
БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ • BULGARIAN ACADEMY OF SCIENCES

ПРОБЛЕМИ НА ТЕХНИЧЕСКАТА КИБЕРНЕТИКА И РОБОТИКАТА, 69
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 69

София • 2018 • Sofia

Hardware acceleration of a scheduling algorithm for
crossbar switch node via decomposition of the connection

matrix.

Kiril Kolchakov, Vladimir Monov
Institute of Information and Communication Technologies, 1113 Sofia, Bulgaria

Email: kkolchakov@iit.bas.bg

Abstract: In this paper we propose an approach for improving the execution time
of an algorithm for cross bar switch node with large dimension of the connection
matrix. The algorithm is executed by diagonal connectivity matrix activation and it
is optimal with respect to speed and common performance in the cases of small and
medium dimensions of the connection matrix. In the case of large dimensions of the
connection matrix, we apply a decomposition approach in order to accelerate the
synthesis of a non-conflict schedule

Key words: network nodes, node traffic, crossbar switch, conflict elimination, packet
messages.

1. Introduction

The objective of this study is to improve the execution time of a scheduling algorithm
for crossbar switch node with diagonal activation of the connection matrix. The
algorithm is intended for CPU that controls the requests execution serving the traffic

83

mailto:kkolchakov@iit.bas.bg

in the crossbar node. The crossbar node works in real-time, and the speed, total
performance and memory required are of utmost importance.

One of the main problems in the operation of switching nodes is the presence of
conflicts in the incoming requests which dramatically reduces the traffic. To
eliminate conflicts, algorithms for scheduling the requests processing through a
conflict-free schedule are used.

The problem with the conflicts associated with the operation of the switching
nodes is as follows: the switches in the switching nodes are of the N x N size. N
number of packet message sources are connected through the switch of the switch
node with N number of receivers of these messages.

Conflicts occur in two cases:
• When a message source requests a connection to two or more message receivers.
• When a message receiver has a connection request from two or more message

sources.
The switch state of a Crossbar node is represented by the so-called connection

matrix. For a switch of N x N size , the connection matrix T is also N x N, with each
member Tij = 1 if there is a request for a connection between the source of the
message i and the receiver j. Otherwise Tij = 0.

A conflicting situation occurs when, in any raw of the connection matrix, the
number of units is greater than one, this corresponds to the case when one source
declare a connection to more than one receiver. The presence of more than one unit
in any column of the T matrix is also an indication of a conflict situation and means
that more than one source has declared a connection to one and the same receiver
[1,3,4].

In this paper we consider an algorithm for synthesis of non-conflict schedule by
diagonal connectivity matrix activation. The algorithm has been optimized with
respect to speed and common performance in the cases of small and medium
dimensions of the connection matrix. Here, our aim is to accelerate the synthesis of a
non-conflict schedule in the case of large dimensions of this matrix. We compare
optimized and existing algorithms in terms of speed, complex performance and
memory required. For this purpose, their software models have been used for various
characteristic types and sizes of the T-connection matrix. There are studies on
modeling the traffic in crossbar switch nodes via the apparatus of generalized nets
[6]. Here, we use software models written in Matlab language.

2. Description of the algorithm

The algorithm with diagonal connectivity matrix activation (ADA) uses the
knowledge that requests placed diagonally are non-conflict [3]. Requests placed in
any diagonal parallel to the main one are non conflicting with each other. In T
connection matrix of N x N size, the number of diagonals with requests is 2N-1.
 ADA activates the main diagonal of service requests and then sequentially
activates the requests diagonals above and below it. For each iteration, only one
requests diagonal is triggered, the first iteration being for the main diagonal. The
84

iteration counter is organized to check that the number of iterations has not become
2N - 1, i.e. whether all requests diagonals have been enabled.
 The downside of ADA is that it does not monitor the exhaustion of the requests.
Whether at any stage of the algorithm's work, all requests are executed or not, 2N-1
of query diagonals are activated sequentially. Furthermore, the algorithm does not
check for a zero-connection T matrix, an event that is very rare, but it is possible to
happen. In this case, 2N - 1 number of zero diagonals will start to be activated
sequentially. Arrived requests in previously activated null diagonals can not be
processed until the last of the zero input matrix diagonals is not activated.

3. Optimized ADA

Considering the above mentioned drawbacks, an optimization of the algorithm ADA
is implemented including the following steps.

1. Verify for a zero T connection matrix. At T = 0, the algorithm stops
working[1].

2. Check for requests exhaustion for each iteration i.e. after activating a current
requests diagonal, the number of requests in the queries are subtracted from the
current amount of requests prior to its activation. It is checked that the current amount
of requests are not reset, and if so, the algorithm stops working before all 2N - 1s of
diagonals to be activated [1].
 The examination of the optimized algorithm with diagonal connection matrix
activation (ADAO) has been done through its SMADAO software model. Tests are
performed with respect to speed, memory and complex performance of the algorithm.
Typical types of connection matrices are used at different N values.
 The comparison between the optimized version ADAO and the original
algorithm ADA is also made through their SMADAO and SMADA software models.
The software models are written in the Matlab programming language and tested on
the Dell OPTIPLEX 745 computer system (Core 2 Duo E6400 2.13GHz, RAM
2048).
 Figure 1 shows five types of characteristic connection matrices.

Fig. 1. Types of connection matrices.

85

The performance P of the non-conflict scheduling algorithms is calculated using
formulas 1 and 2. R (v) denotes the number of null solutions (solutions when service
requests are not realized), R (W) is the number of non-zero solutions, and R is the
total number of solutions. P is the relation of non-zero solutions to the total number
of solutions. When the number of zero solutions tends to zero, performance P
approaches to 100% [1].
 R=R(v) + R(w) (1)
 P=(R(w)/R).100[%] (2)

Complex performance (CP) includes the speed and it is calculated by formula 3
[1].
 CP = P.t , при N = const. , t = 1/S (3)
In Formula 3, S indicates the time in seconds to run the non-conflict schedule by
using the respective software model. P is the performance. When the value of S is
small, i.e the algorithm is faster, it is seen that t is larger and CP has a higher value.

4. ADAO examination and comparison with ADA at null connection matrix

The software models of the ADAO and ADA algorithms for zero input matrices for
different N values are used in the study. Table 1 and Table 2 show the results.

Table 1. Speed and memory required Table 2 Complex Performance

From Table 1 it is seen that SMADAO is 2.6 times faster than SMADA at N = 50, up
to 14.6 times at N = 250.
The required memory on SMADAO is on average 5 times smaller than SMADA.
 Table 2 presents the results of the study in terms of performance P and complex
CP performance, calculated according to Formulas 2 and 3, respectively. For
SMADAO, P is 100% for all sizes of N, while SMADA is 0%. CP for SMADAO
decreases with N increase of 370.37 at N = 50, to 33 at N = 350, and CP at SMADA
is zero for all N values[1].

5. ADAO and ADA comparison in typical connection matrices

Considering the typical types of connection matrices represented in Figure 1, it can
be concluded that the type 2D corresponds to the most common traffic because the
requests are randomly allocated. Larger connection matrix sizes have been selected
for greater reliability in determining the trend of the results.

 SMADAO SMADAO SMADA SMADA
N P[%] CP P[%] CP
50 100 370,37 0 0
100 100 322,58 0 0
150 100 208,33 0 0
200 100 135,13 0 0
250 100 104,66 0 0
300 100 42,73 0 0
350 100 33,00 0 0

 SMADAO SMADAO SMADA SMADA
 N S[Sec.] M[KB] S[Sec.] M[KB]
50 0,27 20,62 0,71 101,03
100 0,31 81,22 2,02 402,03
150 0,48 181,82 3,9 903,03
200 0,74 322,43 7,24 1604,03
250 0,96 503,03 14,11 2505,03
300 2,34 723,63 18,88 3606,03
350 3,03 984,23 22,30 4907,03

86

 Tables 3 through 7 present the results of the study in terms of speed and memory
required for the different types of connection matrices [1].

Table 3. Speed and Memory required Table 4. Speed and memory required
in connection matrix 2A in the connection matrix 2B

 SMADAO
2A

SMADA
2A

N S[Sec.] M[MB] S[Sec.] M[MB]
 100 0,23 0,240832 1,36 0,402456
 500 8,41 6,004032 42,92 10,012056
1000 34,51 24,008032 105,63 40,024056
1500 80,10 54,012032 183,46 90,036056
2000 95,65 96,016032 199,15 160,040056

Table 5. Speed and Memory required Table 6. Speed and memory required
in connection matrix 2C in the connection matrix 2D

Table 7. Speed and memory required Table 8. Complex Performance
in a connection matrix 2E

 SMADAO
2E

SMADA
2E

N S[Sec.] M[MB] S[Sec.] M[MB]
 100 1,69 0,482432 1,81 0,482456
 500 34,52 12,012032 33,78 12,012056
1000 112,13 48,024032 112,26 48,024056
1500 253,85 108,036032 264,14 108,036056
2000 431,03 192,048032 302,66 192,040056

From Tables 3 to 7 it is seen that the required memory is almost the same for
SMADAO and SMADA in connection matrices 2B, 2C, 2D and 2E. For matrix type
2A, the memory required for SMADAO is about 1.66 times less than SMADA for all
N.

Table 8 presents the results obtained for the complex performance of SMADAO
and SMADA with different input connection matrices for N = 500 [1].
We have also studied the speed of execution of algorithms ADA and ADAO for large
sizes of the connection matrix. The results obtained by means of the respective
software models SMADA and SMADAO are shown in Table 9. From these results,
it can be seen that in the cases of large sizes of the connection matrix, SMADAO
speed compared to the speed of SMADA, generally decreases. In particular, for N =
2000, with exception of 2A, for all other types of characteristic input matrices, the
speed of SMADAO is less than that of SMADA.

 SMADAO
2B

SMADA
2B

N S[Sec.] M[MB] S[Sec.] M[MB]
 100 1,74 0,409608 1,79 0,409632
 500 33,52 10,048008 33,11 10,048032
1000 103,93 40,096008 101,05 40,096032
1500 253,57 90,144008 255,74 90,144032
2000 358,99 160,192008 269,60 160,184032

 SMADAO
2C

SMADA
2C

N S[Sec.] M[MB] S[Sec.] M[MB]
 100 2,14 0,199608 3,83 0,199632
 500 30,18 4,798008 32,71 4,798032
1000 102,74 19,096008 109,54 19,096032
1500 258,31 42,894008 253,99 42,894032
2000 403,88 76,192008 263,14 76,184032

 SMADAO
2D

SMADA
2D

N S[Sec.] M[MB] S[Sec.] M[MB]
 100 1,65 0,402432 1,78 0,402456
 500 30 10,012032 34,10 10,012056
1000 97,89 40,024032 97,96 40,024056
1500 236,86 90,036032 265,88 90,036056
2000 369,90 160,048032 284,18 160,040056

Type
Matrix

SMADAO
СР

SMADA
СР

 2A 11, 89 0,15
 2B 0,59 0,60
 2C 2,65 2,44
 2D 2,66 2,34
 2E 1,54 1,57

87

Table 9. Speed for N=2000 for typical input connection matrices

In view of the above results, our aim is to improve the execution time of ADAO at
large N-sizes. For this purpose, we apply a decomposition of the connection matrix,
so that the task being solved is reduced to solving two tasks with smaller dimensions.

6. Acceleration of the optimized algorithm with large dimensions of the
connection matrix

Figure 2 shows the decomposed connection matrix. Sub-matrices α, α +, β and
β+ are the same and of N/2 х N/2 dimensions. Knowledge is used that diagonally
located service requests are non- conflict. Sub-matrices α and β are non- conflict to
each other and α + and β+ are also non-conflict because they are diagonally located
(Figure 2). The time to obtain a nonconflict schedule in the decomposed matrix is
denoted by Q and it is given by

Q = 2.q, (4)
where q is the time to get a non-conflict schedule in a sub-matrix .

It is important to note that for each pair of sub-matrices a non-conflict schedule
is made at the same time.

From Table 6 we can calculate Q for connection matrix 2D and N = 2000. Thus
after decomposition with four sub-matrices with sizes N = 1000, formula 4 gives:

 Q = 2q = 2. 97.89 = 195.78 sec.
In case the connection matrix is not decomposed, the time for the non-conflicting
schedule is S = 369.90sec. This result indicates a considerable improvement of the
execution time of SMADAO with a relatively large sizes of the connection matrix.

Fig. 2. Decomposed connection matrix

Matrix
type

SMADAO
N = 2000

SMADA
N = 2000

2A 95,65 199,15
2B 358,99 269,60
2C 403,88 263,14
2D 369,90 284,18
2E 431,03 302,66

88

A hardware implementation of the proposed decomposition is shown in Fig. 3. To
select sub-matrices in pairs, multiplexing of the buses leading to the packet receivers
is used. Two-input multiplexers and only two N/2xN/2 commutators α* and β* are
used. For X = 0, Y = 1, α* = α, β*= β, while for X = 1, Y = 0, α* = α+, β*= β+.

Fig. 3. Block scheme of the proposed decomposition

Conclusion

The research shows that with zero input matrix, the ADAO optimized algorithm has
advantages over ADA in terms of speed, memory required, and complex performance
for N from 50 to 350. With the input matrix of connections of type 2A, ADAO is 5.9
times faster for N = 100 to 2 times faster for N = 2000. The complex performance CP
of ADAO for 2A is 11.89 vs. 0.15 for ADA.
 For input connection matrix of type 2D (closest to the usual traffic), ADAO is
faster than ADA for N = 100 to N = 1500 including. The trend is that for large N sizes
for 2B, 2C, 2D and 2E, the algorithm's performance is aligned, whereas for N = 2000
ADAO is slower than ADA for all types of input matrices except 2A. However, by
using the approach of connection matrix decomposition for sizes N= 2000, we have

89

obtained a substantial acceleration of the optimized ADAO algorithm. Thus, for N =
2000 and decomposition with two switches of dimensions N = 1000, we obtained 1.
89 times faster conflict-free schedule.

R e f e r e n c e s

1. Kolchakov K., V. Monov. An approach for algorithm optimization of non-conflict Schedule by
diagonal connectivity matrix activation. Proceedings of the International Conference
AUTOMATICS AND INFORMATICS`2017 John Atanasoff Society of Automatics and
Informatics, Bulgaria, Sofia 04.10-06.10.2017., pp. 161 – 164, Proceedings ISSN 1313-1850, CD
ISSN 1313-1869.

2. Kolchakov K., V. Monov. Comparative Analysis of a Class of Algorithms for Traffic
Management in a Crossbar Commutator with Respect to Complex Performance, Speed and
Memory, Problems of Engineering Cybernetics and Robotics, Vol.66, pp.53- 62, Sofia, 2015, ISSN
0204-9848. Bulgarian Academy of Sciences.

3. Kolchakov K., “An Algorithm Synthesis of Non-Conflict Schedule by Diagonal Connectivity
Matrix Activation” Proceedings of the International Conference AUTOMATICS AND
INFORMATICS`11, John Atanasoff Society of Automatics and Informatics, Bulgaria, Sofia 03.10-
07.10.2011., pp. B-247 – B251, Proceedings ISSN 1313-1850, CD ISSN 1313-1869.

4. Tashev, T. , Atanasova, T. Computer Simulation of MIMA Algorithm for Input Buffered Crossbar
Switch. International Journal "Information Technologies & Knowledge", Volume 5, Number 2,
2011. ITHEA® , Sofia, Bulgaria. Pages 183-189.

5. Wanjari P., A. Chonhari, Implementation of 4x4 crossbar switch for Network Processor,
International Journal of Emerging Technology and Advanced Engineering, Website:
www.ijetae.com (ISSN 2250 – 2459, Volume 1, Issue 2, December 2011).

6. Tashev T. Computering simulation of schedule algorithm for high performance packet switch node
modelled by the apparatus of generalized nets. Proceedings of the 11th International Conference
CompSysTech’2010, 17-18 June 2010, Sofia, Bulgaria. ACM ICPS, Vol.471, pp.240-245.

Аппаратное ускорение алгоритма расписания для кросбар
переключателя через декомпозиции матрицы связи

Кирил Колчаков, Владимир Монов

Резюме: Алгоритм выполняется путем диагональной активации входной
матрицы и является оптимальным по скорости и общей производительности
в случае малых и средних размеров матрицы. В случае больших размерностей
входной матрицы применяем подход аппаратной декомпозиции, чтобы
ускорить синтез бесконфликтного расписания.

90

http://www.ijetae.com/

	Key words: network nodes, node traffic, crossbar switch, conflict elimination, packet messages.

