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Abstract: The paper considers the problem of pure time delay element 
approximation by using Hankel norm and balanced realizations. The weighted 
delay elements are represented in terms of Pade and Kautz series or by using 
Laguerre, Pade and Kautz shift operator descriptions. Quantitative error bounds on 
delay approximations are given. Hankel norm and balanced realizations are used 
to determine the order of truncation. The reduced order models are compared with 
the full order approximations to determine the efficiency of the presented methods.  
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1. Introduction  

Many industrial processes exhibit time delays in their behaviour. Every action of 
the control input for such processes will affect the measured output after certain 
amount of time. The delay element models both the existing time delay in 
transporting energy, materials and information, as well as the existence of higher 
order terms by accumulation of time lags. The presence of time delays imposes 
certain limitations on achievable feedback performance. The delay element has a 
certain destabilizing effect on the dynamic system. This effect can be observed in 
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Bode diagram: the magnitude response has a constant value, while the phase 
response has a constant rate of change and increases with frequency to infinity. 
Time delays increase the system phase lag and also give rise to nonrational transfer 
functions of the system, making them more difficult to analyze and control. From a 
mathematical point of view, time delay systems are infinite dimensional, meaning 
that their state is an infinite dimensional vector. There is a broad range of methods 
and algorithms for use with rational transfer function models, while relatively few 
exist for processes with irrational transfer functions, such as those containing time 
delays.  

A natural question arises whether it is posssible to approximate the delay 
system model by a finite dimensional one like the rational transfer function. The 
rational function approximation of the time delay element is usually very inaccurate 
[7, 9, 11]. Any rational transfer function can have only a finite phase lag, whereas 
the phase lag of the pure time delay is unbounded. The arbitrary large high 
frequency phase mismatch results in approximation errors of at least hundred 
percent at frequencies where the phase error is ( )π12 +k  for some natural k. 
Therefore, the rational approximation of the delay makes sense only over a finite 
frequency band [4, 9, 11]. Potentially better approximations may be produced when 
properties of some weighting function ( )sG  is taken into account in the 
approximation of the delay element, i.e., the weighted delay model ( ) sesG θ−  is 
explored. Weighted approximation is very reasonable since in process industries 
first order plus time delay and second order plus time delay models are commonly 
used to describe the system behavior [8].  

This paper considers the problem of rational transfer function approximation 
of pure time delay elements. The time delay is presented by Laguerre, Kautz and 
Pade power series or shift operator descriptions truncated by using balanced and 
Hankel norm realizations. Certain frequency weights are added to the time delay 
element and error bounds are computed for the derived approximations. Several 
numerical examples are presented, visualizing the accuracy of the time delay 
approximation.  

2. Rational function approximation of pure time delay elements  

The main interest for approximating a time delay with some rational function lies in 
the attempt to deal with a finite dimensional system instead of the corresponding 
infinite dimensional one. The time delay element is usually approximated by an all-
pass rational function. The Hankel singular values for all-pass functions are all 
unity, therefore the error between an all-pass function and its lower order rational 
function approximation will be greater or equal to one and hence the approximation 
will be very inaccurate. This does not imply however when an all-pass system is 
connected with a rational weighting function.  

The approximation methods used most widely in practice are based on the 
presentation of the delay element as a ratio of two polynomials [7]: 
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where ( )sQn  is a stable polynomial of degree n. The polynomial ( )sQn  when used 
for the [ ]nn,  Pade series approximation of the delay element is given in the form 
[7]: 
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Some low order ( )sQn  polynomials are: ( )
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where ( ) 443.122
21

≈= eψ . Pade method gives an optimal convergence rate for 
rational approximation of functions of the form ( ) ( )sGesH sθ−=  in terms of ∞H  
norm. If the condition ( ) pMjG ωω ≤  is satisfied for some 0>M  and 1≥p , then for 

pn ≥+ 12  the following error bound is valid [9]: 
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≈= eψ . 
A new approach for rational approximation of delay systems is based on shift 

operator techniques [5, 6]. The advantage of using shift operators comes from the 
fact that many important orthonormal bases such as Laguerre and Kautz bases are 
known to be induced by the corresponding shift operators. It is also known that the 
delay operator is a shift operator. A simple approximation technique uses the 

classical relationship of  exponential functions 
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the shift operator nSL  defined by 
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is called a multiple Laguerre shift with multiplicity n. The error between the time 
delay and the Laguerre shift is bounded by the expression [3] 
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ωθωθφ = . If a stable delay system is presented by the relation 

( ) ( )sGesH sθ−= , where the rational function ( )sG  has a relative degree k and 
continuous upper bound along the imaginary axis given by  
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where low and high conctants lM , 0h ≥M , 0c >ω  are such that mk MM chcl ωω = , 
3≤m , then the error between the Laguerre shift approximation and the delay 

system is given by the formula as [3]: 
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where ( )3132=β .  
Another important shift operator is the Kautz shift 22K : HHS n →  defined by 

[5] 
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and called a multiple Kautz shift of multiplicity 2n. The error bound between the 
Kautz shift and the delay system is given by the inequality [5] 

(12) ( )
3231K

1
48

2 m

m
n

n
GCGSH

∞∞
≤−

θ ,  

where C is a constant defined by the expressions  ( ) m

mCGjG
ω

ω
∞

≤ , 
θ

323148 nC <  

and 2,1=m  is the relative degree of ( )sG . If 
θ

323148 nC ≥ , the error bound is 

presented as 
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In the case when 3≥m , the error bound can be presented as follows [5]: 
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shift is the multiple Pade shift of multiplicity 2n, 22P : HHS n →  also known as 
Pade-2 shift  and defined by the expression [6] 
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The error bound between the multiple Pade-2  shift and the delay system is 
given by the inequality [6] 
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The case when the relative degree is 5≥m , the error bound can be simplified 
as follows: 
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The pure time delay element is modeled by using series or shift operator 
approximation. The order of truncation of series representation or the multiplicity 
number of shift operator description are determined by applying the Hankel norm 
and balanced realizations. These quantities are determined by exploring the 
approximation errors of the corresponding realizations. 
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3. Balanced truncation and Hankel norm approximation of  
delay elements 

A popular method for model reduction of finite dimensional systems which can be 
used in some infinite dimensional cases is the balanced relization method. A 
balanced realization is the one where the controllability and observability gramians 
are equal and diagonal. The diagonal entries of the gramians are called Hankel 
singular values. By truncating the state space matrices of a balanced realization we 
obtain a reduced order model with good approximation properties. Model reduction 
requires the elimination of some of the state variables from the original system 
representation. The system is first transformed into a balanced form and then some 
of the state variables are truncated while preserving stability.   

Assume a stable linear time invariant system described by its state space 
model: 
(19) ( ) ( ) ( )tButAxtx +=& ,   0≥t , 

( ) ( )tCxty = ,       ( ) 00 xx = . 
Consider the controllability operator of the system defined as: 

(20) ( ) nRLL →∞,0: 2c , where ( )( ) ( ) ( ) τττ dBuetuL
t

tA∫ −=
0

c  

and the observability operator of the system defined as 
(21) ( )∞→ ,0: 2o LRL n , where  ( )( ) 00o xCetxL At= , 
then the controllability and observability gramians 

(22) ( ) τττ deBBetW A
t

A ∗∗∫=
0

c ,0    and    ( ) τττ dCeCetW A
t

A ∗∫
∗

=
0

o ,0   

are the matrix representations of the maps ∗
cc LL  and oo LL∗ , where with the star 

superscript the adjoint operator is assigned. If the linear system is stable, 
controllable and observable,  then the gramians ( )tWW

t
,0lim cc ∞→

=  and  

( )tWW
t

,0lim oo ∞→
=  are the unique solutions of Lyapunov equations: 

(23) 0cc =++ ∗∗ BBAWAW    and    0oo =++ ∗∗ CCAWWA . 
The smallest amount of energy needed to move the system from zero to state x 

is given by xWxE 1
cc
−∗= , while the energy obtained by observing the output of the 

system with an initial condition x and no input function is given by xWxE oo
∗= . 

Therefore, one way to reduce the number of states is to eliminate those which 
require a large amount of input energy cE  to be reached and yield a small amount 
of observation energy oE  at the output. The goal is to look for a basis in the state 
space where controllability and observability are equivalent in some sense. Such a 
basis exists if ( )nWW σσ ,,diag 1oc K== , iσ , ni ,,2,1 K= , are the Hankel singular 
values of the system. Approximation in this basis takes place by truncating the 
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initial state vector [ ]T
21 ,,, nxxxx K=  to the reduced state vector [ ]T

21 ,,,~
kxxxx K=  

for nk < . Approximation by balanced truncation preserves stability and the ∞H  
norm of the error between the original and the truncated system is given by the 
expression 
(24) ( )nk σσ ++≤Σ−Σ +∞

K12~ . 

A balancing transformation is computed as RUSP ∗−= 21 , where RRW ∗=o  is 
a Cholesky decomposition of the observability gramian and ∗∗ = UUSRRW 2

c  is the 
singular value decomposition of the expression in the left side. This type of 
balancing is known as Lyapunov balancing because it is based on solving Lyapunov 
equations for the gramians. This approach may turn out to be inefficient, especially 
for large problems due to the rapid decay of the Hankel singular values. To avoid 
these difficulties some modifications of the original balancing algorithm are 
proposed to prevent matrix inversion. One of the most popular modification of the 
balancing algorithm is the Square Root Algorithm [1, 10]: 

• If we partition the matrices [ ]21 WWW =  and [ ]21 VVV =  and ∗= LLWo    
(Cholesky decomposition) 

• ∗= UUWc   (Cholesky decomposition) 

• ∗∗ Σ= VWLU   (SVD decomposition) 
• ∗∗−Σ= LVP 21   (similarity transformation) 
• 211 −− Σ=UWP   (similarity transformation) 
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we obtain the similarity transformations as follows: nkRLVP ×∗∗− ∈Σ= 1
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1 . The reduced order system of dimension k obtained from the 
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Finally, we obtain the error between the system described by ( ) ( )sGesH sθ−=  
with ( )sG  stable, rational weighting function and its balanced truncation of the 
delay series approximation. To obtain the error bound we use the triangle property 
of norms: 
(25)  

∞•∞•∞••∞
Σ−+−≤Σ−+−=Σ− k

nn
k

nn
k GSGSHGSGSHH ~~~ , 

where nS•  denotes any of the delay element shift approximation presented in  
Section 2. The first error norm in (25) is bounded by the inequalities (9), (10), (12), 
(13), (14) or (16), (17), (18) and the second error norm is bounded by the term (24).    

The Hankel norm approximation is based on the norm induced by the Hankel 
operator. In time domain, the Hankel operator is defined as 
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( ) ( )∞→∞−Γ ,00,: 22H LL , where ( )uhPu ×=Γ +H  is a projection on the positive time 
axis of the signal ( )0,2 ∞−∈ Lu  convolved with the impulse response ( )⋅h . The 
result of this convolution is obtained as 
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.0,0

,0,
0
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The Hankel operator has the interpretation of the system future output 
( ) ( )tuty HΓ= , 0≥t , based on the past input ( )tu , 0≤t . The Hankel operator can 

also be presented as a composition of maps from the past input to the initial state 
and from the initial state to the future output. This composition of maps is presented 
by two other operators [12]: the controllability operator ( ) nRLL →∞− 0,: 2c , where 

( ) τττ dBueuL A∫
∞−

−=
0

c  and the observability operator ( )∞→ ,0: 2o LRL n , where 

00o xCexL At= , 0≥t . Thus, the Hankel operator can be considered as a 
composition of the controllability and observability maps, i.e., cocoH LLLL ==Γ o . 
The 2-norm of a stable system Hankel operator is given as 
(27) ( )oc

21
HH2H

2
WWρ=ΓΓ=Γ ∗ , 

where ( )ocWWρ  presents the spectral radius of the gramians product and is known 
as the Hankel norm of the system Σ  denoted by 

HΣ . The Hankel norm is induced  
2-norm from the past inputs to future outputs. The Hankel norm approximation 
theory is based on the following results [1]: i) given stable systems Σ  and kΣ~  of 
degrees n and k, where kn > , there holds ( )Σ≥Σ−Σ +1H

~
kk σ ;  ii) the two-norm of 

any 2L  system Σ  is no less than the Hankel norm of its stable part +Σ , i.e., 

H2 +Σ≥Σ ;  iii) given a stable system Σ , there exists a system kΣ~ , having 

exactly k stable poles and ( )Σ=Σ−Σ +12

~
kk σ . Furthermore, kΣ−Σ ~  is all-pass. 

The system kΣ~  is called all-pass dilation of the system Σ ;  iv) given 
{ }1,,1,0 −∈ nk K , a stable system Σ  and a positive number ε , such that 

( ) ( )Σ>>Σ +1kk σεσ , there exists a system kΣ~  with k stable poles and ε=Σ−Σ
2

~
k . 

Furthermore, kΣ−Σ ~  is all-pass and kΣ~  is called ε  all-pass dilation of Σ . If kΣ~  is ε  
all-pass dilation of Σ  and ( ) ( )Σ≤≤Σ+ kk σεσ 1 , then kΣ~  has exactly k stable poles 
and ( ) εσ <Σ−Σ≤Σ+ H1

~
kk . If ( ) εσ =Σ+1k , then ( )Σ=Σ−Σ +1H

~
kk σ . 

In state space, the optimal Hankel norm approximation is obtained as follows 
[2]. Assume that σ  is a Hankel singular value of multiplicity r of the system Σ . 
Transform the system into a balanced form and partition the system matrices as 
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Then the approximation problem solution is given by the system matrices: 
• ( )∗∗∗− −+Γ= 1111,c1111,o11

21ˆ UBCWAWAA σσ , 

• ( )UCBWB ∗− +Γ= 1111,o
1ˆ σ , 

• ∗+= 111,c1
ˆ UBWCC σ , 

• UDD σ−=ˆ , 
• IWW 2

11,o11,c σ−=Γ , 

where U is a unitary matrix satisfying UCB ∗−= 22 ,  IUU =∗  and σ  is the Hankel 
singular value determining the size of the error. 

4. Experimental results 

We examine a pure time delay element with a stable rational weighting function of 
first and second order. This type of transfer functions is quite popular in practice 
because it fits the  models of a large variety of industrial control processes. 

Consider the first order model with a time delay ( )
1+

=
−

Ts
esH

sθ

. Assume that 1=θ s 

and T takes the values 0, 1.0 , 1 and 10 s. We consider first the [ ]4,4  Pade 
approximation of the delay element. The coefficients of the approximating 
polynomial are obtained as follows: 

[ ]0.15.01071.00119.00006.0=nQ . 
The Hankel singular values of the rational approximation of ( )sH , where the 

delay element is approximated by [ ]4,4  Pade series, are shown in Fig. 1. 

 
        Fig. 1. Hankel singular values of [4, 4] Pade               Fig. 2. Hankel singular values of 4th order  
        approximation with 1st order weight:                             Laguerre shift 1st order weight:  
    T=0 (---); T = 0.1 (…); T = 1 (- -); T = 10 (-.-)            T = 0 (---); T = 0.1 (…); T = 1 (- -); T = 10 (-.-) 
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The first observation from Fig. 1 is that when 0=T  or the approximation is 
for the pure delay element without a weighting function, then all Hankel singular 
values of the rational function are equal to one and the error of approximation 
cannot be reduced further. This result shows that it is not possible to approximate 
the delay operator arbitrarily closely by rational functions, but the situation changes 
when the approximation method is applied to weighted delay elements. The second 
observation is that the error of approximation decreases by increasing the time 
constant of the weighting function. The Hankel singular values of a multiple 
Laguerre shift with multiplicity n approximation for the same values of T are shown 
in Fig. 2. The approximation polynomial has the following coefficients: 

[ ]0.15.00938.00078.00002.0=nQ . 

Insignificant difference for the Hankel singular values in the case of the fourth 
order Pade approximation is observed. For example, for s1=T  the [ ]4,4  Pade 
series approximation has Hankel singular values 

{ }0363.0,1054.0,1846.0,3528.0,7373.0=S , while the Laguerre shift 4 
approximation has { }0237.0,0781.0,1622.0,3445.0,7367.0=S .  

 
    Fig. 3. Hankel singular values of 4th order               Fig. 4. Hankel singular values of 4th 
 Laguerre shift: T1=T2=0 (---); T1=0.5, T2=2 (…);           order: Pade (---); shift Laguerre-4 (…); 
    T1=0.1, T2=10 (- -); T1=10, T2=10 (-.-.)              shift Kautz-2 (- -); shift Pade-2  (-.-.) 

It is seen again that by slowing down the filter dynamics, the approximation 
error is reduced. Next, we consider a time delay element with a second order 

weighting function of the form ( ) ( )( )11 21 ++
=

−

sTsT
esH

sθ
. We explore four cases for 

different filter time constants: 01 =T , 02 =T ; s5.01 =T , s22 =T ; s1.01 =T , 
s102 =T  and s11 =T , s102 =T . The approximation model used is Laguerre shift 

with multiplicity 4=n . The results are shown in Fig. 3. Similarly to the case of the 
first order weighting function when ,021 == TT  the Hankel singular values are 
equal to one. When one of the time constants is increasing, the Hankel singular 
values have higher rate of decline and the approximation error becomes smaller. 
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When both time constants are large, the decline rate is the fastest one. Fig. 4 shows 
the Hankel singular values for s5.01 =T  and s22 =T  for the approximation 
models: [ ]4,4  Pade series, Laguerre shift with n = 4, Pade and Kautz shift with  
n = 2. It is observed that all four approximation models give almost the same 
Hankel singular values with the same rate of decay. This result shows that in the 
low pass frequency range the approximation methods have similar approximation 
capabilities.  

We consider a model of time delay with a first order weight: ( )
1+

=
−

Ts
esH

sθ

. 

Assume that s5=θ  and s10=T . The Hankel singular values for [ ]4,4  Pade 
series approximation are { }0188.0,0547.0,0986.0,2186.0,6559.0 L=S  and for shift 
Laguerre-4 approximation are { }0121.0,0404.0,0869.0,2114.0,6557.0=S . For model 
reduction, we apply the balanced truncation method. Fig. 5 presents the unit step 
responses for a weighted time delay element which is approximated by [ ]4,4  Pade 
series. The time responses for the full order system, the reduced fourth, third, 
second and first order systems are shown. For all approximation models, except for 
the first order approximation, the difference in the time response appears only in the 
steady state value. Similar results are observed for the shift Laguerre-4 
approximation models in Fig. 6. It is observed that the reduced fourth and third 
order models closely approach the full order model. Therefore, the balanced 
truncation method can reliably be used for weighted approximation of time delay 
elements. Next, we assume a time delay element with a second order weighting 

function ( ) ( )( )11 21 ++
=

−

sTsT
esH

sθ
, where s51 =T , s2.02 =T  and s.3=θ  

 
         Fig. 5. Unit step response of [4, 4] Pade                     Fig. 6. Unit step response of shift  
         approximation with 1st order weight:                 Laguerre-4 approximation 1st order weight: 
        full order (---); reduced 4th order (- -);                    full order (---); reduced 4th order (- -);  
reduced 3rd order (…); reduced 2nd order (-.-.);       reduced 3rd order (…); reduced 2nd order (-,-); 
                reduced 1st  order (xxx)                                               reduced 1st  order (xxx) 
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We consider the model of multiple Laguerre shift with multiplicity  
4=n  approximation. The Hankel singular values of the weighted delay  

element ( )sH  approximated by the shift Laguerre-4 are: 
{ }0026.0,0169.0,0483.0,1062.0,2543.0,6821.0=S . The step responses to the full 

order model, the reduced fifth, fourth and third order models by appplying the 
Hankel norm approximation technique for model reduction are shown on Fig. 7. 

 
      Fig. 7. Unit step response of shift Laguerre-4            Fig. 8. Unit step response of shift Pade-2 
     approximation with 2nd order weight function:            approximation with 2nd order weight  
    full order (---); reduced 5th order (- -); reduced       function: full order (---); reduced 5th order (- -); 
       4th order (…); reduced 3rd order (-.-.)                 reduced 4th order (…); reduced 3rd order (-.-.) 

The Hankel norm approximation method gives the system errors in terms of 
the Hankel norm: the error between the full order and reduced 5th order 
approximation of ( )sH  is 0.0026, the error between the reduced 5th order and the 
reduced 4th order shift Laguerre-4 approximations is 0.0169 and similarly the error 
between the reduced 4th order and the reduced 3rd order shift Laguerre-4 
approximations is 0.0483. It is observed from Fig. 7 that the unit step response 
difference between the full order and reduced order systems appears in the steady 
state values and it is very small. Similar results are obtained when the shift Pade-2 
approximation is applied to the weighted delay system. The Hankel singular values 
for the weighted time delay element with the same set of parameter values are 
obtained as follows: { }0036.0,0223.0,0583.0,1156.0,2584.0,6823.0=S . The unit 
step time responses of the full order shift Pade-2 approximation and the reduced 5th 
order, 4th order and 3rd order systems are shown in Fig. 8. It is observed that the 
error between the system responses increases which is due to the larger values of 
the Hankel singular values of the shift Pade-2 approximation and therefore the 
larger Hankel norm difference between the reduced order approximations.  

5. Conclusion 

The paper considers the problem of the pure time delay element approximation by 
applying  Hankel norm and balanced realizations. The time delay element is 
modeled in terms of Pade and Kautz series or Laguerre, Kautz and Pade shift 
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operator representations. The error bounds for these different approximation models 
are discussed and it is shown that time delays can be approximated successfully 
only when utilizing some weighting functions. The first order and second order 
weighting functions are used that corresponds to the practice to model industrial 
processes most often by first order or second order lags and time delay. The Hankel 
norm and balanced realizations are used to reduce the order of the weighted time 
delay approximations. The balanced truncation method is a member of the family of 
Lyapunov type approaches for balanced model reduction. It is based on a 
numerically efficient algorithm utilizing Cholesky decomposition of both gramians. 
The Hankel norm approximation uses the standard technique of sequentially 
reducing the model order by applying balanced realizations and obtaining σ  all- 
pass dilations of the error system. Both methods for model reduction are tested with 
numerical examples and the corresponding errors are calculated in terms of the 
Hankel singular values. The results obtained confirm the efficiency of the shift 
operator approximation of time delay elements in combination with the balanced 
and Hankel norm model reduction techniques.    
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(Р е з ю м е) 

В статье рассматривается задача аппроксимации элемента чистого 
запаздывания с использованием Ханкеловой нормы и балансовой реализации. 
Взвешанный элемент запаздывания представлен рядами Паде и Каутца или 
оператором перемещения Лагера, Паде и Каутца. Заданы количественные 
оценки ошибки аппроксимации чистого запаздывания. Ханкeловые нормы и 
балансовые реализации исспользуются для определения порядка перерыва 
аппроксимации. Редуцированная модель сравнивается с аппроксимацией 
польного порядка для определения эффективности представленных методов. 


