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Abstract: in this paper is presented ROS Navigation Stack for Simultaneous 
Localization and Mapping. By improving the functionality and the properties of the 
ROS Navigation Stack is optimized the movement, precision and orientation of the 
mobile robot. For localization and mapping is used Kinect sensor. The algorithm 
for navigation creates a map of the environment, after that generate a path to the 
desired destination and navigate the robot. The robot can be controlled distantly 
over internet or it’s Wi-Fi. Experiments are made in indoor environment with static 
and dynamic obstacles.  
Keywords: mobile robot, navigation algorithm, PID control, obstacle avoidance, 
Internet, ROS. 

 

1. Introduction 

Mobile robots are now widely used in many industries due to the high level of 
performance and reliability. Mobile robots for inspection are mainly used to replace 
human in dangerous environment. Because of that these robots must have 
autonomous navigation to reach desired objects that will be inspected. For the 
safety of the humans, robot and the subjects in the environment of movement, the 
robot must have obstacle avoidance function. In this paper for navigation is 
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introduced ROS Navigation Stack for navigation. It provides functions like 
Publishing Sensor Stream, Publishing Odometry Information, Transform 
Configuration and Map Building.  

1.1 Navigation  

Mobile robot navigation systems require both sufficiently reliable estimation of the 
current robot location and precise map of the navigation area. These systems are 
separated into two levels of control: global path planning and local motion control. 
Path planning considers a model or a map of the environment to determine the 
geometric path points for the mobile robots to track from a start position to the goal. 
Whereas local motion usually use sensory information to determine a motion that 
will avoid collision with unknown obstacles or obstacles whose position in the 
environment had changed. 
A complete mobile robot navigation system should integrate the local and global 
navigation systems: the global system pre-plan a global path and incrementally 
search new paths when discrepancy with the map occurs; the local system uses 
onboard sensors to detect and avoid unpredictable obstacles. The mobile robot 
executes an algorithm which permits it to follow the optimal global path by tracking 
its geometric points from a start position to the goal. If an obstacle obstructs this 
path, the robot executes another algorithm (collision avoidance algorithm) allowing 
it to move around the perimeter until the nearest point of the obstacle to the 
geometric path point is found, or pre-plan another optimal global path to reach the 
goal. 
The local navigation systems are capable of producing a new path in response to the 
environmental changes. These systems can be divided into directional and velocity 
space based approaches (Seder, M.; Macek, K.; Petrovic, I., 2005). The directional 
approaches such as Potential field method (Khatib, O., 1986), Virtual Force Field 
(Borenstein, J. & Koren, Y., 1990) which extends to Vector Field Histogram 
(Borenstein, J. & Koren, Y., 1991) and Nearness Diagram algorithm (Minguez, J. & 
Montano, L, 2000), generate a direction for the robot to head in. Velocity space 
approaches such as Curvature Velocity method (Simmons, R., 1996), Lane 
Curvature method (Ko, N.Y. & Simmons, R., 1998), and Dynamic Window method 
(Fox, D.; Burgard, W. & Thrun, S., 1997), perform a search of the commands 
controlling the robot such as translational and rotational velocities directly from the 
velocities space. 
In this paper we use SLAM (Simultaneous Localization and Mapping) for mobile 
robots (Riisgaard, S. & Rufus, M. B. 2007). The SLAM process consists of a 
number of steps. The goal of the process is to use the environment to update the 
position of the robot. Since the odometry of the robot (which gives the robots 
position) is often erroneous we cannot rely directly on the odometry. We can use 
laser scans of the environment to correct the position of the robot. This is 
accomplished by extracting features from the environment and reobserving when 
the robot moves around. An EKF (Extended Kalman Filter) is the heart of the 
SLAM process. It is responsible for updating where the robot thinks it is based on 
these features. The EKF keeps track of an estimate of the uncertainty in the robots 
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position and also the uncertainty in these landmarks it has seen in the environment. 
An outline of the SLAM process is given below. 

 

Figure 1. SLAM Process 

When the odometry changes because the robot moves the uncertainty pertaining to 
the robots new position is updated in the EKF using Odometry update.  Landmarks 
are then extracted from the environment from the robots new position.  The robot 
then attempts to associate these landmarks to observations of landmarks it 

1.2  Sensors 

1.2.1 Kinect sensor 

Inside the sensor case, a Kinect for Windows sensor contains: 

• An RGB camera that stores three channel data in a 1280x960 resolution. 
This makes capturing a color image possible. 

• An infrared (IR) emitter and an IR depth sensor. The emitter emits infrared 
light beams and the depth sensor reads the IR beams reflected back to the 
sensor. The reflected beams are converted into depth information 
measuring the distance between an object and the sensor. This makes 
capturing a depth image possible. 

• A multi-array microphone, which contains four microphones for capturing 
sound. Because there are four microphones, it is possible to record audio as 
well as find the location of the sound source and the direction of the audio 
wave. 
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• A 3-axis accelerometer configured for a 2G range, where G is the 
acceleration due to gravity. It is possible to use the accelerometer to 
determine the current orientation of the Kinect. 

 

Figure 2.  Kinect sensor 

Each frame, the depth sensor captures a grayscale image of everything visible in the 
field of view of the depth sensor. A frame is made up of pixels, whose size is once 
again specified by NUI_IMAGE_RESOLUTION Enumeration. Each pixel contains 
the Cartesian distance, in millimetres, from the camera plane to the nearest object at 
that particular (x, y) coordinate, as shown in Figure 1. The (x, y) coordinates of a 
depth frame do not represent physical units in the room; instead, they represent the 
location of a pixel in the depth frame. 

 

Figure 3. Depth stream values 

When the depth stream has been opened with the 
NUI_IMAGE_STREAM_FLAG_DISTINCT_OVERFLOW_ VALUES flag, there 
are three values that indicate the depth could not be reliably measured at a location. 
The "too near" value means an object was detected, but it is too near to the sensor to 
provide a reliable distance measurement. The "too far" value means an object was 
detected, but too far to reliably measure. The "unknown" value means no object was 
detected. 
The depth sensor has two depth ranges: the default range and the near range. The 
image in figure 4 illustrates the sensor depth ranges in meters. 
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Figure 4. Depth range of Kinect            

1.2.2 Encoders 

An absolute rotary encoder determines its position using a static reference point. 
The method is slightly different depending on whether the absolute rotary encoder 
is optical or magnetic, but the principle is the same either way. There are two discs, 
both with concentric rings with offset markers. One disc is fixed to the central shaft; 
the other moves freely. As the disc turns, the markers along the track of absolute 
encoders change position on the fixed disc. Each configuration along the disc of an 
absolute rotary encoder represents a unique binary code. Looking at the binary code 
within the absolute rotary encoder determines the absolute position of the object. 
For optical absolute encoders, the marker is an opening which lets through light. 
For magnetic absolute encoders, the markers are a magnetic sensor array that passes 
over a magnet and detects the position of the magnetic poles. 

By having an integrated reference, an absolute rotary encoder is intrinsically able to 
deliver higher quality feedback: 

• Higher overall resolution and orientation 
• Better start up performance because of low homing (or initial 

position) time 
• Accurate motion detection along multiple axes 
• Multiple output protocols for better electronics integration 
• Better recovery from system or power failures 

Another key feature of absolute encoders is the different output options. Encoders 
can’t just collect feedback data; they have to send it somewhere in a language that 
the larger system can understand. Absolute encoders use binary coding, which is 
translatable into many different protocols. If you have multiple components using 
the same communications bus (such as multiple electronics systems on a fire truck), 
then it is critical that the absolute rotary encoder can communicate with the bus. 

1.3 ROS Navigation Stack 

We are programming the robot by using Robot Operating System (ROS). ROS is a 
flexible framework for writing robot software. It is a collection of tools, libraries, 
and conventions that aim to simplify the task of creating complex and robust robot 
behaviour across a wide variety of robotic platforms. 

One of the basic goals of ROS is to enable roboticists to design software as a 
collection of small, mostly independent programs called nodes that all run at the 
same time. For this to work, those nodes must be able to communicate with one 
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another. The part of ROS that facilitates this communication is called the ROS 
master. A running instance of a ROS program is called a node. The primary 
mechanism that ROS nodes use to communicate is to send messages. Messages in 
ROS are organized into named topics. The idea is that a node that wants to share 
information will publish messages on the appropriate topic or topics; a node that 
wants to receive information will subscribe to the topic or topics that it’s interested 
in. The ROS master takes care of ensuring that publishers and subscribers can find 
each other; the messages themselves are sent directly from publisher to subscriber 
(O’Kane, 2013). 

The Navigation Stack is fairly simple on a conceptual level. It takes in information 
from odometry and sensor streams and outputs velocity commands to send to a 
mobile base. Use of the Navigation Stack on an arbitrary robot, however, is a bit 
more complicated. As a pre-requisite for navigation stack use, the robot must be 
running ROS, have a “tf” transform tree in place, and publish sensor data using the 
correct ROS “Message types”. Also, the Navigation Stack needs to be configured 
for the shape and dynamics of a robot to perform at a high level. To help with this 
process, this manual is meant to serve as a guide to typical Navigation Stack set-up 
and configuration.  

 

Figure 5. Navigation Stack Setup 

The navigation stack assumes that the robot is configured in a particular manner in 
order to run. The diagram above shows an overview of this configuration. The 
white components are required components that are already implemented, the gray 
components are optional components that are already implemented, and the blue 
components must be created for each robot platform. The pre-requisites of the 
navigation stack, along with instructions on how to fulfil each requirement, are 
provided in the sections below. 
 

METHODS 

Navigation stack  

The navigation stack requires that the robot be publishing information about the 
relationships between coordinate frames using “tf”. The “tf” library enables sensor 
data, or any data with a Stamp, to be transmitted in its original frame across the 
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network as well as to be stored in its original frame. When an algorithm wants to 
use data in the coordinate frame most relevant to the computation, it can query the 
“tf” library for the transform from the coordinate frame of the Stamped data to the 
desired coordinate frame. Using the resultant transform to transform the data at the 
time of need prevents unnecessary intermediate transforms, saving both 
computational time and degradation of data due to repeated processing with 
potential rounding issues. 

For convenience, to get the latest data available, a request at time zero will return 
the latest common time across the queried values. If such a time does not exist the 
Listener will raise an exception, in the same way as if an unavailable time was 
queried outside of the cached history. The “tf” library enables sensor data, or any 
data with a Stamp, to be transmitted in its original frame across the network as well 
as to be stored in its original frame. When an algorithm wants to use data in the 
coordinate frame most relevant to the computation, it can query the tf library for the 
transform from the coordinate frame of the Stamped data to the desired coordinate 
frame. Using the resultant transform to transform the data at the time of need 
prevents unnecessary intermediate transforms, saving both computational time and 
degradation of data due to repeated processing with potential rounding issues. 

For convenience, to get the latest data available, a request at time zero will return 
the latest common time across the queried values. If such a time does not exist the 
Listener will raise an exception, in the same way as if an unavailable time was 
queried outside of the cached history. 

Sensor information 

The navigation stack uses information from sensors to avoid obstacles in the world, 
it assumes that these sensors are publishing either sensor_msgs/LaserScan or 
sensor_msgs/PointCloud messages over ROS. Publishing data correctly from 
sensors over ROS is important for the Navigation Stack to operate safely. If the 
Navigation Stack receives no information from a robot's sensors, then it will be 
driving blind and, most likely, hit things. 

For robots with laser scanners, ROS provides a special Message type in the 
sensor_msgs package called LaserScan to hold information about a given scan. 
LaserScan Messages make it easy for code to work with virtually any laser as 
long as the data coming back from the scanner can be formatted to fit into the 
message. This package is used to get information from the Kinect sensor. 

Odometry information 

Odometry is one of the most important parts to reach good accuracy and precision. 
Odometry parameters of our robot are: 

• Wheel radius – 76,2 mm 

• Distance between wheels – 390 mm 

• Encoders resolution – 144 ticks / turn 
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The odometry data is used to estimate the position of the robot relatively to the 
starting location. Our robot has encoders on the axis of the powered wheels. We use 
those sensors to compute the odometry. The algorithm is described  

a) We calculate the distance travelled by each wheel in meters, given the 
current readings of the encoders: 

left_distance  := (current_left_encoder_ticks – 
last_left_encoder_ticks) / LEFT_TICKS_PER_METER 

right_distance:= (current_right_encoder_ticks – 
last_right_encoder_ticks) / RIGHT_TICKS_PER_METER 

last_left_encoder_ticks := current_left_encoder_ticks 
last_right_encoder_ticks := current_right_encoder_ticks 

b) Next, we estimate the total distance between the current and previous 
positions in meters: 

distance := (left_distance + right_distance) / 2.0 
c) We calculate the heading of the robot: 

theta := theta + (left_distance – right_distance) / 
DISTANCE_BETWEEN_WHEELS 

d) Finally, we can estimate the current position (x, y) of our robot: 
x := x + distance * cos(theta) 
y := y + distance * sin(theta) 

All these calculations are needed to the “tf” for path generating and navigation. 

Base controller 

The navigation stack assumes that it can send velocity commands using a 
geometry_msgs/Twist message assumed to be in the base coordinate frame of the 
robot on the "cmd_vel" topic. This means there must be a node subscribing to the 
"cmd_vel" topic that is capable of taking (vx, vy, vtheta) <==> (cmd_vel.linear.x, 
cmd_vel.linear.y, cmd_vel.angular.z) velocities and converting them into motor 
commands to send to a mobile base. 

The algorithm for navigation of our robot is shown on fig. 6. 

This is simple algorithm that shows how navigation operates. The first thing that 
have to be done is to open existed map or build one. After that the robot finds its 
position and orientation. Without knowing his position navigation can’t continue. 
Base position can be given by robot operator for better performance. When the 
robot knows his position we can set a target or destination. Usually we choose that 
by the map and the navigation knows where it is. Now is a time for path generating 
to the given point. The build-in algorithm for path generation always finds the 
shortest way. 

When the robot starts moving system check its position and orientation in every 
moment. This is necessary because the floor is never smooth and the robot start to 
turn or swing and then it must to back in the right way. This loop of the algorithm 
continues till the target is reached. I cases when the flour is smooth this is not 
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necessary and the odometry is enough for the good navigation to the desired 
destination. When the robot goes to the wanted point the navigation knows that the 
mission is complete and wait for the next point. 

 

Figure 6. Algorithm for autonomous navigation 

Ones the robot finds its position the navigation known in every moment where it is 
and is not necessary to search for that position. This algorithm is good for obstacle 
avoidance, because it checks for position and destination incessantly and Kinect 
sensor can see if there is obstacle. 

Very important part of the good and correct movement is odometry data. If 
parameters are not calculated correctly robot will never reach the final. By using 
odometry date the navigation knows how to control the motors of the robot wheels. 
The navigation calculates what to be the power on each wheel, how much degrees 
to rotate it or how many steps to go of the encoder. All this date makes the 
navigation possible and currect. 

Mapping 

This function is used to create and generate map. It is very useful for navigation. All 
maps can be used in the Navigation stack for better orientation and precision. In 
figure 7 is shown one of the maps that was built by our robot. 
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Map is generated by scanning the area with the robot and using the 
“slam_gmapping” node for building a map. When we have generated map we can 
use it any time when the robot is in the same area. Without a map the robot can’t 
find his current position and the navigation won’t work. 

 

Figure 7. Generated map 

RESULTS 

The navigation was tested in indoor. The experiment is to show what is the 
accuracy and precision of the navigation and proposed algorithm. The robot has 
made map on a floor of a building and then navigate in it. We set tolerance to at 100 
millimeters from the center of the robot platform and desired point. 

The robot finds its position and orientation autonomously and after that it is waiting 
for to be given destination pint. When we give destination point, the robot starts 
moving to it. Every time the robot reached the given point with the precision that 
was set. The navigation recognize if there are obstacles and avoid them. On figure 8 
is shown the moment when the robot is starting to move. It is positioned in the 
center of the square and is illustrated as a point. Green vectors are showing robot 
orientation, red line is the generated path and the end of the red line I the final point 
that have to be reached. This experiment was in a single room and the robot 
perform all the tasks correctly. 

 

Figure 8. Robot base position and path generation 
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The next experiment was in the whole floor and the robot had to move from one 
room to another. This is more complicated task but the robot perform it correctly 
again. In figure 9 is shown how robot goes from the first room to the corner of the 
lobby. It goes threw two doors and didn’t clash. The navigation pilot the robot 
smooth and correct. 

 

Figure 9. Robot movement in complicated environment 

 
The robot follows the generated path not exactly, but thanks to the algorithm it 
don’t miss the path and correct its position, orientation and movement. 

CONCLUSIONS 

For the mobile robots is very important to be autonomous. That’s why they have to 
be equipped with sensors for navigation and obstacle avoidance. Navigation provide 
safety and good positioning to the robots and is very applicable in inspection. Using 
navigation we don’t have to be worry about how to control the robot by joystick or 
phone, we just set desire point and the navigation do its job. This is done because of 
the improved algorithms and technics for better navigation and mapping. 
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Р е з ю м е 

В работе представлена роботская операционная система (ROS) для 
симуляционной навигации. С улучшение функциональности оптимизировани 
движения, точности и ориентации мобильного робота. Для локализации 
использован Kinect сенсор. Альгоритм навигации создает карта среды, а 
потом генерирует целевой путь и навигирует робот. Робот может 
управляться по Интернет и Wi-Fi. Сделаны експерименты при наличие 
препятствиях.  


