
 75

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ • BULGARIAN ACADEMY OF SCIENCES

ПРОБЛЕМИ НА ТЕХНИЧЕСКАТА КИБЕРНЕТИКА И РОБОТИКАТА, 66
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 66

София • 2015 • Sofia

On the Fast Computing of Some Constants.
High Precision Computation with .NET Framework C# and X-MPIR

Velichko Dzhambov

Institute of Information and Communication Technologies, 1113 Sofia
Emails: jambov@abv.bg

Abstract: This paper concerns implementing some methods designed for
computation of various mathematical constants with high precision in specific
environment, namely .NET Framework. The work is part of a series tracing the
progress of creating tools for high precision computations in this environment and
may be considered as continuation, in this direction, of (Dzhambov, 2011),
(Dzhambov, 2014a), (Dzhambov, 2014b), that includes special function calculations
with arbitrary precision and some additional numerical methods. The results are
illustrated with the help of application, using the current state-of-art library being
created for implementation of numerical methods of arbitrary precision in a given
environment.

Keywords: High precision computation, parallel computations, mathematical
constants, computational mathematics, .NET Framework, X-MPIR

1 Introduction

Arbitrary precision computations are not a self-purpose. They are related to
receiving precise values where often different mathematical constants are needed..
In (Dzhambov, 2011) an announcement is made for creating of high precision
computation library in the environment of .NET Framework. The application
SFCALC was represented there, illustrating a part of the potentialities of the library
being created. Some extensions of this library are added further concerning

 76

computing of definite integrals (Dzhambov, 2014a), solving of systems of nonlinear
ordinary differential equations, and root finding of nonlinear algebraic .equation
(real roots), described (Dzhambov, 2014b).

They are at least two reasons that make mathematical constants subject of
particular interest in high precision computing. Some of these, like , , , ln 2eπ γ , are
frequently used in process of computing transcendental mathematical functions
(special and elementary). Additionally high precision computing of mathematical
constants is preliminary condition if we want to implement some algorithm for
integer relation detection (for example PSQL). The special application MPConsts
presented here envelops several methods devoted to effective high precision
computing of some mathematical constants.

One of the purposes is to demonstrate that useful and mutually complementing
computational tools for solving non-trivial problems with high precision
computations may be implemented in a concrete environment which is wide spread
for personal computers but it seems to be underestimated by the software
developers for scientific applications. There are reasons of course for this, but in our
opinion, there are advantages also: comparatively easy integration in various
functionalities such as visualization and interactivity in one and the same
application if, of course, the necessary methods for solving the concrete problems
are available which is the purpose of the library being created. We of course keep in
mind that the creation of a complete system covering a great range of tools for
solving of various mathematical models is a task too ambitious due at least to the
huge amount of the work required. But the implementation of some basic tools
makes it possible for the interested investigator to create own applications in the
given environment, exactly matching to his concrete interests. To viz. create and not
be a user of a ready system. Another purpose which hope to achieve is to provide
such a possibility. The general structure and some extensions of the library being
created are already described in previous papers and we do not repeat them. In all
cases there is also conclusion, that further improvements are possible, including
using the multi-core architecture of the contemporary processors, allowing parallel
computations. Here is the first step of this program.

2 Speedup resources

Maximal effectiveness is reached if we have at our disposal parallel algorithm using
almost everywhere integer operations. That is not always possible of course, but
where it is, the results impress. The base idea is to use binary splitting for particular
type of power series (hypergeometric, where all coefficients are rational numbers).
The idea is quite old (Brent, 1976). (Haible, 1998) is one of the best explanations.
Chapter 4 of (Brent, 2011) is also very useful. (Yee, 2011) is a wide panorama of
using multicore processor's architecture. The time complexity of binary splitting

algorithms is (()(log))O M d d α for some 1α > , but the effectiveness is due to the
fact, that as much as possible multiplications are pushed to the region where
multiplication becomes efficient. So in the complexity evaluation the factor M(d) is

 77

important here. Perhaps the main advantage is the possibility of parallel
implementation.

Because the speed is an important goal, we were obliged to make changes in
original files being part of the procedure generating dynamic link libraries (XMPIR,
site), so they correspond to the numerous signature changes in the last version of
MPIR (2.7.0, 29.06.2015, (MPIR, site)). Of course we also profited by the new
possibility to adjust the dll-file according to the type of the processor.

MPConsts use parallel computations (binary splitting for suitable series) for
some constants, namely , , , ln 2, , (3)e Gπ γ ζ , where the last two are respectively the

Catalan's constant
2

0

(1)
(2)

(2 1)

n

n

G
n

β
∞

=

−
= =

+
∑ and the Apéry's constant

3
1

1
(3)

n n
ζ

∞

=

=∑ .

However for some constants they own particular method are used. These methods
are briefly described in place below.

3 Comparative results for some constants

The data presented in tables below summarize time elapsed to compute some
constants with different precision (in decimal digits). For the comparison the
program γ-crunher (Yee, 2015) is chosen, because this program is undisputed leader
at the moment. Some data are presented for PIFast too ((PiFast, site), quite old, but
the best 10 years ago). It must be noted that the program γ-crunher uses many
optimizations (even determination of suitable sizes of chunks to be passed to
parallel processing, avoiding this way time wastage for synchronization). This
program is designed to be extremely effective for vey high precision (including if
necessary extending tools like external data storage). An excellent overview of
methods used is previously mentioned paper (Yee, 2011). There is an explanation
too why for a (relatively) modest precisions (several hundreds or thousands digits)
the program is not so spectacular. Unfortunately the code is not open. Because some
of our goals (in many cases several thousands digits suffice - some constant
identification with PSLQ, for example) are reached without extremely high
precision, we find that results obtained with MPConsts are good enough. All tests
are performed on the author's laptop whose characteristics are: processor Intel(R)
Core(TM) i7-3610QM CPU @ 2.30GHz (4 physical and 8 logical processors).16
GB RAM, 64-bit operating system Windows 7 Enterprise (Microsoft Windows NT
6.1.7601 Service Pack 1).

106 digits γ-crunher MPConsts PiFast
e 0.112 0.245 0.39
π 0.230 0.522 1.04
ln(2) 0.506 1.453
Apéry 0.667 2.859
Lemniscate 1.353 2.845
Catalan 2.891 9.799
γ 4.081 48.642

Table 1. Timings for computing several constants with 1,000,000 decimal digits.

 78

105 digits γ-crunher MPConsts PiFast
e 0.030 0.039 0.08
π 0.061 0.050 0.10
ln(2) 0.088 0.134
Apéry 0.078 0.207
Lemniscate 0.126 0.186
Catalan 0.228 0.612
γ 0.302 2.510

Table 2. Timings for computing several constants with 100,000 decimal digits.

104 digits γ-crunher MPConsts PiFast
e 0.021 0.020 0.03
π 0.041 0.024 0.03

ln(2) 0.059 0.026
Apéry 0.024 0.028

Lemniscate 0.041 0.034
Catalan 0.040 0.054

γ 0.092 0.182
Table 3. Timings for computing several constants with 10,000 decimal digits.

103 digits γ-crunher MPConsts

e 0.021 0.020
π 0.033 0.023

ln(2) 0.050 0.019
Apéry 0.033 0.018

Lemniscate 0.039 0.029
Catalan 0.025 0.021

γ 0.086 0.044
Table 4. Timings for computing several constants with 1,000,000 decimal digits.

All data are in seconds. Lemniscate in the tables above is the name of the constant

()[] ()21

40
2 2 21 4

1

dx

x
πΓ=

−∫ . This is the only constant here, for which

another method is used (arithmetic geometric mean, more specifically

(1, 2)AGM

π
). In PIFast less than 10,000 digits are not allowed.

4 Khinchin's constant

For a given real number x with regular continued fraction representation:

0 0

1 2

1 | 1 |
, , , 0

| |
n

x q q q n
q q

+= + + + ∈ ∈ >L � � (1)

 79

let K(x) denote the limit of the geometric mean { }
1

n

k k
q

=
, i.e.

()
1

1

lim
n n

k
n

k

K x q
→ ∞

=

=

∏ (2)

Khinchin proved that this limit is equal for almost all real numbers, i.e. K(x)=K for
a set of real numbers with Lebesgue measure 1. More specifically:

()

ln

ln 2

1

1
1

2

n

n

K
n n

∞

=

= +
+

∏ (3)

The method of computation we use is based on [13]. This method is almost
straightforward application of theorem 3 in the same paper:

1

2

ln() ln(2) (2 ,)

1 1
ln 1 ln 1

s

s

k

A
K s N

s

k k

ζ
∞

=

∞

=

=

− − +

∑

∑
 (4)

where
1

1
(,)

()s
n

s N
n N

ζ
∞

=

=
+∑ is the Hurwitz function and for non negative integer

N its value is
1

1
()

N

s
n

s
n

ζ
=

−∑ ,
12 1

1

(1)ms

s
m

A
m

−−

=

−
= ∑ .

To compute values of the ζ -function at even integer the formula:

1

2

22

2

2 1 2

2
(2) (1)

2(2) !

2 (1 2)(2 1) !

n

n

nn

nn

n n

B
n

n

T

n

ζ π

π

−

+ −

= −

=
− −

 (5)

is used, where B2n are the Bernoulli nimbers and Tn are the tangent numbers. We
use TangentNumbers algorithm in (Brent, 2011).
In (10000 digits of Khinchin's constant, site) a result of 10025 decimal digits is
reported, obtained with Python (mpmath+gmpy) for 11 minutes (machine used and
version of the software are not mentioned). MPConsts takes on the author's laptop
33.5 seconds. In Gourdon, X., 2013 a result can be found (1998 ,Xavier Gourdon)
with 110,000 digits. This result is still a record ((Numbers, constants and
computation, site), Last update: August 12 2010). The computer used is sgi
R10000. Time of computing: 22 hours and 23 minutes. With MPConsts on the
author's laptop the time is 5 hours and 8 minutes.
This old record can be surpassed, of course, but this is not an objective. Moreover,
our implementation can be optimized obviously. The ratio of the times is about
1/4.4 and the ratio of the processors speed is 9.2.

 80

5 Landau-Ramanujan Constant

Let B(x) denote the number of positive integers les than x, which can be presented
as a sum of two perfect squares. In number theory a result exists that reads

()
ln()

x
B x O

x
=

. The limit
() ln()

lim
n

B x x

x
λ

→ ∞
= is called Landau-Ramanujan

constant. Effective computing of this constant is possible if some analytical
representation exists. Fortunately one is found by Shanks [17]:

()
()

1

1

2

2
1

21 1
1

22 2

n

n

n

n
n

ζ
λ

β

+∞

=

= −

∏ (6)

Here besides the Riemann ζ -function, Dirichlet β-функцията () ()
()0

1

2 1

k

s
k

s
k

β
∞

=

−
=

+
∑

is present. One elegant deduction can be found in (Flajolet, 1996). The proposed in
MPConsts implementation is based of the idea to use as far as possible values of the
ζ -function at even integers. For that purpose the following equations can be used
(Lima, 2012), (Srivastava, 2012)

()

()

2 1

1

2 2 11
1

2
1

2 1

2 2 4
0

2
(2) (1) ln 2

(2 1)!

2 1
(1) (1) 1 (2 1)

(2 2 1)! 2

(2 2) 1 1
(1)

2 2 (2 1) (2 2 1) 2 2

(7)

n

n

n kn
n k

k
k

n

n

n k k
k

n
n

k
n k

k

k k k n

π
β

π
ζ

π ζ

−

+

− −−
+

=

− ∞

=

= −
−

− − − − +
− −

+
+ − −

+ + −

∑

∑
K

 (
1
)

11

2
1

2
0

2

2

(1) (2 1)

(2 2 1) !

(2) ! (2)

(2 2 1) ! 2

2(2)
(2 1) (1)

(2 1)2 1
[

]

kn

k
k

k
k

n
n

n

k k

n k

k k

n k

n
n

ζ

π

ζ

π
ζ

−−

=

∞

=

− +
+

− +

+ +

+ = −
− +

∑

∑

 (8)

We also can take advantage of the representation (Flajolet, 1996)

() () 1
1 2

() 1

s
s

s
r

s r

s r

ζ
β

−
−

−

+
− =

−∏ (9)

where r range over primes 3mod 4≡ ,i.e.

1

1
2 2

2
1

1
2

1

n n

n

n r

r

r
λ

+−∞

−
=

 +=
−

∏ ∏ (10)

 81

2

1 2
1

2

1 2
1

2

1 2
1

2

1 2
1

1 1
ln(2) ln

2 1

1 1
ln

2 1

1 1
ln

2 1

1 1
ln

2 1

n

n

n

n

n

n

n

n

n
n r

n
n r

n
n r

n
r n

r

r

r

r

r

r

r

r

λ
−∞

+ −
=

−∞

+ −
=

−∞

+ −
=

−∞

+ −
=

+
=

−

+
= =

−

+
=

−

+
=

−

∑ ∏

∑ ∑

∑∑

∑∑

 (11)

For 2n

r large enough we can compute directly an inner sum.
In our implementation (can be optimized, surely) MPConsts compute 4000 digits
for 44 minutes, 2000 digits for 5 minutes and 38 seconds, 1000 digits for 37
seconds, 200 digits for 0.6 seconds.

6 Example of constants, computed as zeros of function: Laplace limit,

Ramanujan–Soldner constant

The Laplace limit is connected to a problem of celestial mechanics. For a body
moving in an ellipse with eccentricity ε Kepler's equation sinM E Eε= − relates
the mean anomaly M with the eccentric anomaly E. The power series in ε of the
solution (the equation is not solvable in elementary functions) has a radius of
convergence, called Laplace limit. It can be proved that this limit is a solution of the

equation

2
1

2
1 0

1 1

x
xe

x

+

− =
+ +

. MPConsts uses iterative adjustment of a hard coded

good initial approximation. The solution takes respectively 15.2 seconds for
100,000 decimal digits, 12 minutes and 32 seconds for 1,000,000 decimal digits.
The Ramanujan–Soldner constant constant is defined as the unique positive zero of

the integral logarithm
0

dt
li()

ln()

x

x
t

= ∫ . The same approach give us 100,000 decimal

digits for about 4 minutes and 28 seconds.

7 Conclusions

The paper presents a part of the currently done implementation of a library and
tools for computing with arbitrary accuracy in environment, not typical for this
purpose, namely .NET Framework. The combination of well selected methods and
the excellent possibilities for integration of different functionalities in this
environment worth the efforts, and enable the achievement of non-trivial results
even on a home computer. The application, herein presented, though useful, is
mainly illustration of the library possibilities including the use of the multi-core

 82

architecture of the modern processors, executing parallel calculations at some stages
of the algorithms used and could be further improved in different aspects.

Acknowledgements

The research work reported in the paper is partially supported by the project
AComIn “Advanced Computing for Innovation”, Grant 316087, funded by FP7
Capacity Programme (Research Potential of Convergence Regions).

References

1. Dzhambov, V., S. Drangajov, 2011, Computing of Special Functions with Arbitrary Precision in the
Environment of .NET Framework, Cybernetics and Information Technologies, Volume 11, No 2, 32-45.

2. Dzhambov, V., 2014a, High Precision Computing of Definite Integrals with .NET Framework C# and X-
MPIR, Cybernetics and Information Technologies, Volume 14, No 1, 172-182.

Mетодов еффективного вычисления некоторых констант на PC"

Величко Джамбов

Институт информационных и коммуникационных технологий, 1113 София

Р е з ю м е

Описна методика вычислений произвольной точности некоторых
растпространеных и более специальных математических констант на
персональном компютере. Приводятся сравнительные результаты.
Использована библиотека MPIR и язык програнирования C#."

