

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ • BULGARIAN ACADEMY OF SCIENCES

ПРОБЛЕМИ НА ТЕХНИЧЕСКАТА КИБЕРНЕТИКА И РОБОТИКАТА, 68
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 68

София • 2017 • Sofia

Vision system for recognizing objects using Open Source

Computer Vision (OpenCV) and Robot Operating System (ROS)

Denis Chikurtev
Institute of Information and Communication Technologies – BAS

Email: denis@iinf.bas.bg

Abstract: this article represents the development, structure and properties of a vision
system for service robots. To develop the system, we use OpenCV and ROS. Main
goal of the vision system is to recognize basic objects of the home environment like
caps, plates, cutlery, medicines, and others. To recognize a particular object vision
system determines its shape and color. To determine the shape of the objects we use
edge detection and to recognize the color we use color filtering. The experimental
results show that the system successfully recognizes objects.

Keywords: computer vision, OpenCV, ROS, service robot, object recognition

1. Introduction

Service robots, which are robots serving human needs beyond the factory
floor, are playing an increasingly important role in many aspects of human
life. These robots come in many designs and perform tasks that range from
aerial surveillance, bomb disposal, farming, and warehouse logistics to
teaching children and assisting the elderly [1], [2], [3]. They use machine
vision and image processing components, subsystems, and technologies to

 77

mailto:denis@iinf.bas.bg

image, store, and interpret data about the world around them, and perform
actions based on the data [4], [5].

Some of the primary vision technologies used in service robots are:
structured light systems, two-camera stereo systems, time-of-flight sensors,
lidar, and single-lens camera systems. Other sensing/locating technologies
may be combined with the vision components to provide even more
information to the robots, including GPS navigation, radar, sonar, and inertial
guidance. For more sophisticated robots, simultaneous localization and
mapping (SLAM) is critical to build maps of unknown environments or to
update maps within known environments, while at the same time keeping
track of the current location of the robot [6] [7].

Our vision system uses two cameras. The first camera is the main robot
camera, which is placed on the robot platform. That camera is Microsoft
Kinect sensor. We use the depth sensor of the Kinect for navigation and the
RGB camera of the Kinect for object recognition. The second camera is placed
on the gripper of the articulated robotic arm. That camera is stereo camera and
we use it to navigate the robotic arm to grasp objects. In this paper we
represent the process of object recognition and object location. The Kinect
recognizes object, after that determines the distance from the robot to the
object. When the robot goes near enough to the object, we activate the second
camera to guide the robotic arm to grasp the object [8].

2. OpenCV

OpenCV (Open Source Computer Vision Library) is an open source computer
vision and machine learning software library [9]. The library has more than 2500
optimized algorithms, which includes a comprehensive set of both classic and state-
of-the-art computer vision and machine learning algorithms. These algorithms can be
used to detect and recognize faces, identify objects, classify human actions in videos,
track camera movements, track moving objects, extract 3D models of objects,
produce 3D point clouds from stereo cameras, stitch images together to produce a
high resolution image of an entire scene, find similar images from an image database,
remove red eyes from images taken using flash, follow eye movements, recognize
scenery and establish markers to overlay it with augmented reality, etc.

2.1. Color spaces in OpenCV

Gray: A color space that effectively eliminates color information translating to
shades of gray: this color space is extremely useful for intermediate processing; such
as face detection.

BGR: The blue-green-red color space, in which each pixel is a three-element
array, each value representing the blue, green, and red colors: web developers would
be familiar with a similar definition of colors, except the order of colors is RGB

 78

HSV: hue is a color tone, saturation is the intensity of a color, and value
represents its darkness (or brightness at the opposite end of the spectrum)

2.2. The Fourier Transform

All waveforms are just the sum of simple sinusoids of different frequencies. In
other words, the waveforms you observe all around you are the sum of other
waveforms.

This concept is incredibly useful when manipulating images, because it allows
us to identify regions in images where a signal (such as image pixels) changes a lot,
and regions where the change is less dramatic.

The concept of Fourier Transform is the basis of many algorithms used for
common image processing operations, such as edge detection or line and shape
detection.

2.3. High pass filter

A high pass filter (HPF) is a filter that examines a region of an image and boosts
the intensity of certain pixels based on the difference in the intensity with the
surrounding pixels.

2.4. Low pass filter

If an HPF boosts the intensity of a pixel, given its difference with its neighbors,
a low pass filter (LPF) will smoothen the pixel if the difference with the surrounding
pixels is lower than a certain threshold. This is used in denoising and blurring. eg.,
one of the most popular blurring/smoothening filters, the Gaussian blur, is a low pass
filter that attenuates the intensity of high frequency signals.

2.5. Edge detection

Canny Edge Detection is a popular edge detection algorithm. It was developed
by John F. Canny in It is a multi-stage algorithm and we will go through each stages.

Noise Reduction

Since edge detection is susceptible to noise in the image, first step is to remove
the noise in the image with a 5x5 Gaussian filter.

Finding Intensity Gradient of the Image

Smoothened image is then filtered with a Sobel kernel in both horizontal and
vertical direction to get first derivative in horizontal direction (Gx) and vertical
direction (Gy). From these two images, we can find edge gradient and direction for
each pixel as follows:

 79

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸_𝐺𝐺𝐺𝐺𝐺𝐺𝐸𝐸𝐺𝐺𝐸𝐸𝐺𝐺𝐺𝐺 (𝐺𝐺) = �𝐺𝐺𝑥𝑥2 + 𝐺𝐺𝑦𝑦2;

𝐴𝐴𝐺𝐺𝐸𝐸𝐴𝐴𝐸𝐸 (𝜃𝜃) = tan−1 �𝐺𝐺𝑦𝑦
𝐺𝐺𝑥𝑥
�;

Gradient direction is always perpendicular to edges. It is rounded to one of four
angles representing vertical, horizontal and two diagonal directions. OpenCV puts all
the above in single function, cv2.Canny() [10].

Hysteresis: The final step. Canny does use two thresholds (upper and lower):

a. If a pixel gradient is higher than the upper threshold, the pixel is accepted as
an edge

b. If a pixel gradient value is below the lower threshold, then it is rejected.

c. If the pixel gradient is between the two thresholds, then it will be accepted
only if it is connected to a pixel that is above the upper threshold.

Canny recommended an upper: lower ratio between 2:1 and 3:1.

3. ROS with OpenCV

Our robot is controlled by the ROS. There is vision_opencv stack, that
provides packaging of the OpenCV library for ROS. There are two main
packages for using OpenCV in ROS:

• cv_bridge: Bridge between ROS messages and OpenCV;

• image_geometry: Collection of methods for dealing with image and
pixel geometry.

ROS passes around images in its own sensor_msgs/Image message format,
but many users will want to use images in conjunction with
OpenCV. CvBridge is a ROS library that provides an interface between ROS
and OpenCV. CvBridge can be found in the cv_bridge package in
the vision_opencv stack [11].

 80

http://wiki.ros.org/cv_bridge
http://wiki.ros.org/image_geometry
http://docs.ros.org/api/sensor_msgs/html/msg/Image.html
http://wiki.ros.org/cv_bridge
http://wiki.ros.org/vision_opencv

Figure 1. Communication between OpenCV and ROS

image_geometry contains Python and C++ libraries that simplifies
interpreting images geometrically using the parameters
from sensor_msgs/CameraInfo. Although CameraInfo contains all the
information required to rectify a raw image and project points onto it, it is
highly recommended that you use this library, since performing these
operations correctly over the space of all camera options can be non-trivial.

The camera parameters in CameraInfo are for a full-resolution image;
region-of-interest alone significantly complicates the creation of rectification
maps and requires adjusting the projection matrix. Adding options such as
subsampling (binning) to CameraInfo would further complicate the correct
interpretation of the corresponding Images. Using image_geometry simplifies
and future-proofs imaging code [12].

The image_geometry classes are written to be used in
an Image/CameraInfo message callback similar to cv_bridge.

In order to maintain invariance, the CameraModel classes offer read-only
access to specific parameters and matrices. Setting a CameraModel can only
be performed with full information using the fromCameraInfo() functions.

These classes use the OpenCV camera model. Accessors to camera
matrices in the format expected by OpenCV are provided for easy integration.

4. Vision system description

As we said previously our vision system include Kinect and stereo camera
(fig. 2). The Kinect has RGB camera which we use for recognition and depth
sensor to measure the distance to the object. VideoCapture can retrieve the
following data:

a. data given from depth generator:

o CV_CAP_OPENNI_DEPTH_MAP - depth values in mm
(CV_16UC1);

 81

http://wiki.ros.org/image_geometry
http://docs.ros.org/api/sensor_msgs/html/msg/CameraInfo.html
http://wiki.ros.org/cv_bridge

o CV_CAP_OPENNI_POINT_CLOUD_MAP - XYZ in meters
(CV_32FC3);

o CV_CAP_OPENNI_DISPARITY_MAP - disparity in pixels
(CV_8UC1);

o CV_CAP_OPENNI_DISPARITY_MAP_32F - disparity in
pixels (CV_32FC1);

o CV_CAP_OPENNI_VALID_DEPTH_MASK - mask of valid
pixels (not ocluded, not shaded etc.) (CV_8UC1).

b. data given from BGR image generator:

o CV_CAP_OPENNI_BGR_IMAGE - color image
(CV_8UC3);

o CV_CAP_OPENNI_GRAY_IMAGE - gray image
(CV_8UC1).

In order to get depth map from depth sensor we use VideoCapture::operator.
For getting several data maps we
use VideoCapture::grab and VideoCapture::retrieve.
For setting and getting some property of sensor` data generators we
use VideoCapture::set and VideoCapture::get methods respectively.

Since two types of sensor’s data generators are supported (image generator
and depth generator), there are two flags that should be used to set/get property
of the needed generator:

• CV_CAP_OPENNI_IMAGE_GENERATOR – A flag for access to
the image generator properties.

• CV_CAP_OPENNI_DEPTH_GENERATOR – A flag for access to
the depth generator properties. This flag value is assumed by default if
neither of the two possible values of the property is not set.

Figura na robota
Both Kinect and stereo camera are connected to the USB ports of the

robot’s computer. While the Kinect is looking for an object the stereo camera
is in standby. When the object is recognized and the robot moves next to it by
specific distance, the computer turn on the stereo camera and starts to control
the robotic manipulator.

To recognize the objects, we get the edges of the scene. After that the
vision searching for specific shapes [13]. If there are similar shapes, then the
system checks for the shape of the same object by its color [14]. So for the

 82

edge recognition we use Canny edge detection with two thresholds. For the
color conversion we transform the RGB video signal to HSL image and extract
only one channel, L will be processed. The advantages of using one channel
instead of three channel are the reduction of the processing time and
complexity. The L value contains lightness value of the input image where L
is calculated as shown:

L = max(𝑅𝑅,𝐺𝐺,𝐵𝐵)+min (𝑅𝑅,𝐺𝐺,𝐵𝐵)
2

;
where, L is the lightness value, R is the red channel of the input image, G is
the green channel of the input image and B is the blue channel of the input
image.

5. Results

As results we provide some figures of the edge detection (fig. 2), color
recognition (fig. 3) and shape and color recognition (fig. 4). In figure 2 are shown
three types of edge detection. In figure 3 we recognize red color and the result image
is showing only that color. In figure 4 is shown the recognition of shapes and the
colors of the objects. Depending on the intensity if the light we can correct manualy
or automaticly the levels of the lights of the camera.

Figure 2. Edge detection and recognition of the shape of a cap.

 83

Figure 3. Colour recognition.

Figure 4. Shape and colour recognition.

6. Conclusion

To perform daily tasks service robots, have to recognize the objects
around. Our vision system successfully recognizes shapes and colors of the
objects. That vision system will provide to the robots the abilities to adapt and
interacrt with the objects form the environment. On that way the service robots
will realize their main task – to help the people.

 84

Acknowledgments
The research work reported in the paper is partly supported by the projects
funded by the Young Scientists Grants, reg. No 102/2016.

References
1. Chivarov, N.; Shivarov, S.; Yovchev, K.; Chikurtev, D.; Shivarov, N. -
Intelligent Modular Service Mobile Robot ROBCO 12 for Elderly and
Disabled Persons Care; Robotics in Alpe-Adria-Danube Region (RAAD),
2014 23rd International Conference on, Smolenice, Slovakia, 3-5 Sept. 2014,
Print ISBN: 978-1-4799-6797-1. p. 343-348.
2. Nayden Chivarov, Denis Chikurtev, Kaloyan Yovchev, Stefan Shivarov -
Cost-Oriented Mobile Robot Assistant for Disabled Care; TECIS 2015, 16th
IFAC Conference on Technology, Culture and International Stability,
Sozopol, Bulgaria, 24-27 September 2015
3. Ulrich Reiser, Christian Connette, Jan Fischer, Jens Kubacki, Alexander
Bubeck, Florian Weisshardt, Theo Jacobs, Christopher Parlitz, Martin
H¨agele, Alexander Verl, “Care-O-bot 3 - Creating a product vision for service
robot applications by integrating design and technology”, The 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems, October 11-15,
2009 St. Louis, USA
4. Zheng Li and Yi Ruan, “Autonomous Inspection Robot for Power
Transmission Lines Maintenance While Operating on the Overhead Ground
Wires”, International Journal of Advanced Robotic Systems, Vol. 7, No. 4
(2010), ISSN 1729‐8806, pp. 111‐116
5.http://web.archive.org/web/20040829092603/http://www.dcs.qmul.ac.uk:8
0/research/vision/publications/papers/bmvc97/node1.html
6. https://en.wikipedia.org/wiki/David_H._Hubel
7. https://en.wikipedia.org/wiki/Torsten_Wiesel
8. Kanade, T. Picture processing system by computer complex and recognition
of human faces. PhD thesis, Kyoto University, November 1973
9. Brunelli, R., Poggio, T. Face Recognition through Geometrical Features.
European Conference on Computer Vision (ECCV) 1992, S. 792–800.
10. P. Viola and M. Jones, "Rapid object detection using a boosted cascade of
simple features," in IEEE Comp. Soc. Conf. on Computer Vision and Pattern
Recognition. CVPR 2001, vol. 1. IEEE, 2001, pp. 1-511.
11. Rainer Lienhart and Jochen Maydt. An Extended Set of Haar-like Features
for Rapid Object Detection. IEEE ICIP 2002, Vol. 1, pp. 900-903, Sep. 2002.
12. Ahonen, T., Hadid, A., and Pietikainen, M. Face Recognition with Local
Binary Patterns. Computer Vision - ECCV 2004 (2004), 469–481.

 85

Система зрения для распознавания объектов с
использованием Open Source Computer Vision (OpenCV) и

операционной системы робота (ROS)

Денис Чикуртев
Институт информационных и коммуникационных технологией - БАН

Email: denis@iinf.bas.bg

Аннотация: Эта статья представляет собой разработку, структуру и
свойства системы зрения для сервисных роботов. Для разработки системы
мы используем OpenCV и ROS. Основная цель системы зрения - распознать
основные объекты домашней среды, такие как колпачки, тарелки, столовые
приборы, лекарства и другие. Чтобы распознать конкретную систему
объектного зрения, она определяет ее форму и цвет. Чтобы определить
форму объектов, мы используем обнаружение кромок, а для распознавания
цвета используется цветовая фильтрация. Экспериментальные результаты
показывают, что система успешно распознает объекты.

Ключевые слова: Компьютерное зрение, OpenCV, ROS, сервисный робот,
распознавание объекто

 86

