BBJI'APCKA AKAJIEMIA HA HAYKHUTE « BULGARIAN ACADEMY OF SCIENCES

MMPOBJIEMU HA TEXHUYECKATA KHUBEPHETUKA 11 POBOTUKATA, 66
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTIC&

Codust « 2015+ Sofia

On the Fast Computing of Some Constants.
High Precision Computation with .NET Framework @ &-MPIR

Ve ichko Dzhambov

Ingtitute of Information and Communication Technologies, 1113 Sofia
Emails. jambov@abv.bg

Abstract: This paper concerns implementing some methods designed for
computation of various mathematical constants with high precision in specific
environment, namely .NET Framework. The work is part of a series tracing the
progress of creating tools for high precision computations in this environment and
may be considered as continuation, in this direction, of (Dzhambov, 2011),
(Dzhambov, 2014a), (Dzhambov, 2014b), that includes special function calculations
with arbitrary precision and some additional numerical methods. The results are
illustrated with the help of application, using the current state-of-art library being
created for implementation of numerical methods of arbitrary precision in a given
environment.

Keywords. High precision computation, parallel computations, mathematical
constants, computational mathematics, .NET Framework, X-MPIR

1 Introduction

Arbitrary precision computations are not a selfgmse. They are related to
receiving precise values where often different mathtical constants are needed..
In (Dzhambov, 2011) an announcement is made foatioge of high precision
computation library in the environment of .NET Feawork. The application
SFCALC was represented there, illustrating a path® potentialities of the library
being created. Some extensions of this library adeled further concerning

75

computing of definite integrals (Dzhambov, 2014a)ying of systems of nonlinear
ordinary differential equations, and root findin§ rionlinear algebraic .equation
(real roots), described (Dzhambov, 2014Db).

They are at least two reasons that make matherhaticestants subject of
particular interest in high precision computingntoof these, liker, e, y,In2, are

frequently used in process of computing transcetadlemathematical functions
(special and elementary). Additionally high premisicomputing of mathematical
constants is preliminary condition if we want toplement some algorithm for
integer relation detection (for example PSQL). Bpecial application MPConsts
presented here envelops several methods devoteefféotive high precision
computing of some mathematical constants.

One of the purposes is to demonstrate that usafliinautually complementing
computational tools for solving non-trivial problemwith high precision
computations may be implemented in a concrete emvient which is wide spread
for personal computers but it seems to be underattd by the software
developers for scientific applications. There a&sons of course for this, but in our
opinion, there are advantages also: comparativelsy @ntegration in various
functionalities such as visualization and intemafti in one and the same
application if, of course, the necessary methodséving the concrete problems
are available which is the purpose of the libraging created. We of course keep in
mind that the creation of a complete system cogeangreat range of tools for
solving of various mathematical models is a taskdmbitious due at least to the
huge amount of the work required. But the impleragoh of some basic tools
makes it possible for the interested investigabocreate own applications in the
given environment, exactly matching to his concheterests. To viz. create and not
be a user of a ready system. Another purpose witgle to achieve is to provide
such a possibility. The general structure and sertensions of the library being
created are already described in previous papersvando not repeat them. In all
cases there is also conclusion, that further imgmumants are possible, including
using the multi-core architecture of the contempomocessors, allowing parallel
computations. Here is the first step of this pragra

2 Speedup resources

Maximal effectiveness is reached if we have atdisposal parallel algorithm using
almost everywhere integer operations. That is heays possible of course, but
where it is, the results impress. The base idéause binary splitting for particular
type of power series (hypergeometric, where alffaents are rational numbers).
The idea is quite old (Brent, 1976). (Haible, 1988pne of the best explanations.
Chapter 4 of (Brent, 2011) is also very useful.€Y2011) is a wide panorama of
using multicore processor's architecture. The toomplexity of binary splitting

algorithms isO(M (d)(logd)”) for somea >1 , but the effectiveness is due to the

fact, that as much as possible multiplications pwshed to the region where
multiplication becomes efficient. So in the comjitigxevaluation the factov(d) is

76

important here. Perhaps the main advantage is ibssilplity of parallel
implementation.

Because the speed is an important goal, we weligeobto make changes in
original files being part of the procedure genagtlynamic link libraries (XMPIR,
site), so they correspond to the numerous signatiiaages in the last version of
MPIR (2.7.0, 29.06.2015, (MPIR, site)). Of course walso profited by the new
possibility to adjust the dll-file according to thge of the processor.

MPConsts use parallel computations (binary spijttior suitable series) for
some constants, hamely,e,y,In2,G ¢ (3), where the last two are respectively the

Catalan's constans = 3(2) = Z(Z(‘l)l)2 and the Apéry's constamt(3) = Zis
n=0 n+ n=1 N

However for some constants they own particular oethre used. These methods
are briefly described in place below.

3 Comparative results for some constants

The data presented in tables below summarize tilapsed to compute some
constants with different precision (in decimal 8§ For the comparison the
programy-crunher (Yee, 2015) is chosen, because this prograindisputed leader
at the moment. Some data are presented for Pié@g{RiFast, site), quite old, but
the best 10 years ago). It must be noted that thgrgmy-crunher uses many
optimizations (even determination of suitable sipéschunks to be passed to
parallel processing, avoiding this way time wastdége synchronization). This
program is designed to be extremely effective fey tigh precision (including if
necessary extending tools like external data st)rafyn excellent overview of
methods used is previously mentioned paper (Ye&l2 here is an explanation
too why for a (relatively) modest precisions (sewdrundreds or thousands digits)
the program is not so spectacular. Unfortunatedyctide is not open. Because some
of our goals (in many cases several thousandssdgiffice - some constant
identification with PSLQ, for example) are reachedthout extremely high
precision, we find that results obtained with MP&snare good enough. All tests
are performed on the author's laptop whose chaistite are: processor Intel(R)
Core(TM) i7-3610QM CPU @ 2.30GHz (4 physical antb@ical processors).16
GB RAM, 64-bit operating system Windows 7 EnterpriMicrosoft Windows NT
6.1.7601 Service Pack 1).

10° digits [y-crunher | MPConstfPiFast
e 0.112 0.245 0.39
m 0.230 0.522 1.04
In(2) 0.506 1.453

Apéry 0.667 2.859
Lemniscate | 1.353 2.845

Catalan 2.891 9.799

y 4.081 48.642

Table 1. Timings for computing several constants Wj000,000 decimal digits.

77

10° digits [y-crunher | MPConstfPiFast
e 0.030 0.039 0.08
m 0.061 0.050 0.10
In(2) 0.088 0.134

Apéry 0.078 0.207
Lemniscate | 0.126 0.186

Catalan 0.228 0.612

v 0.302 2510

Table 2. Timings for computing several constants wD0,000 decimal digits.

10* digits | y-crunher | MPConsisPiFast

e 0.021 0.020 0.03
T 0.041 0.024 0.03
In(2) 0.059 0.026
Apéry 0.024 0.028
Lemniscate 0.041 0.034
Catalan 0.040 0.054
Y 0.092 0.182
Table 3. Timings for computing several constants 0,000 decimal digits.
10° digits | y-crunher | MPConsts
e 0.021 0.020
T 0.033 0.023
In(2) 0.050 0.019
Apéry 0.033 0.018
Lemniscate 0.039 0.029
Catalan 0.025 0.021
Y 0.086 0.044

Table 4. Timings for computing several constantf 000,000 decimal digits.

All data are in seconds. Lemniscate in the tabbeve is the name of the constant

ZI: /—1?()(4 :[I'(J/4)]2/(2\/2_,,). This is the only constant here, for which

another method is wused (arithmetic geometric meamre specifically
b4

—). In PIFast less than 10,000 digits are not althwe
AGM (14/2)

4 Khinchin's constant

For a given real number x with regular continuedtfion representation:
1] 1] .
X=0q+—+—+--,q 00,9 00 ,n>0 (1)
la, g,

78

let K(X) denote the limit of the geometric mepg}’_ | i.e.

k=1"

1

K(x):lni[\l[ll!qkjn (2)

Khinchin proved that this limit is equal for almask real numbers, i.e. K(x)=K for
a set of real numbers with Lebesgue measure 1. bfaeifically:

Inn

= 3
< D(Hn(m)j 3)

The method of computation we use is based on 8% method is almost
straightforward application of theorem 3 in the sgmaper:

In(K)In(2) = iZ(ZS,N)é
s=1 S

4
ofi-t)e(iod)
- In[1-=|In| 1+=
k=2 k k
= 1 . . : o
where {(s,N) = Z—N)S is the Hurwitz function and for non negative irgeg
n=1 n
25—1(_1)m—l

N
. . 1
Nits value is¢(s) - > —, A=, .
n=1 n m=1 m
To compute values of thg-function at even integer the formula:

2n
2n __2n

n-1 2 B
{@n)=(-1) —n
2(2n)!
)

T

n 2n
= T
2n+1

2= 27 (-)t

is used, where B2n are the Bernoulli nimbers &ndre the tangent numbers. We
use TangentNumbers algorithm in (Brent, 2011).

In (20000 digits of Khinchin's constant, site) suke of 10025 decimal digits is

reported, obtained with Python (mpmath+gmpy) fomiihutes (machine used and
version of the software are not mentioned). MPCoretes on the author's laptop
33.5 seconds. In Gourdon, X., 2013 a result cafoed (1998 ,Xavier Gourdon)

with 110,000 digits. This result is still a reco(@Numbers, constants and
computation, site), Last update: August 12 201(e Tcomputer used is sgi
R10000. Time of computing: 22 hours and 23 minuWwgh MPConsts on the

author's laptop the time is 5 hours and 8 minutes.

This old record can be surpassed, of course, miigmot an objective. Moreover,

our implementation can be optimized obviously. Thgo of the times is about

1/4.4 and the ratio of the processors speed is 9.2.

79

5 Landau-Ramanujan Constant

Let B(x) denote the number of positive integers les thamwhich can be presented
as a sum of two perfect squares. In number theorgsalt exists that reads

X
B(x) =0
(\/In(x)

constant. Effective computing of this constant ssgble if some analytical
representation exists. Fortunately one is foun&lwgnks [17]:

sle-2E o

k
: , : - e (-1
Here besides the Riemann-function, DirichletB-gpynxiusra £(s) = Z(())S
k=0 (2k + 1
is present. One elegant deduction can be founBl&olet, 1996). The proposed in
MPConsts implementation is based of the idea taaadar as possible values of the
{ -function at even integers. For that purpose tileviang equations can be used

(Lima, 2012), (Srivastava, 2012)
()"

B(2n) = (-1)"*+—+—In2
(2n-1)!

- n-1) (”/2)2n72k71 (lj
-(- — -7 (k 7
(-1) Z(1) EE— - ¢ @&+ 1) (7)

+(_1)nzf_2”n’i Z(2k +2))(_1__1)
2" To2k(k+1)... (XK+ h-1\ ¥

j. The limit /1=IimL VIn(x) is called Landau-Ramanujan
new X

~ =~

202" [H -1k e
2k

@En-1DZ"+ 1. Ten-x+1) 7
S @K (8)

0

{@n+1)= (-1)

io(2n+2k+1) 2

We also can take advantage of the representatiajolgt, 1996)
o\ {(s 1+r7°
(1-27) ():|‘| - 9)
Bs) 'l 1-r

where r range over primes3mod 4,i.e.

© 1+r72 27
AN2 = (10)
V2 ﬂ{“ 1—r‘2n}

80

In(/ix/E):i L

r 1_r

1+r”
- nz:lznﬂ. [J

S Mt [1j

n=1 r _r

S5t (1j

1-r

(11)

For r?’ large enough we can compute directly an inner sum.

In our implementation (can be optimized, surely) GdiAasts compute 4000 digits
for 44 minutes, 2000 digits for 5 minutes and 38osels, 1000 digits for 37
seconds, 200 digits for 0.6 seconds.

6 Example of constants, computed as zeros of funati: Laplace limit,
Ramanujan—Soldner constant

The Laplace limit is connected to a problem of sié¢ mechanics. For a body
moving in an ellipse with eccentricityKepler's equatiorM = E —£sinE relates
the mean anomali!l with the eccentric anomaly. The power series in of the
solution (the equation is not solvable in elemgntamctions) has a radius of
convergence, called Laplace limit. It can be protred this limit is a solution of the

equationxe——lz 0. MPConsts uses iterative adjustment of a hard d¢ode
1+41+X°

good initial approximation. The solution takes mdjvely 15.2 seconds for

100,000 decimal digits, 12 minutes and 32 secomd$, 000,000 decimal digits.

The Ramanujan—Soldner constant constant is defindtle unique positive zero of

the integral logarithmi(x) = IIO% The same approach give us 100,000 decimal
> In(t

digits for about 4 minutes and 28 seconds.

7 Conclusions

The paper presents a part of the currently dondeimgntation of a library and
tools for computing with arbitrary accuracy in exviment, not typical for this
purpose, namely .NET Framework. The combinatiowell selected methods and
the excellent possibilities for integration of @ifént functionalities in this
environment worth the efforts, and enable the aemeent of non-trivial results
even on a home computer. The application, here@sgmted, though useful, is
mainly illustration of the library possibilities é¢fuding the use of the multi-core

81

architecture of the modern processors, executingllphcalculations at some stages
of the algorithms used and could be further impdowedifferent aspects.

Acknowledgements

The research work reported in the paper is partisllpported by the project
AComin “Advanced Computing for Innovation”, Granl@&87, funded by FP7
Capacity Programme (Research Potential of ConvesgBRegions).

References

1. Dzhambov, V., S. Drangajov, 201Computing of Special Functions with Arbitrary Precision in the
Environment of .NET Framework, Cybernetics and Information Technologies, VolurieNo 2, 32-45.

2. Dzhambov, V., 2014digh Precision Computing of Definite Integralswith .NET Framework C#and X-
MPIR, Cybernetics and Information Technologies, VoludeNo 1, 172-182.

MeTon0B ehpeKTHBHOTO BBIYUCIIEHUSI HEKOTOPHIX KOHCTaHT Ha PC"

Benuuxo Jipcambos

Hnemumym ungopmayuonnvix u kommynuxayuonnvix mexuonozuti, 1113 Cogusa

Peszwome

Onucna MemooOuka GblMUCTIEHULl NPOU3BOTLHOU MOYHOCU — HEKOMOPbIX
PACMAPOCMPAHEnblX U Oojee CHeYUAIbHbIX MAMEeMAMUYeckux KOHCMAHM Ha
nepconanvHom komniomepe. Ilpusoosmcs cpasHumenvHvie — pe3yibmamvl.
Hcnonvzosana bubnuomexa MPIR u sizvix npoepanuposanus CH."

82

