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Abstract: This paper concerns implementing some methods designed for 
computation of various mathematical constants with high precision in specific 
environment, namely .NET Framework. The work is part of a series tracing the 
progress of creating tools for high precision computations in this environment and 
may be considered as continuation, in this direction, of (Dzhambov, 2011), 
(Dzhambov, 2014a), (Dzhambov, 2014b), that includes special function calculations 
with arbitrary precision and some additional numerical methods. The results are 
illustrated with the help of application, using the current state-of-art library being 
created for implementation of numerical methods of arbitrary precision in a given 
environment. 
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1 Introduction 

Arbitrary precision computations are not a self-purpose. They are related to 
receiving precise values where often different mathematical constants are needed.. 
In (Dzhambov, 2011) an announcement is made for creating of high precision 
computation library in the environment of .NET Framework. The application 
SFCALC was represented there, illustrating a part of the potentialities of the library 
being created. Some extensions of this library are added further concerning 
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computing of definite integrals (Dzhambov, 2014a), solving of systems of nonlinear 
ordinary differential equations, and root finding of nonlinear algebraic .equation 
(real roots), described (Dzhambov, 2014b). 

They are at least two reasons that make mathematical constants subject of 
particular interest in high precision computing. Some of these, like , , , ln 2eπ γ , are 
frequently used in process of computing transcendental mathematical functions 
(special and elementary). Additionally high precision computing of mathematical 
constants is preliminary condition if we want to implement some algorithm for 
integer relation detection (for example PSQL). The special application MPConsts 
presented here envelops several methods devoted to effective high precision 
computing of some mathematical constants. 

One of the purposes is to demonstrate that useful and mutually complementing 
computational tools for solving non-trivial problems with high precision 
computations may be implemented in a concrete environment which is wide spread 
for personal computers but it seems to be underestimated by the software 
developers for scientific applications. There are reasons of course for this, but in our 
opinion, there are advantages also: comparatively easy integration in various 
functionalities such as visualization and interactivity in one and the same 
application if, of course, the necessary methods for solving the concrete problems 
are available which is the purpose of the library being created. We of course keep in 
mind that the creation of a complete system covering a great range of tools for 
solving of various mathematical models is a task too ambitious due at least to the 
huge amount of the work required. But the implementation of some basic tools 
makes it possible for the interested investigator to create own applications in the 
given environment, exactly matching to his concrete interests. To viz. create and not 
be a user of a ready system. Another purpose which hope to achieve is to provide 
such a possibility. The general structure and some extensions of the library being 
created are already described in previous papers and we do not repeat them. In all 
cases there is also conclusion, that further improvements are possible, including 
using the multi-core architecture of the contemporary processors, allowing parallel 
computations. Here is the first step of this program. 

 
2 Speedup resources 

Maximal effectiveness is reached if we have at our disposal parallel algorithm using 
almost everywhere integer operations. That is not always possible of course, but 
where it is, the results impress. The base idea is to use binary splitting for particular 
type of power series (hypergeometric, where all coefficients are rational numbers). 
The idea is quite old (Brent, 1976). (Haible, 1998) is one of the best explanations. 
Chapter 4 of (Brent, 2011) is also very useful. (Yee, 2011) is a wide panorama of 
using multicore processor's architecture. The time complexity of binary splitting 

algorithms is ( ( )(log ) )O M d d α  for some 1α >  , but the effectiveness is due to the 
fact, that as much as possible multiplications are pushed to the region where 
multiplication becomes efficient. So in the complexity evaluation the factor M(d) is 



 77 

important here. Perhaps the main advantage is the possibility of parallel 
implementation. 

Because the speed is an important goal, we were obliged to make changes in 
original files being part of the procedure generating dynamic link libraries (XMPIR, 
site), so they correspond to the numerous signature changes in the last version of 
MPIR (2.7.0, 29.06.2015, (MPIR, site)). Of course we also profited by the new 
possibility to adjust the dll-file according to the type of the processor. 

MPConsts use parallel computations (binary splitting for suitable series) for 
some constants, namely , , , ln 2, , (3)e Gπ γ ζ , where the last two are respectively the 
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However for some constants they own particular method are used. These methods 
are briefly described in place below. 

 
3 Comparative results for some constants 

The data presented in tables below summarize time elapsed to compute some 
constants with different precision (in decimal digits). For the comparison the 
program γ-crunher (Yee, 2015) is chosen, because this program is undisputed leader 
at the moment. Some data are presented for PIFast too ((PiFast, site), quite old, but 
the best 10 years ago). It must be noted that the program γ-crunher uses many 
optimizations (even determination of suitable sizes of chunks to be passed to 
parallel processing, avoiding this way time wastage for synchronization). This 
program is designed to be extremely effective for vey high precision (including if 
necessary extending tools like external data storage). An excellent overview of 
methods used is previously mentioned paper (Yee, 2011). There is an explanation 
too why for a (relatively) modest precisions (several hundreds or thousands digits) 
the program is not so spectacular. Unfortunately the code is not open. Because some 
of our goals (in many cases several thousands digits suffice - some constant 
identification with PSLQ, for example) are reached without extremely high 
precision, we find that results obtained with MPConsts are good enough. All tests 
are performed on the author's laptop whose characteristics are: processor Intel(R) 
Core(TM) i7-3610QM CPU @ 2.30GHz (4 physical and 8 logical processors).16 
GB RAM, 64-bit operating system Windows 7 Enterprise (Microsoft Windows NT 
6.1.7601 Service Pack 1). 

106  digits γ-crunher MPConsts PiFast 
e 0.112 0.245 0.39 
π 0.230 0.522 1.04 
ln(2) 0.506 1.453  
Apéry 0.667 2.859  
Lemniscate 1.353 2.845  
Catalan 2.891 9.799  
γ 4.081 48.642  

Table 1. Timings for computing several constants with 1,000,000 decimal digits. 
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105  digits γ-crunher MPConsts PiFast 
e 0.030 0.039 0.08 
π 0.061 0.050 0.10 
ln(2) 0.088 0.134  
Apéry 0.078 0.207  
Lemniscate 0.126 0.186  
Catalan 0.228 0.612  
γ 0.302 2.510  

Table 2. Timings for computing several constants with 100,000 decimal digits. 
 

104  digits γ-crunher MPConsts PiFast 
e 0.021 0.020 0.03 
π 0.041 0.024 0.03 

ln(2) 0.059 0.026  
Apéry 0.024 0.028  

Lemniscate 0.041 0.034  
Catalan 0.040 0.054  

γ 0.092 0.182  
Table 3. Timings for computing several constants with 10,000 decimal digits. 

 
103  digits γ-crunher MPConsts 

e 0.021 0.020 
π 0.033 0.023 

ln(2) 0.050 0.019 
Apéry 0.033 0.018 

Lemniscate 0.039 0.029 
Catalan 0.025 0.021 

γ 0.086 0.044 
Table 4. Timings for computing several constants with 1,000,000 decimal digits. 

 
All data are in seconds. Lemniscate in the tables above is the name of the constant 
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another method is used (arithmetic geometric mean, more specifically 
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π
). In PIFast less than 10,000 digits are not allowed. 

 
4 Khinchin's constant 

For a given real number x with regular continued fraction representation: 
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let K(x) denote the limit of the geometric mean { }
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Khinchin proved that this limit is equal for almost all real numbers, i.e. K(x)=K for 
a set of real numbers with Lebesgue measure 1. More specifically: 
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The method of computation we use is based on [13]. This method is almost 
straightforward application of theorem 3 in the same paper: 
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To compute values of the ζ -function at even integer the formula: 
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is used, where B2n are the Bernoulli nimbers and Tn are the tangent numbers. We 
use TangentNumbers  algorithm in (Brent, 2011). 
In (10000 digits of Khinchin's constant, site) a result of 10025 decimal digits is 
reported, obtained with Python (mpmath+gmpy) for 11 minutes (machine used and 
version of the software are not mentioned). MPConsts takes on the author's laptop 
33.5 seconds. In Gourdon, X., 2013 a result can be found (1998 ,Xavier Gourdon) 
with 110,000 digits. This result is still a record ((Numbers, constants and 
computation, site), Last update: August 12 2010). The computer used is sgi 
R10000. Time of computing: 22 hours and 23 minutes. With MPConsts on the 
author's laptop the time is 5 hours and 8 minutes. 
This old record can be surpassed, of course, but this is not an objective. Moreover, 
our implementation can be optimized obviously. The ratio of the times is about 
1/4.4 and the ratio of the processors speed is 9.2. 
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5 Landau-Ramanujan Constant 

Let B(x) denote the number of positive integers les than x, which can be presented 
as a sum of two perfect squares. In number theory a result exists that reads 
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constant. Effective computing of this constant is possible if some analytical 
representation exists. Fortunately one is found by Shanks [17]: 
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Here besides the Riemann ζ -function, Dirichlet β-функцията ( ) ( )
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is present. One elegant deduction can be found in (Flajolet, 1996). The proposed in 
MPConsts implementation is based of the idea to use as far as possible values of the 
ζ -function at even integers. For that purpose the following equations can be used 
(Lima, 2012), (Srivastava, 2012) 
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We also can take advantage of the representation (Flajolet, 1996) 
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where r range over primes 3mod 4≡ ,i.e. 
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For 2n

r  large enough we can compute directly an inner sum. 
In our implementation (can be optimized, surely) MPConsts compute 4000 digits 
for 44 minutes, 2000 digits for 5 minutes and 38 seconds, 1000 digits for 37 
seconds, 200 digits for 0.6 seconds. 
 
6 Example of constants, computed as zeros of function: Laplace limit, 

Ramanujan–Soldner constant 

The Laplace limit is connected to a problem of celestial mechanics. For a body 
moving in an ellipse with eccentricity ε Kepler's equation sinM E Eε= −  relates 
the mean anomaly M with the eccentric anomaly E. The power series in ε of the 
solution (the equation is not solvable in elementary functions) has a radius of 
convergence, called Laplace limit. It can be proved that this limit is a solution of the 

equation 
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. MPConsts uses iterative adjustment of a hard coded 

good initial approximation. The solution takes respectively 15.2 seconds for 
100,000 decimal digits, 12 minutes and 32 seconds for 1,000,000 decimal digits. 
The Ramanujan–Soldner constant constant is defined as the unique positive zero of 

the integral logarithm 
0
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= ∫ . The same approach give us 100,000 decimal 

digits for about 4 minutes and 28 seconds.  
 
7 Conclusions 

The paper presents a part of the currently done implementation of a library and 
tools for computing with arbitrary accuracy in environment, not typical for this 
purpose, namely .NET Framework. The combination of well selected methods and 
the excellent possibilities for integration of different functionalities in this 
environment worth the efforts, and enable the achievement of non-trivial results 
even on a home computer. The application, herein presented, though useful, is 
mainly illustration of the library possibilities including the use of the multi-core 
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architecture of the modern processors, executing parallel calculations at some stages 
of the algorithms used and could be further improved in different aspects. 
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