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Abstract: In the paper is considered the automatic construction of models of 
technical objects based on the information flows coming from them. The current 
state and conditions for solving this problem are analyzed. It is proposed to use 
multi-level relatively finite operational automats when building the models. Such 
automats can reflect the behavior of both single and group objects. An example is 
given that demonstrates the possibility of using multilevel synthesis methods for 
modeling objects, including in flexible distributed environments. 
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1. Introduction
One of the promising areas of artificial intelligence is the creation of abstract 
computers capable of observing technical objects and generating control actions. 
For this, machines must be able to build and use spatio-temporal models of objects 
based on the signals received from these objects. Signals are structured data streams 
containing information about objects. In this case, there is a need to determine 
information elements, their processing and linking. Models can describe the 
structure of an object, its state and behavior at time intervals related to the present, 
past or future. When modeling, it is necessary to use an artificial intelligence 
apparatus (AI), in particular, methods of intellectual processing of statistical data, 
methods of pattern recognition, forecasting. 
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Various spaces for describing incoming signals are possible. In the general 
case, these are multilevel spaces of various characteristics inherent in analog and 
digital signals. At the upper level, these signals can represent messages tied to 
objects and their addresses. Each message has its own content, internal structure. 
Messages can contain essential information about both the sender and the recipient, 
as well as other objects. At lower levels, these can be segments (data blocks), 
packets, frames. At the lowest level, signals, for example, presented as a sequence 
of pulses, are described by their physical characteristics. Such characteristics may 
include the direction to the signal source, the carrier frequency at which they are 
transmitted, the amplitude, duration and shape of the pulses, their delays, repetition 
rate, duration of bursts, and others. Between these characteristics, there can be both 
linear and nonlinear dependencies. 

With the automatic processing of simple signals containing time series or 
individual measurement results, there are no significant problems when building 
object models. They arise in the analysis of complex spatio-temporal signals. 
Currently, their solution is reduced to the development of highly specialized 
methods for processing disparate results of parameter measurements and linking the 
results to each other according to common properties. 

Known methods for constructing models of objects are poorly focused on the 
use of information transmitted in signals. This significantly impedes the creation of 
control computers. A search is needed for new, more efficient methods for 
automatically constructing models of observed objects. 

The article in the second section analyzes the current state of the methods of 
event binding and building object models. In the third and the forth sections, issues 
of software modeling of technical objects, including in distributed environments, 
are considered. The fifth section provides an example explaining the construction of 
these models. 

2. Analysis of known models and data binding methods  
Signal binding is known in publications, both philosophical and dedicated to 
specific scientific methods. The general works on this topic include the works [1], 
[8], [11], [12], which reveal the views on the classification and possible 
relationships between the various characteristics of the signals. Among the works 
on specific methods, along with others, can be distinguished papers [1-10]. 

By analyzing well-known approaches to signal binding, they can be divided 
into three groups: methods for binding events in different spaces without taking into 
account time; methods for linking events over time; spatial-temporal event binding 
methods. 

The first group includes methods of static data analysis that are independent 
of time, for example, pattern recognition methods [12]. They are widely used in the 
processing of static images, texts, structures. The second group includes methods 
for analyzing time series, constructing various regression models, and others. The 
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third group of methods provides for the construction of complex models of objects 
based on joint spatio-temporal data analysis. At any point in time, a combination of 
events and static connections between them in a certain space can take place. 
Relationships between events related to different points in time may also occur. For 
modeling complex objects, systems of describing differential equations, real-time 
neural networks and other models built can be used [1], [15-22].   

One of the first intensive studies on signal binding and the construction of 
models corresponding to them were done by A.A. Feldbaum and M.A. Aizerman. 
Fundamental work was carried out in a number of laboratories of the Institute for 
Management Problems [13]. 

Separately, one can highlight the achievements in the field of identification 
theory N.S. Rybman, who proposed methods for constructing mathematical models 
of control objects based on experimental statistics.  

The next step in the development of signal binding was made as part of the 
formation of the neural network approach [18], [19]. For its successful application 
in practice, adequate neural network models and large computing resources are 
required. In the future, it is possible to implement large neural networks in the form 
of powerful intelligent neurochips and their assemblies. 

So far, the known solutions are not perfect due to the lack of elaboration of 
models of recurrent neural networks in real time and the technologies for their 
implementation in the form of neurochips using memristors. Neural networks are 
required that provide not only fast, but also deep processing of perceived 
information flows. To some extent, this contradiction can be resolved by creating 
promising recurrent neural networks with controlled elements. The fundamentals of 
their construction can be found in [20-22]. 

The entire sufficiently varied apparatus of artificial intelligence discussed 
above can be useful in linking events. However, for the operational construction of 
flexible spatio-temporal models of observed objects, the coordinated use of many 
existing methods is required.  

For a formalized description of object models in the form of connected 
changing structures, an automated approach to modeling can be used. The 
feasibility of using this approach is determined by the fact that automatic models 
reflect the state of objects, conditions and methods of transitions between them. 
During transitions, data processing about objects, event binding can be performed. 

At the abstract level, classes of automats are distinguished in accordance with 
the properties of the objects that they describe. Classes are determined by the time 
model used, the dimension and power of the sets of states. The dimension of an 
automaton is determined by the number of generalized states, which can be finite or 
countable. Each of the generalized states can take values from a finite, countable, or 
continuum set, depending on the order of the recurrence relations that describe the 
behavior of finite automats. Automats of the first kind and second kind are 
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distinguished. The state of the automats may depend on one or many previous 
states. 

For a more detailed description of the properties of automaton models, one of 
two systems of automaton models is used. The first is defined for the field of formal 
languages, the second for the field of logical control. In the first case, abstract 
automata are studied, in the second, structural automata. Abstract automata are 
focused on the recognition of software languages. Structural automata are 
considered as control devices. The number of input influences is not known in 
advance and not necessarily of course. Structural models can have automata without 
memory, automata with memory, automata without an output converter, Moore 
automats, Miles automats, mixed automats. Such automats are used in reactive 
systems [23]. An analysis of the properties of structural automats shows that they 
are applicable for a formalized description of object models [24]. There is 
experience in modeling technical and natural objects using an automated approach. 
However, previously used automats have a number of limitations. They allow you 
to build an only single-level model, which does not correspond to the structure of 
real objects. In addition, the possibilities for rebuilding automaton models of objects 
when changing modeling conditions are quite limited. Overriding only certain 
model parameters is allowed. There are problems with the high computational 
complexity of building object models, the need to improve the accuracy of models. 

In [27], new hierarchical relatively finite automaton models were proposed 
based on single-level models that are devoid of the drawbacks discussed above and 
can be used to construct models of observable objects. Synthesis methods for such 
models were proposed in [28]. 

3. Software modeling of technical objects  
In software modeling of objects using information systems, it becomes possible to 
build models of various sizes, i.e. implement a multi-scale approach to modeling. 
The scale can be set in relation to the simulation time. At a low time scale, the 
model reflects the subtle details of the behavior of objects. With an increase in the 
scale, details are excluded; in a more explicit form, the general trends in the 
behavior of objects appear in the models. The atomic elements can be models of 
individual nodes, aggregates, subsystems, or systems of the object under study. 

Relations between models of various scales can be established using models 
and methods of inductive and deductive synthesis. In the first case, the relationships 
are built in the direction from low-scale models to higher-scale models. In the 
second case, the relationships are built in the direction from high scale to low scale 
models. The joint use of the ideas of multi-scale modeling and methods of inductive 
and deductive synthesis allows the formation of well-structured models. Using such 
models, it is possible to evaluate the stability of the observed states of objects and 
the changes occurring with them. 
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In a generalized form, the structure of a system that implements the 
construction of models of technical objects can be represented in the form shown in 
Fig. 2. 

 

 
Fig. 2. The generalized structure of the system for automatically building models of objects 

 
The system allows you to build models at different scales using the same 

algorithms, however the complexity of the simulation is significantly different. 
Complexity can be rated at 𝛼𝛼𝑘𝑘𝛼𝛼𝑁𝑁

𝑎𝑎𝑘𝑘
, where 𝛼𝛼𝑁𝑁 is the number of model elements that 

are formed at the smallest scale. 𝛼𝛼𝑘𝑘 is the number of model elements that are 
formed at scale 𝑘𝑘. Coefficient 𝛼𝛼𝑘𝑘 is defined as dependency 𝛼𝛼𝑘𝑘(𝛼𝛼1,𝑘𝑘,𝛼𝛼2,𝑘𝑘), where 
𝛼𝛼1(𝑘𝑘) is average volume of changes made to the model in one simulation step, 
𝛼𝛼2(𝑘𝑘) describes changes in the state of the object that are not taken into account 
when rations are estimated for scale 𝑘𝑘, regarding the smallest scale. Coefficients 𝛼𝛼1 
and 𝛼𝛼2 can be justified by the following features of the modeling processes. The 
less often a model is built, the more operations are required to rebuild it. Part of the 
changes occurs between the points in time at which the models are reconstructed. 
On a large scale, some of them become indistinguishable by the time of the next 
restructuring of the model. The simulation results for several open data sets make it 
possible to obtain experimental estimates of the change in complexity with change 
in scale.  

In a significant number of cases, a logarithmic dependence was observed. 
Examples of dependencies are shown in Fig. 3 a), b).  

The graphs show the results obtained when processing data from two sources. 
The first source transmitted data on four objects, the second – about five. The main 
difference between the sources was the intensity of the data. The first source can be 
attributed to low-frequency, the second to high-frequency. The transmission 
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frequency is justified by the dynamic properties of the simulated objects. At 
different simulation intervals, the values of the coefficients 𝑎𝑎 and 𝑏𝑏 were different. 
The complexity assessment is given in arbitrary units, the values are normalized. 

 

 
а) low frequency data source 

 

 
b) high frequency data source 

Fig. 3 Dependences of the complexity of building models on the time scale of modeling 
 
To assess the changes, a graphical representation of the models was used. 

Quantitative values are obtained by calculating the distance between graphs. 
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4. Modeling of technical objects in flexible distributed 
environments  
A flexible distributed environment refers to the technology of building the software 
and technical modeling infrastructure with the possibility of dynamic 
reconfiguration. In distributed environments, a consistent construction of object 
models is provided, implemented on various tools, which are usually combined into 
a network. Such an organization of resources is able to provide maximum 
computing power to solve the most complex and resource-intensive tasks [26]. A 
typical structure of a flexible distributed modeling environment is shown in Fig. 4. 
 

 
Fig. 4 Typical structure of a flexible distributed modeling environment 

 
According to Fig. 4 models or their fragments can be built directly on the 

observed objects, as well as through the use of external computing tools. At the 
same time, external computers can be individual computers or high-performance 
clusters that combine many servers. The distribution of modeling tasks between 
elements of the environment can change with changing simulation conditions. 

With flexible modeling in distributed environments, a software robot is 
placed on each element of the environment. The robot is an abstract computer that 
allows you to interpret the program modules loaded into it [25]. The composition 
and content of loaded software modules determine the behavior of the robot. 
Modules can be supplemented and changed in dynamics. The main distinguishing 
feature of the software robot is the simplicity of its organization and configuration, 
low resource requirements. There are several basic types of robots: autonomous 
robots, fully functional robots, simple robots. Autonomous robots are well-placed to 
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solve all the tasks needed to build models. They are able to independently shape the 
modeling processes and control the course of modeling, relying on a common 
algorithm for building models. Full-featured robots can solve individual modeling 
tasks provided that the composition of the raw data, the requirements for expected 
results are determined, and modeling processes are known. For example, such a 
robot can successfully solve the problem of calculating the characteristics of 
incoming signals or identifying associative dependencies between the values of 
characteristics. Simple robots can perform a limited number of fairly simple 
operations. These robots require minimal resources. They usually prepare the data 
for later processing. Preparatory operations include conversion of formats, 
identification of model structures and sequences, etc.  

By installing and customizing robots on the elements of the simulation 
environment, it becomes possible to configure the environment flexibly. Here are 
some of the possible configurations:  

The first configuration involves placing autonomous robots on the observed 
objects. The interaction of these robots with robots installed on external 
computations is limited. In some cases, the ability of objects to interact with 
external systems may not exist. Thus, most of the simulation tasks are solved by 
autonomous robots. With this approach, external systems resources are virtually 
non-utilized, and the load from data networks is also removed. This configuration 
can be applied when a surveillance object is a complex remote object. 

In accordance with the second configuration, the bulk of the modeling tasks 
are solved on external computing. At the same time, they house full-featured robots, 
and on the objects of observation - simple robots. Robots placed on objects control 
the collection of data, ensure the implementation of incoming external requests and 
the transmission of the results. In this configuration, the main computational load 
falls on external means. This configuration can be used when a large amount of data 
needs to be processed, but the technical capabilities of the observed objects are 
limited. 

A combined option is possible. This option involves a flexible distribution of 
simulation tasks between robots placed on external computers and objects. Robots 
have the capabilities of autonomous or fully functional robots. The amount of 
opportunities being realized depends on the results of dynamic task allocation. 
Tasks are distributed on the basis of identifying the best ways to organize the 
collective work of robots. 

5. Example of modeling of technical objects  
Let's look at modeling technical objects by example. Let radio frequency pulses act 
as elementary signals. When each such pulse is taken, the swaddling on the source 
of radiation, carrying frequency, amplitude, pulse duration, relative delay and other 
characteristics can be determined. As a result, each impulse can be matched by its 
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set of performance values. All signals received at the same moment or elementary 
time interval and their characteristics are linked in the spaces of their values. In this 
bind, the time is not taken into account. As a result of binding, graphs are formed 
(Fig. 5).  
 

a)  b)  
Fig. 5. Graphic representation of the binding characteristics of the simultaneously received 

signals: a) examples of links of signal characteristics; b) example of combining sets of 
signal characteristics. f, A, P, D, N, K, V – conditioned frequencies, amplitudes, swaddling, 

pulse duration, range to the object, its height, course, speed 
 

The tops of these graphs correspond to the characteristics, and the arcs 
correspond to the relationship between the peaks on Fig. 5 and shows examples of 
signal links from three objects. Among them, the second and third objects have one 
common weighty sign in the form of the same value of the swaddling. This allows 
you to combine the characteristics sets of the second and third objects, believing 
that it is the same object (Fig. 5b). As a result, the second set of characteristics is 
supplemented by range values to the object, its height, speed and course of the 
track. This additional information about objects can be obtained through parallel 
active channels of extraction. This binding of signals without taking into account 
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the time from the position of building automatic models of observed processes 
allows to identify the structure of the input, internal and output data of the 
synthesized machine, to determine the permissible sets of it. By comparing 
successive sets of characteristics for pulses, the functions and parameters of 
transitions from one value to another can be defined. As a result, we get for each 
pair of consecutive sets of transition selections from one character value to another. 
In private, these can be functions that connect moments of pulses, frequency values, 
and others. 

Transferring the machine to the next internal state provides that the inputs are 
those that were received at the previous moment. As internal states of the machine 
at the moment accepted previously remembered data. In a private case, the release 
of the machine can be considered as a dependence only on its internal state. 

At the next level, the signals analyzed can be formalized in the form of reves 
of pulses of varying lengths, with specific repetition frequencies, recognized object 
modes and other characteristics. At this level, the functions and parameters of 
objects' transitions from one mode of operation to another can be established, taking 
into account values, such as the range and height of an object, its connections to 
other objects.  

As a result, at each possible level, signals can be presented as threads of sets 
of their characteristics that are to be processed. Fig. 6 shows an example of such a 
scheme. 
 

 
Fig. 6. An example of a diagram of the set values of signal characteristics relating to 

different objects 
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According to the proposed method, it is possible to build not only models of 

individual, but also group objects. In order to do so, there is a need to establish 
stable links between signals pertaining to different objects. 
In all of these cases, the final operating machines are applicable to formalize the 
observed objects.   

6. Conclusion 
Analysis of known methods of automatic construction of models of objects has 
shown that they are largely imperfect. Methods of building full-fledged space-time 
models of such objects are only now beginning to develop actively.  

In order to develop such methods, it is proposed to use multi-level, relatively 
finite operating machines as automatically formed models of observed objects. The 
example shows that hierarchical synthesis methods for end operating machines can 
be put into direct practice in the development of modeling software environments.  
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