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Abstract: In this paper we propose  an approach for  improving  the execution time  
of an algorithm for cross bar switch node with large dimension of the connection 
matrix. The algorithm is executed by diagonal connectivity matrix activation and it 
is optimal with respect to speed and common performance in the cases of small and 
medium dimensions of the connection matrix. In the  case of  large dimensions of the 
connection matrix, we apply a decomposition approach in order to accelerate the 
synthesis of a non-conflict schedule 

Key words: network nodes, node traffic, crossbar switch, conflict elimination, packet      
messages. 

1. Introduction 

The objective of this study is to improve the execution time of a scheduling algorithm 
for crossbar switch node with diagonal activation of the connection matrix.  The 
algorithm is intended for CPU that controls the requests execution serving the traffic 
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in the crossbar node. The crossbar node works in real-time, and the speed, total 
performance and memory required are of utmost importance.  

One of the main problems in the operation of switching nodes is the presence of 
conflicts in the incoming requests which dramatically reduces the traffic. To 
eliminate conflicts, algorithms for scheduling the requests processing through a 
conflict-free schedule are used. 

The problem with the conflicts associated with the operation of the switching 
nodes is as follows: the switches in the switching nodes are of the N x N size. N 
number of packet message sources are connected through the switch of the switch 
node with N number of receivers of these messages. 

Conflicts occur in two cases: 
• When a message source requests a connection to two or more message receivers. 
• When a message receiver has a connection request from two or more message 

sources. 
The switch state of a Crossbar node is represented by the so-called connection 

matrix. For a switch of N x N size , the connection matrix T is also N x N, with each 
member Tij = 1 if there is a request for a connection between the source of the 
message i and the receiver j. Otherwise Tij = 0. 

A conflicting situation occurs when, in any raw of the connection matrix, the 
number of units is greater than one, this corresponds to the case when one source 
declare a connection to more than one receiver. The presence of more than one unit 
in any column of the T matrix is also an indication of a conflict situation and means 
that more than one source has declared a connection to one and the same receiver 
[1,3,4]. 

In this paper we consider an algorithm for synthesis of non-conflict schedule by 
diagonal connectivity matrix activation. The algorithm has been optimized with 
respect to speed and common performance in the cases of small and medium 
dimensions of the connection matrix. Here, our aim is to accelerate the synthesis of a 
non-conflict schedule in the case of large dimensions of this matrix. We compare 
optimized and existing algorithms in terms of speed, complex performance and 
memory required. For this purpose, their software models have been used for various 
characteristic types and sizes of the T-connection matrix. There are studies on 
modeling the traffic in crossbar switch nodes via the apparatus of generalized nets 
[6]. Here, we use software models written in Matlab language. 

2. Description of the algorithm  

The algorithm with diagonal connectivity matrix activation (ADA) uses the 
knowledge that requests placed diagonally are non-conflict [3]. Requests placed in 
any diagonal parallel to the main one are non conflicting with each other. In T 
connection matrix of N x N size, the number of diagonals with requests is 2N-1. 
 ADA activates the main diagonal of service requests and then sequentially 
activates the requests diagonals above and below it. For each iteration, only one 
requests diagonal is triggered, the first iteration being for the main diagonal. The 
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iteration counter is organized to check that the number of iterations has not become 
2N - 1, i.e. whether all requests diagonals have been enabled. 
 The downside of ADA is that it does not monitor the exhaustion of the requests. 
Whether at any stage of the algorithm's work, all requests are executed or not, 2N-1 
of query diagonals are activated sequentially. Furthermore, the algorithm does not 
check for a zero-connection T matrix, an event that is very rare, but it is possible to 
happen.  In this case, 2N - 1 number of zero diagonals will start to be activated 
sequentially. Arrived requests in previously activated null diagonals can not be 
processed until the last of the zero input matrix diagonals is not activated. 

3. Optimized ADA  

Considering the above mentioned drawbacks, an optimization of the algorithm ADA 
is implemented including the following steps. 

1. Verify for a zero T connection matrix. At T = 0, the algorithm stops 
working[1]. 

2. Check for requests exhaustion for each iteration i.e. after activating a current 
requests diagonal, the number of requests in the queries are subtracted from the 
current amount of requests prior to its activation. It is checked that the current amount 
of requests are not reset, and if so, the algorithm stops working before all 2N - 1s of 
diagonals to be activated [1]. 
 The examination of the optimized algorithm with diagonal connection matrix 
activation (ADAO) has been done through its SMADAO software model. Tests are 
performed with respect to speed, memory and complex performance of the algorithm. 
Typical types of connection matrices are used at different N values. 
 The comparison between the optimized version ADAO and the original 
algorithm ADA is also made through their SMADAO and SMADA software models. 
The software models are written in the Matlab programming language and tested on 
the Dell OPTIPLEX 745 computer system (Core 2 Duo E6400 2.13GHz, RAM 
2048).                                 
 Figure 1 shows five types of characteristic connection matrices. 

 
Fig. 1. Types of connection matrices. 
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The performance P of the non-conflict scheduling algorithms is calculated using 
formulas 1 and 2. R (v) denotes the number of null solutions (solutions when service 
requests are not realized), R (W) is the number of  non-zero solutions, and R is the 
total number of solutions. P is the relation of non-zero solutions to the total number 
of solutions. When the number of zero solutions tends to zero, performance P 
approaches to 100% [1]. 
   R=R(v) + R(w)                                           (1)                                                                                                      
   P=(R(w)/R).100[%]                                   (2)  

Complex performance (CP) includes the speed and it is calculated by formula 3 
[1]. 
   CP = P.t  ,   при  N = const. , t = 1/S           (3) 
In Formula 3, S indicates the time in seconds to run the non-conflict schedule by 
using the respective software model. P is the performance. When the value of S is 
small, i.e the algorithm is faster, it is seen that t is larger and CP has a higher value.   

4. ADAO examination and comparison with ADA at null connection matrix 

The software models of the ADAO and ADA algorithms for zero input matrices for 
different N values are used in the study. Table 1 and Table 2 show the results. 
 
Table 1. Speed and memory required               Table 2 Complex Performance 

 
From Table 1 it is seen that SMADAO is 2.6 times faster than SMADA at N = 50, up 
to 14.6 times at N = 250. 
The required memory on SMADAO is on average 5 times smaller than SMADA. 
 Table 2 presents the results of the study in terms of performance P and complex 
CP performance, calculated according to Formulas 2 and 3, respectively. For 
SMADAO, P is 100% for all sizes of N, while SMADA is 0%. CP for SMADAO 
decreases with N increase of 370.37 at N = 50, to 33 at N = 350, and CP at SMADA 
is zero for all N values[1].  

5. ADAO and ADA comparison in typical connection matrices  

Considering the typical types of connection matrices represented in Figure 1, it can 
be concluded that the type 2D corresponds to the most common traffic because the 
requests are randomly allocated. Larger connection matrix sizes have been selected 
for greater reliability in determining the trend of the results. 

 SMADAO SMADAO SMADA SMADA 
N P[%] CP P[%] CP 
50 100 370,37 0 0 
100 100 322,58 0 0 
150 100 208,33 0 0 
200 100 135,13 0 0 
250 100 104,66 0 0 
300 100 42,73 0 0 
350 100 33,00 0 0 

 SMADAO SMADAO SMADA SMADA 
   N S[Sec.] M[KB] S[Sec.] M[KB] 
50 0,27 20,62 0,71 101,03 
100 0,31 81,22 2,02 402,03 
150 0,48 181,82 3,9 903,03 
200 0,74 322,43 7,24 1604,03 
250 0,96 503,03 14,11 2505,03 
300 2,34 723,63 18,88 3606,03 
350 3,03 984,23 22,30 4907,03 
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 Tables 3 through 7 present the results of the study in terms of speed and memory 
required for the different types of connection matrices [1]. 

Table 3. Speed and Memory required                         Table 4. Speed and memory required  
in  connection matrix 2A                         in the connection matrix 2B 

 SMADAO 
2A 

SMADA 
2A 

N S[Sec.] M[MB] S[Sec.] M[MB] 
  100   0,23 0,240832     1,36     0,402456 
  500   8,41 6,004032   42,92   10,012056 
1000 34,51 24,008032 105,63   40,024056 
1500 80,10 54,012032 183,46   90,036056 
2000 95,65 96,016032 199,15 160,040056 

 

Table 5. Speed and Memory required                        Table 6. Speed and memory required  
in  connection matrix 2C                         in the connection matrix 2D 

 
Table 7. Speed and memory required                          Table 8. Complex Performance                                               
in a connection matrix 2E 

 SMADAO 
2E 

SMADA 
2E 

N S[Sec.] M[MB] S[Sec.] M[MB] 
  100     1,69   0,482432      1,81     0,482456 
  500   34,52   12,012032   33,78   12,012056 
1000 112,13   48,024032 112,26   48,024056 
1500 253,85 108,036032 264,14 108,036056   
2000 431,03 192,048032 302,66 192,040056 

 

From Tables 3 to 7 it is seen that the required memory is almost the same for 
SMADAO and SMADA in connection matrices 2B, 2C, 2D and 2E. For matrix type 
2A, the memory required for SMADAO is about 1.66 times less than SMADA for all 
N. 

Table 8 presents the results obtained for the complex performance of SMADAO 
and SMADA with different input connection matrices for N = 500 [1]. 
We have also studied the speed of execution of algorithms ADA and ADAO for large 
sizes of the connection matrix. The results obtained by means of the respective 
software models SMADA and SMADAO are shown in Table 9. From these results, 
it can be seen that in the cases of large sizes of the connection matrix, SMADAO 
speed compared to the speed of SMADA, generally decreases. In particular, for N = 
2000, with exception of 2A, for all other types of characteristic input matrices, the 
speed of SMADAO is less than that of SMADA. 
 
 
 

 SMADAO 
2B 

SMADA 
2B 

N S[Sec.] M[MB] S[Sec.] M[MB] 
  100     1,74     0,409608     1,79     0,409632 
  500   33,52   10,048008   33,11   10,048032 
1000 103,93   40,096008 101,05   40,096032 
1500 253,57   90,144008 255,74   90,144032   
2000 358,99 160,192008 269,60 160,184032 

 SMADAO 
2C 

SMADA 
2C 

N S[Sec.] M[MB] S[Sec.] M[MB] 
  100     2,14       0,199608        3,83    0,199632     
  500   30,18   4,798008   32,71    4,798032   
1000 102,74 19,096008 109,54  19,096032 
1500 258,31 42,894008  253,99  42,894032 
2000 403,88 76,192008 263,14  76,184032 

 SMADAO 
2D 

SMADA 
2D 

N S[Sec.] M[MB] S[Sec.] M[MB] 
  100     1,65     0,402432   1,78     0,402456 
  500    30   10,012032   34,10   10,012056 
1000   97,89   40,024032   97,96   40,024056 
1500 236,86   90,036032 265,88   90,036056 
2000 369,90 160,048032 284,18 160,040056 

Type 
Matrix   

SMADAO 
СР 

 

SMADA 
СР 

 
      2A 11, 89 0,15 
      2B 0,59 0,60 
      2C 2,65 2,44 
      2D 2,66 2,34 
      2E 1,54 1,57 
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Table 9. Speed for N=2000 for typical input connection matrices 
 

 

 

 

In view of the above results, our aim is to improve the execution time of ADAO at 
large N-sizes. For this purpose, we apply a decomposition of the connection matrix, 
so that the task being solved is reduced to solving two tasks with smaller dimensions. 
 

6. Acceleration of the optimized algorithm with large dimensions of the 
connection matrix  

Figure 2 shows the decomposed connection matrix. Sub-matrices α, α +, β and 
β+  are the same and of N/2 х N/2 dimensions. Knowledge is used that diagonally 
located service requests are non- conflict. Sub-matrices α and β are non- conflict to 
each other and α + and β+ are also non-conflict because they are diagonally located 
(Figure 2). The time to obtain a nonconflict schedule in the decomposed matrix is 
denoted by Q and it is given by 

Q = 2.q,                                                                       (4) 
where q is the time to get a non-conflict schedule in a sub-matrix . 

It is important to note that for each pair of sub-matrices a non-conflict schedule 
is made at the same time. 

From Table 6 we can calculate Q for connection matrix 2D and N = 2000. Thus 
after decomposition with four sub-matrices with sizes N = 1000,  formula 4 gives: 

      Q = 2q = 2. 97.89 = 195.78 sec. 
In case the connection matrix is not decomposed, the time for the non-conflicting 
schedule is S = 369.90sec. This result indicates a considerable improvement of the 
execution time of SMADAO with a relatively large sizes of the connection matrix.  

 
Fig.  2. Decomposed connection matrix 

Matrix 
type 

SMADAO 
N = 2000 

SMADA 
N = 2000 

2A 95,65 199,15 
2B 358,99 269,60 
2C 403,88 263,14 
2D 369,90 284,18 
2E 431,03 302,66 
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A hardware implementation of the proposed decomposition is shown in Fig. 3.  To 
select sub-matrices in pairs, multiplexing of the buses leading to the packet receivers 
is used. Two-input multiplexers and only two N/2xN/2 commutators α* and β* are 
used.  For X = 0, Y = 1, α* = α, β*= β, while for X = 1, Y = 0, α* = α+, β*= β+. 

 
Fig. 3. Block scheme of the proposed decomposition 

Conclusion 

The research shows that with zero input matrix, the ADAO optimized algorithm has 
advantages over ADA in terms of speed, memory required, and complex performance 
for N from 50 to 350. With the input matrix of connections of type 2A, ADAO is 5.9 
times faster for N = 100 to 2 times faster for N = 2000. The complex performance CP 
of ADAO for 2A is 11.89 vs. 0.15 for ADA. 
 For input connection matrix of type 2D (closest to the usual traffic), ADAO is 
faster than ADA for N = 100 to N = 1500 including. The trend is that for large N sizes 
for 2B, 2C, 2D and 2E, the algorithm's performance is aligned, whereas for N = 2000 
ADAO is slower than ADA for all types of input matrices except 2A. However, by 
using the approach of connection matrix decomposition for sizes N= 2000, we have 
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obtained a substantial acceleration of the optimized ADAO algorithm. Thus, for N = 
2000 and decomposition with two switches of dimensions N = 1000, we obtained 1. 
89 times faster conflict-free schedule. 
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Аппаратное ускорение алгоритма расписания для кросбар 
переключателя через декомпозиции матрицы связи  

 
Кирил Колчаков, Владимир Монов  

 
Резюме: Алгоритм выполняется путем диагональной активации входной 
матрицы и является оптимальным по скорости и общей производительности 
в случае малых и средних размеров матрицы. В случае больших размерностей 
входной матрицы применяем подход аппаратной декомпозиции, чтобы 
ускорить синтез бесконфликтного расписания. 
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