

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ • BULGARIAN ACADEMY OF SCIENCES

ПРОБЛЕМИ НА ТЕХНИЧЕСКАТА КИБЕРНЕТИКА И РОБОТИКАТА, 68
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 68

София • 2017 • Sofia

Face detection and recognition for intelligent service robots

Denis Chikurtev
Institute of Information and Communication Technologies – BAS

Email: denis@iinf.bas.bg

Abstract: Intelligent service robots are made to replace daily human activities. If we
want robots to live in our homes, they must have vision system that detects and
recognizes our faces. In that way they will know who is in the home, who is their
owner and others. In this scientific research we represent the development of a vision
system that detects and recognizes human faces. For the implementation of the system
we use OpenCV libraries and for the face detection and recognition we use Haar
Cascades. Our system first detects faces in the area, after that it try to recognize them.
The results show that our vision system successfully detects and recognizes human
faces.

Keywords: computer vision, OpenCV, service robot, face detection, face recognition

1. Introduction

Intelligent service robot’s tasks are very complicated. They will have to take care
for elderly and disabled, to perform in unhealthy environment or to be robots for
surgery [1], [2], [3], [4]. To be intelligent – service robots have to recognize and
analyze the environment around. The data from the environment is very important
for the decisions that robot will take. To work with people in homes, hospitals and

 65

mailto:denis@iinf.bas.bg

offices robots have to recognize these people [5]. This task provide security for the
people and improves the social abilities of the robots [6]. In case of rubbery the robot
can call to police and to detects the faces of the criminals. For social contacts the
robots will know who is near them and will call him by name.

Face recognition in general and the recognition of moving people in natural
scenes in particular, require a set of visual tasks to be performed robustly. These
include Acquisition: the detection and tracking of face-like image patches in a
dynamic scene, Normalisation: the segmentation, alignment and normalisation of the
face images, and Recognition: the representation and modelling of face images as
identities, and the association of novel face images with known models [5].

How do we analyze an image and how does the brain encode it? It was shown by
David Hubel [6] and Torsten Wiesel [7], that our brain has specialized nerve cells
responding to specific local features of a scene, such as lines, edges, angles or
movement. Since we don’t see the world as scattered pieces, our visual cortex must
somehow combine the different sources of information into useful patterns.
Automatic face recognition is all about extracting those meaningful features from an
image, putting them into a useful representation and performing some kind of
classification on them.

Face recognition based on the geometric features of a face is probably the most
intuitive approach to face recognition. One of the first automated face recognition
systems was described in [8]: marker points (position of eyes, ears, nose, ...) were
used to build a feature vector (distance between the points, angle between them, ...).
The recognition was performed by calculating the euclidean distance between feature
vectors of a probe and reference image. Such a method is robust against changes in
illumination by its nature, but has a huge drawback: the accurate registration of the
marker points is complicated, even with state of the art algorithms. Some of the latest
work on geometric face recognition was carried out in [9]. A 22-dimensional feature
vector was used and experiments on large datasets have shown, that geometrical
features alone my not carry enough information for face recognition.

2. Methods

Our service robot is based on a wheel mobile platform. On the mobile platform
are placed all modules of the robot (fig. 1). The robot has main controller, computer,
Arduino controller, DC motors for the mobile base, ultrasound and infrared sensors,
Kinect sensor and robotic arm manipulator. For the vision system we use Kinect
sensor, which is connected to the computer. The location of the Kinect is on top of
all other modules. It is the eye of the robot.

 66

Figure 1. Intelligent service robot.

To control the robot, we use ROS. ROS includes a lot of libraries for robot and sensor
control. For our vision system we use ROS with OpenCV. They can work together
thanks to the CvBridge, which converts between ROS Image messages and OpenCV
images. That allow us to control all of the robot software by ROS. We use RGB
camera of the Kinect and computing received signals.

The object detector described below has been initially proposed by Paul Viola [10]
and improved by Rainer Lienhart [11].

First, a classifier (namely a cascade of boosted classifiers working with haar-like
features) is trained with a few hundred sample views of a particular object (i.e., a face
or a car), called positive examples, that are scaled to the same size (say, 20x20), and
negative examples - arbitrary images of the same size.

After a classifier is trained, it can be applied to a region of interest (of the same size
as used during the training) in an input image. The classifier outputs a “1” if the
region is likely to show the object (i.e., face/car), and “0” otherwise. To search for
the object in the whole image one can move the search window across the image and
check every location using the classifier. The classifier is designed so that it can be
easily “resized” in order to be able to find the objects of interest at different sizes,
which is more efficient than resizing the image itself. So, to find an object of an

 67

unknown size in the image the scan procedure should be done several times at
different scales.

The word “cascade” in the classifier name means that the resultant classifier consists
of several simpler classifiers (stages) that are applied subsequently to a region of
interest until at some stage the candidate is rejected or all the stages are passed. The
word “boosted” means that the classifiers at every stage of the cascade are complex
themselves and they are built out of basic classifiers using one of four different
boosting techniques (weighted voting). Currently Discrete Adaboost, Real Adaboost,
Gentle Adaboost and Logitboost are supported. The basic classifiers are decision-tree
classifiers with at least 2 leaves. Haar-like features are the input to the basic
classifiers, and are calculated as described below. The current algorithm uses the
following Haar-like features:

Figure 2. Algorithm for particular classifier.

The feature used in a particular classifier is specified by its shape (1a, 2b etc.),
position within the region of interest and the scale (this scale is not the same as the
scale used at the detection stage, though these two scales are multiplied). For
example, in the case of the third line feature (2c) the response is calculated as the
difference between the sum of image pixels under the rectangle covering the whole
feature (including the two white stripes and the black stripe in the middle) and the
sum of the image pixels under the black stripe multiplied by 3 in order to compensate
for the differences in the size of areas. The sums of pixel values over a rectangular
region are calculated rapidly using integral images.

3. Face detection and recognition

3.1. Face detection

Here we will deal with detection. OpenCV already contains many pre-trained
classifiers for face, eyes, smile etc. Those XML files are stored in

 68

opencv/data/haarcascades/ folder. Let's create face and eye detector with
OpenCV.

First we need to load the required XML classifiers. Then load our input image
(or video) in grayscale mode.

face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')

img = cv2.imread('sachin.jpg')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

Now we find the faces in the image. If faces are found, it returns the positions
of detected faces as Rect (x,y,w,h). Once we get these locations, we can create a
ROI for the face and apply eye detection on this ROI (since eyes are always on
the face).

faces = face_cascade.detectMultiScale(gray, 1.3, 5)

for (x,y,w,h) in faces:

 cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)

 roi_gray = gray[y:y+h, x:x+w]

 roi_color = img[y:y+h, x:x+w]

 eyes = eye_cascade.detectMultiScale(roi_gray)

 for (ex,ey,ew,eh) in eyes:

 cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)

cv2.imshow('img',img)

cv2.waitKey(0)

cv2.destroyAllWindows()

3.2. Face recognition

OpenCV 2.4 now comes with the very new FaceRecognizer class for face
recognition, which provides a unified access to all face recognition algorithms in
OpenCV. Every FaceRecognizer is an Algorithm, so you can easily get/set all model
internals (if allowed by the implementation). Algorithm is a relatively new OpenCV
concept, which is available since the 2.4 release. I suggest you take a look at its
description.

 69

http://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_api.html%23FaceRecognizer%20:%20public%20Algorithm
http://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_api.html%23FaceRecognizer%20:%20public%20Algorithm
http://docs.opencv.org/2.4/modules/core/doc/basic_structures.html%23Algorithm
http://docs.opencv.org/2.4/modules/core/doc/basic_structures.html%23Algorithm

Algorithm provides the following features for all derived classes:

• So called “virtual constructor”. That is, each Algorithm derivative is
registered at program start and you can get the list of registered algorithms
and create instance of a particular algorithm by its name
(see Algorithm::create()). If you plan to add your own algorithms, it is good
practice to add a unique prefix to your algorithms to distinguish them from
other algorithms.

• Setting/Retrieving algorithm parameters by name. If you used video
capturing functionality from OpenCV highgui module, you are probably
familar
with cvSetCaptureProperty(), cvGetCaptureProperty(), VideoCapture:
:set() and VideoCapture::get(). Algorithm provides similar method where
instead of integer id’s you specify the parameter names as text strings.
See Algorithm::set() and Algorithm::get() for details.

• Reading and writing parameters from/to XML or YAML files. Every
Algorithm derivative can store all its parameters and then read them back.
There is no need to re-implement it each time.

Moreover every FaceRecognizer supports the:

• Training of a FaceRecognizer with FaceRecognizer::train() on a given set
of images (your face database!).

• Prediction of a given sample image, that means a face. The image is given
as a Mat.

• Loading/Saving the model state from/to a given XML or YAML.

• Setting/Getting labels info, that is storaged as a string. String labels info is
useful for keeping names of the recognized people.

The currently available algorithms are:

• Eigenfaces (see createEigenFaceRecognizer())

• Fisherfaces (see createFisherFaceRecognizer())

• Local Binary Patterns Histograms (see createLBPHFaceRecognizer())

A more formal description of the Local Binary Patterns Histograms (LBP) operator
can be given as:

 70

http://docs.opencv.org/2.4/modules/core/doc/basic_structures.html%23Algorithm
http://docs.opencv.org/2.4/modules/core/doc/basic_structures.html%23template%3Ctypename%20_Tp%3E%20Ptr%3C_Tp%3E%20Algorithm::create(const%20string&%20name)
http://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html%23int%20cvSetCaptureProperty(CvCapture*%20capture,%20int%20property_id,%20double%20value)
http://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html%23double%20cvGetCaptureProperty(CvCapture*%20capture,%20int%20property_id)
http://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html%23bool%20VideoCapture::set(int%20propId,%20double%20value)
http://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html%23bool%20VideoCapture::set(int%20propId,%20double%20value)
http://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html%23double%20VideoCapture::get(int%20propId)
http://docs.opencv.org/2.4/modules/core/doc/basic_structures.html%23Algorithm
http://docs.opencv.org/2.4/modules/core/doc/basic_structures.html%23void%20Algorithm::set(const%20string&%20name,%20int%20value)
http://docs.opencv.org/2.4/modules/core/doc/basic_structures.html%23template%3Ctypename%20_Tp%3E%20typename%20ParamType%3C_Tp%3E::member_type%20Algorithm::get(const%20string&%20name)%20const
http://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_api.html%23FaceRecognizer%20:%20public%20Algorithm
http://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_api.html%23FaceRecognizer%20:%20public%20Algorithm
http://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_api.html%23void%20FaceRecognizer::train(InputArrayOfArrays%20src,%20InputArray%20labels)%20=%200
http://docs.opencv.org/2.4/modules/core/doc/basic_structures.html%23Mat
http://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_api.html%23Ptr%3CFaceRecognizer%3E%20createEigenFaceRecognizer(int%20num_components%20,%20double%20threshold)
http://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_api.html%23Ptr%3CFaceRecognizer%3E%20createFisherFaceRecognizer(int%20num_components%20,%20double%20threshold)
http://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_api.html%23Ptr%3CFaceRecognizer%3E%20createLBPHFaceRecognizer(int%20radius,%20int%20neighbors,%20int%20grid_x,%20int%20grid_y,%20double%20threshold)

, with as central pixel with intensity ; and being the intensity of the
the neighbor pixel. is the sign function defined as:

This description enables you to capture very fine grained details in images. In
fact, the authors were able to compete with state of the art results for texture
classification. Soon after the operator was published it was noted, that a fixed
neighborhood fails to encode details differing in scale. So the operator was extended
to use a variable neighborhood in [12]. The idea is to align an abritrary number of
neighbors on a circle with a variable radius, which enables to capture the following
neighborhoods:

Figure 3. Local Binary Patterns Histograms (LBP) operating

For a given Point the position of the neighbor can be
calculated by:

Where is the radius of the circle and is the number of sample points.

The operator is an extension to the original LBP codes, so it’s sometimes
called Extended LBP (also referred to as Circular LBP). If a points coordinate on the
circle doesn’t correspond to image coordinates, the point gets interpolated. Computer
science has a bunch of clever interpolation schemes, the OpenCV implementation
does a bilinear interpolation:

 71

By definition the LBP operator is robust against monotonic gray scale
transformations. We can easily verify this by looking at the LBP image of an
artificially modified image (so you see what an LBP image looks like!):

Figure 4. LBP image after computation.

The following lines create an LBPH model for face recognition and train it with
the images and labels read from the given CSV file. The LBPHFaceRecognizer uses
Extended Local Binary Patterns (it's probably configurable with other operators at a
later point), and has the following default values: radius = 1, neighbors = 8, grid_x =
8, grid_y = 8. So if we want a LBPH FaceRecognizer using a radius of 2 and 16
neighbors, call the factory method with: cv::createLBPHFaceRecognizer(2, 16). And
if we want a threshold (e.g. 123.0) call it with its default values:
cv::createLBPHFaceRecognizer(1,8,8,8,123.0).

 Ptr<FaceRecognizer> model = createLBPHFaceRecognizer();

 model->train(images, labels);

The following line predicts the label of a given test image:

 int predictedLabel = model->predict(testSample);

To get the confidence of a prediction call the model with:

int predictedLabel = -1;

double confidence = 0.0;

model->predict(testSample, predictedLabel, confidence);

 72

string result_message = format("Predicted class = %d / Actual class = %d.",
predictedLabel, testLabel);

cout << result_message << endl;

4. Experiments and results

For the first experiment we use example image with two people and the
task for the vision system is to detect the faces and face detection from video
stream. By default, in the opencv libraries the detects faces are marked with
blue square and the eyes are marked with geen squares.

For the second experiment we use one picture for face model, given by
viodeo of usb camera. After that vision system have to recognize that face
from picture. Recognized face have to be marked with red square and its eyes
have to be marked with black squares.

The result from the first experiment with the picture is shown in figure 5.
Our system successfully detects the twue faces. The result from the video
stream is shown in figure 6.

Figure 5. Face detection of image.

The result from the second experiment is shown in figures 6 and 7. Our
vision system detects the face in fig. 6 and makes a model of that face. Than
the system detects faces in figure 7 and compare the model recognizes the face
on the second picture. The recognized face is marked with red square and it’s
eyes are in black squares.

 73

Figure 6. Making a model of a face.

Figure 7. Detecting a face by a given model.

5. Conclusion

In the near future service robots will become assistants in our homes and
office. Our vision system for face detection and recognition have to be part of
the robots. That systems provides good opportunities for development and
functionalities of the robots. Having that system robots will detect all the
people around and will recognize the people they belong to. This is important
for the people, because when the robots call them by name, people will accept
and allow them in their daily live more easily.

 74

Acknowledgments
The research work reported in the paper is partly supported by the projects
funded by the Young Scientists Grants, reg. No 102/2016.

References
1. Chivarov, N.; Shivarov, S.; Yovchev, K.; Chikurtev, D.; Shivarov, N. -
Intelligent Modular Service Mobile Robot ROBCO 12 for Elderly and
Disabled Persons Care; Robotics in Alpe-Adria-Danube Region (RAAD),
2014 23rd International Conference on, Smolenice, Slovakia, 3-5 Sept. 2014,
Print ISBN: 978-1-4799-6797-1. p. 343-348.
2. Nayden Chivarov, Denis Chikurtev, Kaloyan Yovchev, Stefan Shivarov -
Cost-Oriented Mobile Robot Assistant for Disabled Care; TECIS 2015, 16th
IFAC Conference on Technology, Culture and International Stability,
Sozopol, Bulgaria, 24-27 September 2015
3. Ulrich Reiser, Christian Connette, Jan Fischer, Jens Kubacki, Alexander
Bubeck, Florian Weisshardt, Theo Jacobs, Christopher Parlitz, Martin
H¨agele, Alexander Verl, “Care-O-bot 3 - Creating a product vision for service
robot applications by integrating design and technology”, The 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems, October 11-15,
2009 St. Louis, USA
4. Zheng Li and Yi Ruan, “Autonomous Inspection Robot for Power
Transmission Lines Maintenance While Operating on the Overhead Ground
Wires”, International Journal of Advanced Robotic Systems, Vol. 7, No. 4
(2010), ISSN 1729‐8806, pp. 111‐116
5.http://web.archive.org/web/20040829092603/http://www.dcs.qmul.ac.uk:8
0/research/vision/publications/papers/bmvc97/node1.html
6. https://en.wikipedia.org/wiki/David_H._Hubel
7. https://en.wikipedia.org/wiki/Torsten_Wiesel
8. Kanade, T. Picture processing system by computer complex and recognition
of human faces. PhD thesis, Kyoto University, November 1973
9. Brunelli, R., Poggio, T. Face Recognition through Geometrical Features.
European Conference on Computer Vision (ECCV) 1992, S. 792–800.
10. P. Viola and M. Jones, "Rapid object detection using a boosted cascade of
simple features," in IEEE Comp. Soc. Conf. on Computer Vision and Pattern
Recognition. CVPR 2001, vol. 1. IEEE, 2001, pp. 1-511.
11. Rainer Lienhart and Jochen Maydt. An Extended Set of Haar-like Features
for Rapid Object Detection. IEEE ICIP 2002, Vol. 1, pp. 900-903, Sep. 2002.
12. Ahonen, T., Hadid, A., and Pietikainen, M. Face Recognition with Local
Binary Patterns. Computer Vision - ECCV 2004 (2004), 469–481.

 75

Обнаружение и распознавание лиц для интеллектуальных
обслуживающих роботов

Денис Чикуртев
Институт информационных и комуникационнных технологией - БАН

Email: denis@iinf.bas.bg

Аннотация: Интеллектуальные сервисные роботы созданы для замены
повседневной деятельности человека. Если мы хотим, чтобы роботы жили в
наших домах, у них должна быть система зрения, которая обнаруживает и
распознает наши лица. Таким образом, они узнают, кто в доме, кто их
владелец и другие. В этом научном исследовании мы представляем развитие
системы зрения, которая обнаруживает и распознает человеческие лица. Для
реализации системы мы используем библиотеки OpenCV, а для обнаружения и
распознавания лиц мы используем Haar Cascades. Наша система сначала
обнаруживает лица в области, после чего стремится распознает их.
Результаты показывают, что наша система зрения успешно обнаруживает
и распознает человеческие лица.

Ключевые слова: Компьютерное зрение, OpenCV, сервисный робот,
обнаруживание лиц, распознавание лиц

 76

