does not exist, i.e. the upper estimates (1.80)-(1.82)
are also inapplicable, in this case. We shall illustrate the application of the singular value

decomposition approach and the based on it Theorem 2.21, for the derivation of various

upper bounds for P. Consider the matrix in (2.95). Let

K=[0 0 0 0 1 0]

Then,

-1 1 0 o1
10 0 ©
A —A-BKo| 0 01711
0 0 -1 0
0 01 0 01
0 0 0 O

is a stable matrix belonging to the set H and therefore, Theorem 2.20 can be applied. The

upper matrix bound

0 0.1]
0 0
0 01
0 0
-1 1
-1 0

Ri=mRy, my, =1.2083,

for the CARE solution has been computed from (2.99), where Q+K'K =1, . Its

eigenvalues and trace are:

I ,(R,)=21159,1 ,(R,)=2.1159,1 ,(P,,) =1.7301,
| ,(R,,)=0.7667,1 ,(R,,) =0.7667,1 ;(R,,) =0.7032, tr(R,,) =8.1985

i.e.,

|,(P)=1.88<1,(R,,) =2.1159, d, =12.55%

tr(P) =5.1924 < tr(P,,) =8.1985, d, =57.89%



Since R, satisfies the matrix inequality (2.113) it can be used to derive tighter bounds in
accordance with Theorem 2.24. The upper matrix bounds U,,i =123, M, =R, have

been computed from (2.116), with eigenvalues, traces, and respective estimation errors, as

follows:
(i) Bound U,
l,(U,)=1.9686,1,(U,) =1.9686, | ,(U,) =1.7300,
l,(U,)=0.7106,1 . (U,) =0.7106,1 . (U,) =0.7032, tr(U,) =7.7919
|,(P)=1.88<1,(U,)=1.9686, d, =4.71% (4.21)
tr(P) =5.1924 < tr(U,) =7.7919, d, =50.6% (4.22)
(if) Bound U,
1,(U,)=1.9011,1 ,(U,) =1.9011, 1 ,(U,) =1.7300,
l,U,)=0.7032,14(U,)=0.6900,I ((U,) =0.6900, tr(U,) =7.6156
l,(P)=1.88<1,(U,)=1.9011, d, =1.12% (4.23)
tr(P) =5.1924 < tr(U,) =7.6156, d, =46.67% (4.24)
(iii) Bound U,
l,(U,)=1.889,1,(U,)=1.889,1,(U,)=1.7300,
l,(U,)=0.7032,1,(U,) =0.6838, ((U,) =0.6838, tr(U,) =7.5555
|,(P)=1.88<1,(U,)=1.889, d, =0.48% (4.25)
tr(P) =5.1924 < tr(U,) = 7.5555, d, =45.5% (4.26)

The upper bound for the maximal solution eigenvalue in (4.23) is very tight, while, the
upper trace bound (4.24) is satisfactory. This example shows that good upper estimates for

the CARE solution matrix are achievable even when BB is singular.

Example 4.2.2 Consider the same matrices A and B, but let



000000
010000
001000

Q:
000100
000010

0000 0 1]

Matrix Q is again positive semi-definite, but now (C, A) is an observable pair. Therefore,
Theorem 2.23 can be applied to get lower bounds for the CARE solution P with eigenvalues

and trace computed as follows:
l,(P)=1.8273,1,(P)=1.3317,1 ,(P) =1.2544,
l,(P)=0.6841,1.(P)=0.4155,1 ((P)=0.1927, tr(P) = 5.7058

Consider matrix (2.96) and let

02000 O
02000 O
G 002000
0 0020 O
0 000 2 -1
10 0000 2]
which results in:
1 -3 0 -01 0 —10.1]
1 -2 0 0 0 0
A ——A-GO- 0 -01 -1 -1 0 0.1
0 0 1 -2 0 0
0 -01 0 -01 -1 1
0 0 0 0 0 -2 |

The above matrix belongs to the set H . The lower matrix bound
1
PLl = E RL y rn_l = 84779

has been obtained from (2.101), where



BB' +GG' =

O 0o oo ~ N
O 0o oo »~ BN
O O O N O O
O o A O O O
N U1 O ©O © O
O N o o o o

The eigenvalues and the trace of B are:
l,(R,)=0.4579,1,(R,)=0.11811,(R,) =0.0907,
| ,(P,)=0.0589,1,(P,)=0.0512,1 ;(R,)=0.0305, tr(R,)=0.8072,
ie.,
| 4(P)=0.1927> | ((P,) =0.0305, d, =84.17% (4.27)
tr (P) =5.7058 > tr(R,) =0.8072, d, =85.85% (4.28)
The lower matrix bounds L, i =12,3,4,M =P, have been computed from (2.115), with
eigenvalues, traces, and respective estimation errors, as follows:
(i) Bound L, :
l,(L)=0.8612,1,(L)=0.5143,1 (L) = 0.4378,
l,(L)=0.2883,1 (L) =0.1619,I ((L,) =0.0578, tr (L) =2.3220,

I ¢(P)=0.1927 > | ;(L,) =0.0578, d, =70% (4.29)
tr (P) =5.7058 > tr(L,) = 2.3220, d, =59.30% (4.30)
(if) Bound L,:

|,(L,) =1.0966, | ,(L,) =0.8924, 1 ,(L,) = 0.8222,

| ,(L,)=0.3958, 1 (L,) =0.3477 1 ,(L,) =0.1201, tr(L,) =3.6749,

| (P)=0.1927 > | (L,)=0.1201, d, =37.68% (4.31)
tr (P) =5.7058 > tr(L,) = 3.6749, d, =35.6% (4.32)
(iiii) Bound L,

| (L) =1.2178,1,(L,) =1.0207, 1 ,(L,) = 0.9366,
| ,(L,)=0.5176, 1 ;(L,) =0.3564, 1 4(L,) =0.1520, tr(L,) = 4.2011,



| ((P)=0.1927 > | ;(L,) = 0.1520, d, =21.12% (4.33)
tr (P) =5.7058 > tr(L,) = 4.2011, d, =26.37% (4.34)
(iv) Bound L,:
I,(L,)=1.2871,1,(L,) =1.0389, | ,(L,) = 0.9513,
l,(L,)=05376,1,(L,)=0.3571,1 ,(L,) = 0.1783, tr(L,) = 4.3502,

| (P)=0.1927 > | ,(L,) =0.1783, d, =7.47% (4.35)
tr(P) =5.7058 > tr(L,) = 4.3502, d, =23.76% (4.36)
The lower bound (4.35) for the minimal eigenvalue is very sharp, and the lower trace bound
(4.36) is rather satisfactory.

Since Q is a singular matrix and rank(B) = 1, the lower bounds (1.27)-(1.29) for the

minimal eigenvalue of P are not applicable. Consider the previously defined lower trace

bounds:
tr(P) =5.7058 > 0.7417, bound (1.34), d, =87%
tr(P) =5.7058 > 0.8724, bound (1.35) , d, =84.71%

Obviously, the trace estimate (4.36) is much tighter then (1.35), in this case.

Example 4.2.3 Consider the same matrices A and B. Let Q=1,. The CARE (1.6) has a
positive definite solution P with the following eigenvalues and trace:
I,(P)=1.8799,1,(P)=1.7699, | ,(P) =1.2623,
| ,(P)=0.6951 | ,(P)=0.6812,1 ,(P) =0.4159, tr(P) = 6.7043
Using the same gain matrix K as in Example 4.2.1, the upper matrix bound
R.=m,R,, m,=22444,

for the CARE solution has been computed from (2.99), where

1 0 0 0 0 O]

01000O0O0

T 001000
Q+K' K=

0001O0O0

000020

0 0000 1]




The eigenvalues and trace of this estimate are:
l,(R,,)=3.93021,(R,,)=3.9302,1,(R,;) =3.2136,

| ,(R,)=1.4240,1 (P,) =1.4240,1 ,(P,,) =1.3062, tr(P,,) =15.2285

i.e.,
l,(P)=1.8789<1,(R,;)=3.9302, d, =109% (4.37)
tr(P) =6.7043 < tr(R,;) =15.2285, d, =127.14% (4.38)

Both bounds are not tight, but since R,, satisfies the matrix inequality (2.113), it can be

used to derive tighter bounds in accordance with Theorem 2.24. The upper matrix bounds

U,,i=123,M, =R,,, have been computed from (2.116), with eigenvalues, traces, and
respective estimation errors, as follows:
(1) Bound U,

l,(U,)=2.6766,1,(U,)=2.6765,1 ,(U,) = 2.3498,

| ,(U,)=1.3498,1 ,(U,) =0.9316 1 ,(U,) =0.9115, tr(U,) =10.8958

|,(P)=1.8789< I ,(U,) =2.6766, d, =42.38% (4.39)
tr(P) =6.7043 < tr(U,) =10.8958 d, =62.52% (4.40)
(if) Bound U,

| ,(U,)=2.4671,1,(U,) =2.0639, 1 ,(U,) = 2.0005,

| ,(U,)=1.2018,1,(U,) =0.7579 1 ,(U,) =0.7751, tr(U,) = 9.2664

| (P)=1.8789< | ,(U,) =2.4671, d, =31.2% (4.41)
tr (P) = 6.7043 < tr(U,) =9.2664, d, =38.22% (4.42)
(i) Bound U,

|,(U,)=2.3514,1,(U,) =1.958, | ,(U,) =1.8737,
| ,(U,)=1.1930,1,(U,) =0.0.73,1 ,(U,) = 0.7042, tr(U,) =8.8107
|,(P)=1.8789< | (U,)=2.3514, d, =25% (4.43)
tr(P) =6.7043 < tr(U,) =8.8107, d, =31.4% (4.44)

The CARE solution trace bound is evaluated from above as:



tr(P)< 8.1985, bound (2.110) d, =22.3% (4.45)

which is the tightest amongst all similar estimates for this example.

The following lower bounds are computed:
tr (P)=6.7043>0.8750, bound (1.34) d, =87% (4.46)

tr(P)=6.7043>1.025, bound (1.35) d, =84.7% (4.47)
Application of the singular value decomposition approach leads to the following results.

Firstly, the matrix in (2.96) is stabilized via the gain matrix G = 0.5l i.e.

—05 -1 0 -0.1 0 -10.11
1 -15 0 0 0 0
0 -01 -05 -1 0 -0.1
A =-A-15C=
0 0 1 -15 0 0
0 -0.1 0 -01 -05 -1
0 0 0 0 0 ~15]

Since A € H | the suppositions of Theorem 2.22 are satisfied and the lower matrix bound

for the CARE solution

1
P,=—R,, m,=1.8386
L2 nlz L 2

was obtained from (2.102). Its eigenvalues and trace are computed as follows:
l,(R,)=1.08051,(R,)=1.0235,1,(R,) =0.9799,

| ,(P,)=05126,1 (P,)=0.4769,1 ,(P,) =0.2237, tr(R,) = 4.2972,

ie.,
| 4(P)=0.4159> | (R ,)=0.2237, d, =46.21% (4.48)
tr(P)=6.7043> tr(R,) =4.2972, d, =35.9% (4.49)

The lower matrix boundsL;,i=12,3,M =R, have been computed from (2.115), with
eigenvalues, traces, and respective estimation errors, as follows:
(i) Bound L, :
1,(L)=1.1637,1,(L) =1.1613,1 ,(L,) =1.0362,
I ,(L)=0.5668, 1 ,(L,)=0.4769,1 ;(L,) =0.2794, tr(L,) =4.7575,



| (P)=0.4159> | ,(L,) =0.2794, d, =32.82% (4.50)
tr(P) =6.7043> tr(L) =4.7575, d, =29% (4.51)
(if) Bound L,:

I,(L,)=1.2095,1 ,(L,) =1.1936, | ,(L,) =1.0431,

| ,(L,)=057551(L,)=05617,1 ,(L,) =0.2877, tr(L,) =4.871,

| (P)=0.4159 > | (L,)=0.2877, d, =30.82% (4.52)
tr(P) =5.7058 > tr(L,) = 4.871, d, =27.35% (4.53)
(iiii) Bound L,

I,(L,)=1.2558, I ,(L,) =1.2464, | ,(L,) =1.0474,
| ,(L,)=0.5933,1(L,) =0.5738,1 ,(L,) =0.2894, tr(L,) =5.0061,
| ,(P)=0.4159> | (L,)=0.2894, d, =30.42% (4.54)
tr(P) =6.7034 > tr(L,) =5.0061, d, =25.33% (4.55)

The obtained lower bounds for the minimal eigenvalue and the trace of the CARE solution
(4.54) and (4.55) are much tighter then the similar estimates (4.46) and (4.47), in this case.
Conclusions The considered examples illustrate the ability to derive computable bounds
for the CARE solution in cases, when the available estimates are inapplicable, i.e. Q and/or
BB are singular matrices. All obtained here lower and upper, scalar and matrix bounds
are rather satisfactory and some of them represent very tight approximations for the
eigenvalues and the trace of the solution matrix. Under some suppositions any matrix
bound can be additionally and significantly improved in sense of tightness due to Theorem
2.24 (see the estimates in (4.19)-(4.26), (4.27)-(4.36), (4.37)-(4.44), (4.48)-(4.55)). This
influences the tightness of the respective based on it scalar bounds, as well. E.g. the error

in the upper bound for the maximal eigenvalue (4.19) isd, =12.55%, and
the error in the lower bound for the minimal eigenvalue (4.27) is d, =84.17%. The
application of Theorem 2.24 results in new bounds,with d, =0.48% (4.25) and

d, =7.47% (4.35), respectively. The most important contribution concerning the proposed

here approach is the extension of the set of admissible matrix triples (A, B, C) for which

computable estimates for the CARE solution exist.



4.3 THE DALE BOUNDS

The DALE and the DARE positive (semi)-definite solution matrices can always be
bounded from below by the respective right-hand side matrices Q. In what follows, more

attention will be paid to the upper scalar and matrix bounds.

Example 4.3.1 Consider a stable coefficient matrix in (1.9):

052 -036 021 -0.73 0.45]
0.06 0.13 049 032 03
A=| 007 -008 -0.17 027 0.39
-0.47 0.02 0.14 -0.05 0.22
0.14 052 -007 -009 0.12]

and let
0 0 0 0 O]
01000
Q=|/0 0 1 0 O
0 000G O
0 0 0 0 0]

The trace and the eigenvalues and of the unique positive definite solution of the DALE
are: tr(P)=3.1332 and

I,(P)=1.4006,1,(P)=1.1031,1 ,(P) =0.5451, 1 ,(P)=0.0773,1 ;(P) =0.0071
The maximal singular value of the coefficient matrix is s ,(A) =1.0934, i.e. A¢S’, and
none of the available bounds based on this condition are applicable, in this case. The
maximal eigenvalue of the matrix product RR, is computed as | ,(RR,) =0.9263 , which
means that AeS , in accordance with Lemma 3.1. Therefore, all upper bounds for the
DALE solution valid under the supposition that AeS , are computable. Moreover, since A
is a nonsingular matrix, then according to statement (iv) in Lemma 3.1, R*and R, are

Lyapunov matrices for A. Application of the singular value decomposition approach for
the discrete-time case resulted in the following upper bounds for the solution matrix P. A

matrix estimate



P<Rj;= mJlR171’ my, =2.2005
has been computed using (3.38) and after that improved in accordance with Corollary 3.4.

This resulted in the computation of matricesU, i =1,..,10, satisfying the inequalitites:
u,>U,>..>U,>P
L,U)=>1,U,)>..>1,U,) =1, (P)
trlU,)>trJ,)>..2tr(U,,) >tr(P)
The scalar bounds improvement and the decrease in the eigenvalue and trace estimation

percentage errors, d, andd,, , respectively, are illustrated by the next table:

Bound FL3 Ul U2 U3 U4 U5 UG U7 U8 U9 UlO

[,¢) [506| 274 | 230 | 208 |1.978 | 1.89 |1.796 |1.724 |1.66| 1.61 |1.58

d () 261 96 642 | 485 | 412 | 35 | 2823 | 23 |185| 15 | 13

tr() |18.2/9.367 |6.585 |5.415 |4.913 |4.64 |4.435 |4.272 |4.13|4.008 |3.9

d, () |480| 199 110 73 57 48 | 415 | 36.3 | 32 | 27.7 |24.5

Table 4.3 Bounds for the maximal eigenvalue and the trace (Example 4.3.1)

The above data show that due to Theorem 3.9 and Corollary 3.5 the bounds (3.38) and

(3.39) can be significantly improved in sense of tightness. The eigenvalue and trace errors
d (R,;)=261%, d, (R,,)=480% are decreased to d, (U,,) =13%and d, (U,,) = 24.5%,
respectively.

The lower eigenvalue bound (1.38) and the lower trace bound (1.41) yield the trivial
estimates | ;(P)>0andtr(P) >0, in this case. The lower bound (1.40) helps to estimate
the solution trace from below as follows:

tr (P) = 3.1332 > bound (1.40) = 2.4658 , d, =21.3%

Using the suggested here bounds we obtain:

| .(P) =0.0071> bound (3.46)=0.0030, k=4 d, =57.75%
tr(P) =3.1332> bound (3.20)=3.1133, k=4 d, =0.64%



Example 4.3.2 L-1011 fighter aircraft [11]
Consider the stable nonsingular coefficient matrix and the positive semi-definite right-hand

side matrix in (1.9) given by:

0.9971 03228  0.0825 -0.4662 1 000
A -0.0158 0.3846  0.3414 -1.4869 0= 0100
0.0062 -0.0037 0.1159  0.5499 0010
0.0150  0.0044 -0.2178  0.7247 0 00O

The DALE solution matrix P has the following eigenvalues and trace:
| ,(P)=110.8103,1,(P) =2.8864,1 ,(P)=1.1488, | ,(P) =0.9707, tr (P) =115.8162
This example is chosen to illustrate the extension of the validity set for upper DALE bounds.

The maximal singular value of A is s;(A)=1.9081and the maximal eigenvalue of the
matrix product RR, is computed as|,(RR,)=1.8448. Therefore, A¢S , and AgS’in

accordance with Lemma 3.1. In an attempt to determine a Lyapunov matrix for A we shall

use Lemma 3.3. The maximal singular values of matrices A and the maximal eigenvalues

of the matrix products
L(RR), R =[AA)T?, Ry =[(A) AT i=12.6

are given below:

Ali=1.6 A A A A’ A A

s,(A) ]1.908112.2142|2.4029 | 2.5836 | 2.6875 | 2.6996

| (RR,) |1.84482.1920|2.10991.5467 | 1.0417 |0.7368

Table 4.4 Dependence of s,(A’) and | ,(R;R,) oni (Example 4.3.2)

The table shows that as i increases, the maximal singular value s,(A’)of A,i=1..6,

increases as well, whilel ,(R,R,) <1. This means that A° €S , or equivalently, R and



R, are Lyapunov matrices for A° (Lemma 3.1, statement (ii)). From Lemma 3.3 follows

that

Xe = (A) RIA

is a Lyapunov matrix for A, i.e. A'X_A— X, <0. Using this fact, and having in mind
(3.38), an upper matrix bound
P<Re=meXe, Mg =1,[Q(Xg — A"X A)"1=10.1159
for the DALE solution has been computed. Since this estimate satisfies the matrix
inequality
A'P.A-P.+Q<0

it is possible to improve it sense of tightness in accordance with Theorem 3.9. Upper matrix
boundsU,,i =1,2,..,20, for P have been computed in accordance with (3.49). The scalar
bounds improvement and the decrease in the eigenvalue and trace estimation percentage

errors, d, andd, , respectively, are illustrated by the next table.

Bound FLE Ul US UlO U13 U15 U16 UlB UZO

I,() | 39743 | 4499.5 | 184.77 | 181.27 | 153.59 | 145.77 | 142.41 | 136.65 | 131.9

d () | 35766 | 3960 | 66.74 | 63.6 38.6 | 3155 | 285 | 23.32 19

tr() | 43830 | 5624.6 | 194.34 | 173.41 | 158.60 | 150.8 | 147.43 | 141.67 | 137
d, () | 37744 | 4756.5 | 67.8 | 49.73 | 36.94 | 30.21 | 27.30 | 22.32 | 183

Table 4.5 Maximal eigenvalue and trace upper bounds (Example 4.3.2)

These results clearly indicate the significant improvement in sense of tightness in the upper

bounds for the maximal eigenvalue and the trace of the solution matrix P. The eigenvalues

of the upper matrix bound U, are:

|,(U,,) =131.9453,1 ,(U,,) = 2.8802, 1 ,(U,,) =1.1514, | ,(U,,) = 0.9708
The solution eigenvalues | ,(P), i =2,3,4 are very tightly estimated from above by the
respective eigenvalues! ,(U,,), 1 = 2,3,4, since the respective errors in them are computed

as follows:



d,=0.13%, d ,=0.23%, d,, =0.01%
The minimal solution eigenvalue and trace can’t be estimated by the lower bounds (1.38)
and (1.41). The lower trace bound (1.40) provides the estimate
tr(P) =115.8162 > bound (1.40) = 3.0833, d, =97.33%
Using the suggested here lower bounds we obtain the following estimates for the minimal
eigenvalue and the trace of the solution matrix:
| ,(P) =0.9707 > bound (3.46)=0.9692, k=6 d, =0.15%
tr (P) =115.8162 > bound (3.20) = 39.8557, d, =65.6%
This example clearly indicates that the suggested here bounds for the DALE solution work
when the available similar estimates are inapplicable. Moreover, the obtained matrix and
scalar approximations are rather sharp.

Example 4.3.3 Consider a stable for all p coefficient matrix:

Op 00 O0OOOT OO
0O 0p 00O0OOTOPO
00 0Op 0O0O0OOTPO
00 0O0OPpPp O0O0O0OO0OTO
00 0O0OO0OPOOT OO
A= €R,,
000 0O0OOPOO OO
00 00 O0OOOWPOO®O
00 0 0O0OOOUODPO
00 00OO0OOOT O0OU O0OTQP
0 00000 O OO0 0

i.e. @ =p, j=i+1 g =0, otherwise. The maximal singular value of A is equal top .

case(i) Letp =0.9and



2110221211
16 22 344354
1242333323
0223223222

Q:2332654433 | (Q)=0.0366
2 4 3256 4 43 4 °
1 433446 35 4
2 332 4436 44
15223354765
1 432 3 4 4 45 6

The DALE solution matrix P has the following eigenvalues and trace:
l,(P)=92.132,1,(P)=12.8678, | ;,(P)=12.1099, | ,(P) =9.3498, | .(P) =9.0068 ,

| (P)=7.3498, | ,(P) =6.5344, | ,(P) =5.4579, | ,(P) =3.5990, | ,,(P) =1.3134,

and tr(P) = 160.0946. Since AeS ,then Ac S’ inaccordance with Lemma 3.1, all upper
bounds for the DALE solution are applicable in this case.
The application of the singular value decomposition approach leads to the next results.

First of all we need to construct a Lyapunov matrix @, in (3.4). The singular value

decomposition of A (3.1)-(3.3) is:

A=UzVT, z:[o“lz 08*1}, 2, =0.91,
0000000000 —1]
100000000 O
010000000 O
001000000 O
000100000 O

U=l, V=
000010000 O
000001000 O
000000100 O
000000010 O
000000O0O0T1 O]

Therefore, the orthogonal matrix defined in (3.3) isF =V'U =V | and
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O O O O O O O O o
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The inequality in (3.8) is satisfied for all0 < r, <1.054093 . Letr, =1. This defines the

diagonal matrix

=, 0
o =|_° O = =009l
1 |:01’9 1 i| 9 9

in (3.4), and ®;"as a Lyapunov matrix for A, i.e.
ATD'A- D' <-0.11
in accordance with Theorem 3.1. Using (3.38) an upper matrix bound
P<P,=m,®;", m,=179.4858
has been obtained. Since R, , satisfies the inequality (3.46) it can be improved in sense of
tightness via the computation of the upper bounds U, i =1,..10 from (3.49). The results

are given in the next table.

Bound | P, U, U, U, U U, Ug U U,

I,() [199.43 |194.32 | 171.41 | 147 133.81 | 120.98 | 109.76 | 99.987 | 92.13

d () |116.46 | 110.9 86 595 | 4524 | 31.31 | 19.13 | 853 0

tr() | 19743 | 1505.8 | 856.74 | 491.69 | 376.63 | 292.43 | 232.22 | 189.73 | 160.1

d, () | 12232 | 840.6 |435.15207.12|135.25| 82.66 | 45.05 | 18.51 0

Table 4.6 Maximal eigenvalue and trace upper bounds (Example 4.3.3)




where d, and d, denote the eigenvalue and the trace estimation percentage errors,

respectively. This result is illustrated by the following remarkable fact. Substitution of P
withU,, in the DALE (1.9) leads to:

AU, A-U,+Q=0=[0;], max|o,|=0.17763x10™
In fact, U, coincides with the solution matrix.

Matrix A is nilpotent with A® = 0. Having in mind (1.10) it follows that
g . .
P=> (A) QA
i=0
in this case. We shall illustrate how the bound in (3.25) can be used to get tight upper
estimate for the solution matrix. In addition, there exists positive integer p such that
R, ,=P. Let p=10, and consider the estimate (3.25):

1

P< RJ,lO =Q+I 1(Q)[IZ:11(AI) A +m

(AlO)T AlO] _ S(O,g)

—Q+1, QY (A) A - 5(09)

—Q+] 1(Q)Zg:(A‘)TAi —Zgl(Ai)TAQAi

i=1

= Q+ YA TL(Q) - Al

—Q+ Y (A QA

> (A) QA

o

The scalar bounds improvement and the decrease in the eigenvalue and trace estimation

percentage errors, d, andd,, , respectively, are illustrated in the Table 4.7, where

R =Q+1,QX(A) A -SQ.i), -1..9



Boun [R, [R. |Ra |Ru |Rs |Rs |R: |Rs | R

d

l,(¢) |130.2 | 1236 |117.2 |110.6 | 1042 |98.81 |95.21 |93.08 |92.13
4 4 6 6 2 3 2

d () |4136 | 3420 | 27.27 | 20.11 | 1312 | 7.25 3.34 1.03 0

tr() |607.7 |459.2 |353.4 |279.3 |228.8 | 1956 | 175.5 | 164.7 | 160.0
8 6 5 4 0 8 7 9

d, () | 2796 |186.9 | 120.7 | 745 43 22.18 | 9.66 2.9 0
4 4

Table 4.7 Maximal eigenvalue and trace upper bounds (Example 4.3.3)

The data presented above clearly show the role of the defined in (3.26)-(3.28) term S(a,q)

in getting tighter upper estimates for the DALE solution. The respective estimates become

sharper as the parameter i increases. The exact solution matrix is obtained for i = 9.

Application of the available upper bounds leads to the following results:

| ,(P) =92.132 < 174.5826, bound (1.39),
| ,(P) =92.132 < 174.2023, bound (1.68),
tr (P) =160.0946 < 273.6842 , bound (1.42),
tr (P) =160.0946 < 273.6642 , bound (1.67),

tr (P) =160.0946 <1324.7 , bound (1.68),

d, =89.5%
d, =89.08%
d, =70.95%
d, =70.94%
d, =727.45%

where the scalar estimates due to (1.68) are computed as the maximal eigenvalue and the

trace of the upper matrix bound.

4.4 THE DARE BOUNDS

Example 4.4.1 Consider the following unstable coefficient matrix in (1.14):



0.4

-13

-0.2

-0.2

0.1

0

-07 0

0.1

0.3

and the control matrix of rank 2

N
0100000000}

0 000O0OOOOTO1

|

Let the right-hand side matrix be chosen as:

0

1 0000O0O0O0OO0ODO

0 00O0OOOOO OO

00100O0OO0OO0OTO0OTO

0 00O0OOOOG OO

0 00O0OOOOGOO
0 00O0O0O1O0O0OO0COTO

000O0OOI1O0O0O

0 00O0OOOI1O0O

0 00O0OOOOT1O

0 00O0OOOOOG OO

Q

0O 000 O0OOOOOTO
€R,,

01 000O0OO0OO0OTO0OTO

|

For

A+ BK in (3.71) is given by

the close-loop matrix A.



0 a 0 0 0 0 0 0 0 0.4
0 03 0 O 0 0 0 0 0 0
0 0 02 0 0 0 01 0 0 0
O 0 0 O 0 0 -02 0 -02 O

/o o o0 o0 -a 0 © 05 0 0.2
o= 01 0 0 0 0 0 0 0 0 0
0O 0 05 0 0o 0 O 0 0 0
o 0o 0 0 -070 O 0 0 0
o 0 0 O 0 b 0 0 0 0

0 03 0 01 0 0 03 0 0 0

Case (i) Leta =0.9, b =1. The positive definite solution of the DARE has the following
eigenvalues and trace:

|,(P)=2.0001,1,(P)=1.8981, | ,(P) =1.4985, | ,(P) =1.3178, | .(P) =1.0246,

| (P)=1.0020,1,(P)=1.0001,14(P)=0.7743, | ,(P) =0.1056, | ,,(P) =0.0013,
and tr(P) = 10.6403.
Matrix A. is stable but s (A.)=1.2272. According to Lemma 3.5 the solution of the
DARE (1.14) is bounded from above by the solution U of the DALE (3.72), where:

I
o
o
o
o
o
o
o
o
o

QO
[

O O O O O O o o o
O O O O O O O O Bk
O O O O O O o +— O
O O O O O O o o o
O O O O O O o o o
O O O O r O O O O
O O O B O O O O O
O Ok O O O O O O
O B O O O O O o o
O O O O O O o o o

Since
L(RR)<L R=(AA)" R=(AA)"
A ef(see Lemma 3.1, statement (iii)). In other words, the defined in (3.4) and (3.5)

matrices ®,",®, are Lyapunov matrices for A. . Since A. is also nonsingular, then



®, =R, ®, =R,, in accordance with Lemma 3.1, statement (iv). The upper matrix bound
for the DARE solution P

P<R,,=m,R,, m,,=11.9859
has been obtained using (3.75). This bound can be improved in sense of tightness in

accordance with (3.90) since R, satisfies the inequality (3.88). The scalar bounds
improvement and the decrease in the eigenvalue and trace estimation percentage errors, d,

andd, , respectively, are illustrated by the next table.

Bound| P, U,, U,, U,, Uy, Uss
l,() |14.7086 | 11.9601 | 5.6210 2.3357 2.0479 2.0335
d () 635.4 | 497.98 | 181.04 16.78 2.39 1.67
tr(-) |59.7189 | 25.5318 | 15.5104 | 11.8055 | 11.0301 | 10.9321
d, () 461.25 | 139.95 45,77 10.95 3.66 2.74

Table 4.8 Maximal eigenvalue and trace upper bounds (Example 4.4.1)

Consider the upper matrix bound in (1.59). A new upper matrix bound F~>U is obtained for

R, =U,. Its eigenvalues and trace are computed as follows:
|,(R,)=2.0001,1,(R,)=1.9302, 1 ,(P,)=1.5562, | ,(R,) =1.3200, | .(P,) =1.026 ,
| (R,)=1.0020,1,(PR,)=1.0001, | ,(P,)=0.7750, | ,(R,) =0.1077, | ,(P,) = 0.0013,

and tr(P) = 10.7426. The upper eigenvalue and trace bounds due to R, are very tight. E.g.
1,(P)=1,(R,), | ,(P)=1,(R,) and the trace estimation error is d, (P, ) = 0.96%.

Case (ii) Leta =0.4,b =0.6 . Then, | ,(RR,)=0.4662, i.e. A eS . The trace and the
eigenvalues of the solution matrix P are computed as follows: tr(P) = 8.5901 and
l,(P)=1.36,1,(P)=1.3184,1,(P)=1.1724, 1 ,(P)=1.0328, | ,(P) =1.0136,
| +(P)=1.0001, I ,(P)=0.9483,1 ,(P) =0.5958, | ,(P) =0.1472,1 ,,(P) =0.0014
The defined in (3.4) and (3.5) matrices ®,*,®, are Lyapunov matrices for A. . Since A. is

also nonsingular, then ®, =R, ®, = R,, in accordance with Lemma 3.1, statement (iv).

The upper matrix bound for the DARE solution P



P<R,=m,R, m,=10.8184
has been computed from (3.75) and then improved in sense of tightness in accordance with

(3.90) since R, satisfies the inequality (3.88). The scalar bounds improvement and the
decrease in the eigenvalue and trace estimation percentage errors, d, andd, , respectively,

are illustrated by the next table.

Bound | P, U, u,, U, u,, U,
l,() | 944228 | 43672 | 1.8812 | 1.3607 1.3601 1.36
d () | 592.85 | 221.12 | 38.32 0.0515 0.0074 0
tr(-) |43.6179| 16.0219 | 10.6974 | 9.5645 9.1365 9.012
d, () | 407.77 | 86.52 24.53 11.34 6.36 491

Table 4.9 Maximal eigenvalue and trace upper bounds (Example 4.4.1)

A new upper matrix bound I5U is obtained for R, =U . in (1.59). Its eigenvalues and trace

are computed as follows:

1,(R,)=1.36,1,(P,)=1.32,1,(P,)=1.1864, | ,(P,) =1.0947, | .(P,) =1.0281,

| (R,)=1.0136, 1 ,(PR,) =1.0001, | ,(P,) =0.6069, | ,(R,) =0.1534, 1 ,,(R,) =0.0015,

and tr(P) = 8.7647, i.e. the estimated eigenvalues and trace are very close to the exact ones.
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