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Abstract: The paper considers the problem of pure time delay element
approximation by using Hankel norm and balanced realizations. The weighted
delay elements are represented in terms of Pade and Kautz series or by using
Laguerre, Pade and Kautz shift operator descriptions. Quantitative error bounds on
delay approximations are given. Hankel norm and balanced realizations are used
to determine the order of truncation. The reduced order models are compared with
the full order approximations to determine the efficiency of the presented methods.
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1. Introduction

Many industrial processes exhibit time delays in their behaviour. Every action of
the control input for such processes will affect the measured output after certain
amount of time. The delay element models both the existing time delay in
transporting energy, materials and information, as well as the existence of higher
order terms by accumulation of time lags. The presence of time delays imposes
certain limitations on achievable feedback performance. The delay element has a
certain destabilizing effect on the dynamic system. This effect can be observed in
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Bode diagram: the magnitude response has a constant value, while the phase
response has a constant rate of change and increases with frequency to infinity.
Time delays increase the system phase lag and also give rise to nonrational transfer
functions of the system, making them more difficult to analyze and control. From a
mathematical point of view, time delay systems are infinite dimensional, meaning
that their state is an infinite dimensional vector. There is a broad range of methods
and algorithms for use with rational transfer function models, while relatively few
exist for processes with irrational transfer functions, such as those containing time
delays.

A natural question arises whether it is posssible to approximate the delay
system model by a finite dimensional one like the rational transfer function. The
rational function approximation of the time delay element is usually very inaccurate
[7, 9, 11]. Any rational transfer function can have only a finite phase lag, whereas
the phase lag of the pure time delay is unbounded. The arbitrary large high
frequency phase mismatch results in approximation errors of at least hundred
percent at frequencies where the phase error is (2k +1)7z for some natural k.

Therefore, the rational approximation of the delay makes sense only over a finite
frequency band [4, 9, 11]. Potentially better approximations may be produced when
properties of some weighting function G(s) is taken into account in the

approximation of the delay element, i.e., the weighted delay model G(sle™® is

explored. Weighted approximation is very reasonable since in process industries
first order plus time delay and second order plus time delay models are commonly
used to describe the system behavior [8].

This paper considers the problem of rational transfer function approximation
of pure time delay elements. The time delay is presented by Laguerre, Kautz and
Pade power series or shift operator descriptions truncated by using balanced and
Hankel norm realizations. Certain frequency weights are added to the time delay
element and error bounds are computed for the derived approximations. Several
numerical examples are presented, visualizing the accuracy of the time delay
approximation.

2. Rational function approximation of pure time delay elements

The main interest for approximating a time delay with some rational function lies in
the attempt to deal with a finite dimensional system instead of the corresponding
infinite dimensional one. The time delay element is usually approximated by an all-
pass rational function. The Hankel singular values for all-pass functions are all
unity, therefore the error between an all-pass function and its lower order rational
function approximation will be greater or equal to one and hence the approximation
will be very inaccurate. This does not imply however when an all-pass system is
connected with a rational weighting function.

The approximation methods used most widely in practice are based on the
presentation of the delay element as a ratio of two polynomials [7]:
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where Q, (s) is a stable polynomial of degree n. The polynomial Q, (s) when used
for the [n, n] Pade series approximation of the delay element is given in the form

[7]:
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Some low order Q,(s) polynomials are: Ql(s):1+?, Qz(s):1+?+ o

&  0°s° 6% :
Q3(s)=1+?+T+E' If we denote by P, the [n,n] Pade approximant of the

function e~* for s= jo we have the following error bound [9]:

‘a)‘ 2n+1
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where «//:2(\/§/e)'/2 ~1.443. Pade method gives an optimal convergence rate for

rational approximation of functions of the form H(s)=e *G(s) in terms of H,
norm. If the condition |G(jw) < M/|w| is satisfied for some m >0 and p>1, then for
2n +1> p the following error bound is valid [9]:

p
4 e ®G(s)-P,(s0)G(s) <2M i]
@ 00~ o)l <2m %
where y = Z(JE /e)l/z ~1.443.

A new approach for rational approximation of delay systems is based on shift
operator techniques [5, 6]. The advantage of using shift operators comes from the
fact that many important orthonormal bases such as Laguerre and Kautz bases are
known to be induced by the corresponding shift operators. It is also known that the
delay operator is a shift operator. A simple approximation technique uses the

n
classical relationship of exponential functions e* = |im(1+5j . If the time delay

N—0! n
element is presented in the form [3]

) et -8 fimA=ty/20)
e®?  no (14 65/2n)"

the shift operator S| defined by
(6) shf =(1_95/2”J f, feH,,
1+ 65/2n

is called a multiple Laguerre shift with multiplicity n. The error between the time
delay and the Laguerre shift is bounded by the expression [3]
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@0 |f 3 stable delay system is presented by the relation

where 4 (w)=
H(s)=e *G(s), where the rational function G(s) has a relative degree k and
continuous upper bound along the imaginary axis given by

(8) |G(ja)) { |/60 a)<a)
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where low and high conctants m,, M, >0, @, >0 are such that M,a)ck :th;“,
m<3, then the error between the Laguerre shift approximation and the delay
system is given by the formula as [3]:
2M,(i2/3], m=>0,
R
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where g = 2(3]/3).
Another important shift operator is the Kautz shift Sg : H, —» H, defined by

[5]
& 1(6aY
“on " 2lon
(11) Slzf: 2 f! fEHZ;
& 1(95)
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and called a multiple Kautz shift of multiplicity 2n. The error bound between the
Kautz shift and the delay system is given by the inequality [5]

(12) <?2 ( o)

w T 48Y3 ” " 2m/3 !

48303

where C is a constant defined by the expressions |G(jw)<|G|, % C<
[0

48¥3n%°

and m=1,2 is the relative degree of G(s). If C> , the error bound is

presented as
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(13) |H-skg| < Ce || ILC

In the case when m > 3, the error bound can be presented as follows [5]:

(14) |H-seq| <—4ng ¢(ﬂ)ni2’

L n2)
where ¢(3)= sup &°|G(jw) and n> &9): . An extension of Kautz
0<w<p (2\/5)

shift is the multiple Pade shift of multiplicity 2n, SJ:H, — H, also known as
Pade-2 shift and defined by the expression [6]

o)
(15) ngzM i, feH,.
6 1(95)2
1+—+
The error bound between the multiple Pade-2 shift and the delay system is

given by the inequality [6]
co " 1
) 1ol

where m=1,2 34 and C is a constant satisfying |G(jco)|s||G||w% and also
w

(16) |
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The case when the relative degree iSsm>5, the error bound can be simplified
as follows:

(18) |

6° 1
<—I|m —, n=3,
720 ﬁ—>°0¢5(ﬂ)n4
/320.

The pure time delay element is modeled by using series or shift operator
approximation. The order of truncation of series representation or the multiplicity
number of shift operator description are determined by applying the Hankel norm
and balanced realizations. These quantities are determined by exploring the
approximation errors of the corresponding realizations.

where ¢, (8)= sup o*|G(jo).
0<w<p
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3. Balanced truncation and Hankel norm approximation of
delay elements

A popular method for model reduction of finite dimensional systems which can be
used in some infinite dimensional cases is the balanced relization method. A
balanced realization is the one where the controllability and observability gramians
are equal and diagonal. The diagonal entries of the gramians are called Hankel
singular values. By truncating the state space matrices of a balanced realization we
obtain a reduced order model with good approximation properties. Model reduction
requires the elimination of some of the state variables from the original system
representation. The system is first transformed into a balanced form and then some
of the state variables are truncated while preserving stability.

Assume a stable linear time invariant system described by its state space
model:
(19) X(t)= Ax(t)+Bu(t), t>0,

y(t)=Cx(t),  x(0)=x,.
Consider the controllability operator of the system defined as:

t
(20) L, :L,(0,00) > R", where (L,u)t)= [e"Bu(r)dr
0

and the observability operator of the system defined as
(21) L, :R" = L,(0,:0), where (L, )t)=Ce*'x,,
then the controllability and observability gramians

t

t

(22) Wc(o,t):jeAfBB*eA*’df and Wo(o,t)zjeATC*CeA’dr
0 0

are the matrix representations of the maps L.L, and L;L,, where with the star

superscript the adjoint operator is assigned. If the linear system is stable,
controllable and observable, ~ then the gramians W, =limw,(0,t) and

t—>o

W, = limw, (0, t) are the unique solutions of Lyapunov equations:

t—oow
(23) AW, +W_A"+BB* =0 and AW, +W,A+C"C=0.

The smallest amount of energy needed to move the system from zero to state x
is given by E, = x"W_'x, while the energy obtained by observing the output of the
system with an initial condition x and no input function is given by E, = x'W,x.
Therefore, one way to reduce the number of states is to eliminate those which
require a large amount of input energy E_ to be reached and yield a small amount
of observation energy E, at the output. The goal is to look for a basis in the state

space where controllability and observability are equivalent in some sense. Such a
basis exists if W, =W, =diag(;,...,0,), o,, i =1, 2,...,n, are the Hankel singular
values of the system. Approximation in this basis takes place by truncating the
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initial state vector x =[x, X,,..., x,]' to the reduced state vector X =[x,, X,,..., X'
for k <n. Approximation by balanced truncation preserves stability and the H_

norm of the error between the original and the truncated system is given by the
expression

(24) [F-35 <2or+...+a).

A balancing transformation is computed as P =S %2U*R, where W, =RR is
a Cholesky decomposition of the observability gramian and RW,R* =US?U* is the

singular value decomposition of the expression in the left side. This type of
balancing is known as Lyapunov balancing because it is based on solving Lyapunov
equations for the gramians. This approach may turn out to be inefficient, especially
for large problems due to the rapid decay of the Hankel singular values. To avoid
these difficulties some modifications of the original balancing algorithm are
proposed to prevent matrix inversion. One of the most popular modification of the
balancing algorithm is the Square Root Algorithm [1, 10]:

e If we partition the matrices W =[W, W,]andV =[v, V,]and W, =LL"
(Cholesky decomposition)

e W,=UU" (Cholesky decomposition)

e U'L=WZIV" (SVD decomposition)

e P=3YA/*L" (similarity transformation)

o Pl=UwzV? (similarity transformation)

.
dx = ,
Z,

we obtain the similarity transformations as follows: P, = 2;*?/,L" € R*" and

P =UW,2;¥* e R™. The reduced order system of dimension k obtained from the
original one by balanced truncation is

RAR| RB
El = = .
Ch

Finally, we obtain the error between the system described by H(s)=e *G(s)
with G(s) stable, rational weighting function and its balanced truncation of the

delay series approximation. To obtain the error bound we use the triangle property
of norms:

(25) [H-%] =|H-siG+si6-5| <|H-sig +|siG-5,

+
0

l
0

where S!' denotes any of the delay element shift approximation presented in

Section 2. The first error norm in (25) is bounded by the inequalities (9), (10), (12),
(13), (14) or (16), (17), (18) and the second error norm is bounded by the term (24).

The Hankel norm approximation is based on the norm induced by the Hankel
operator. In time domain, the Hankel operator is defined as
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T, :L,(-,0)— L,(0,0), where T,,u=P,(hxu) is a projection on the positive time
axis of the signal u e L,(~,0) convolved with the impulse response h(-). The

result of this convolution is obtained as
0

(26) (Cu)t)= jh(t —ru(r)dr, t>0,
) t<o0,

The Hankel operator has the interpretation of the system future output
y(t)=T,u(t), t>0, based on the past input u(t), t<0. The Hankel operator can

also be presented as a composition of maps from the past input to the initial state
and from the initial state to the future output. This composition of maps is presented

by two other operators [12]: the controllability operator L, :L,(-w, 0)— R", where

0
L.u= J.e‘A’Bu(r)dr and the observability operator L,:R" — L,(0,0), where

L,Xo =Ce™x,, t>0. Thus, the Hankel operator can be considered as a
composition of the controllability and observability maps, i.e., I', =L, oL, =L,L,.
The 2-norm of a stable system Hankel operator is given as

(27) Il =[] = Vo).

where p(W.W, ) presents the spectral radius of the gramians product and is known
as the Hankel norm of the systemx denoted by [=[|.,. The Hankel norm is induced

2-norm from the past inputs to future outputs. The Hankel norm approximation
theory is based on the following results [1]: i) given stable systems » and X, of

degrees n and k, where n >k, there holds HZ —EK”H >o,.,(2); ii) the two-norm of

any L, system = is no less than the Hankel norm of its stable part X, ie.,
I=], =[=.],,; iii) given a stable system =, there exists a system 5., having
exactly k stable poles and HZ—EKHZ = O'k+1(2). Furthermore, X —ik is all-pass.
The system fk is called all-pass dilation of the system x; iv) given
k e{o, 1..., n—1}, a stable system x and a positive number &, such that
o (2)> &> 0,,(T), there exists a system %, with k stable poles and [E-%, ==
Furthermore, -3, is all-pass and 5, is called & all-pass dilation of =. If £, is &
all-pass dilation of » and o, ,,(2)<&<0,(Z), then =, has exactly k stable poles
and o,,(2)<[2-5,|, <& If 0,.(2)=¢, then “z—ik“H =0,.,4(2).

In state space, the optimal Hankel norm approximation is obtained as follows
[2]. Assume that & is a Hankel singular value of multiplicity r of the system X.
Transform the system into a balanced form and partition the system matrices as
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_ A11 AlZ _ Bl _ _ Wc,ll 0
A_[Aﬂ Azzj, B_(BJ’ c=(c, ¢c,), D, Wc—( 0 er,

W0 — (Wo,ll O J .
0 d,
Then the approximation problem solution is given by the system matrices:
= F71(02A1*1 +Wo 11 AW — ocl*UBl*)’
—1r*W,,,B, +0C/U),
=CW,,, + oUB;,
e D=D-oU,
e T=W_ W, -0,
where U is a unitary matrix satisfying B, =-C;U, UU =1 and o is the Hankel
singular value determining the size of the error.

b~

B
C

4. Experimental results

We examine a pure time delay element with a stable rational weighting function of
first and second order. This type of transfer functions is quite popular in practice
because it fits the models of a large variety of industrial control processes.

—6s
Consider the first order model with a time delay H(s)= %. Assume that 8 =1s
+

and T takes the values 0, 0.1, 1 and 10 s. We consider first the [4,4] Pade

approximation of the delay element. The coefficients of the approximating
polynomial are obtained as follows:
Q, =[0.0006 0.0119 0.1071 0.5 1.0].

The Hankel singular values of the rational approximation of H(s), where the
delay element is approximated by [4, 4] Pade series, are shown in Fig. 1.

Hankel singular values Hankel singular values
T T T T

i S P S

v I 25 3 35 4 44'5,, Y 1i5 -2T‘SH-?_kiaish_-(:ﬂhiv
Fig. 1. Hankel singular values of [4, 4] Pade Fig. 2. Hankel singular values of 4th order
approximation with 1st order weight: Laguerre shift 1st order weight:

T=0(---); T=01(...); T=1(--); T=10(-.-) T=0(-);T=01(...); T=1(--); T=10(--)
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The first observation from Fig. 1 is that when T =0 or the approximation is
for the pure delay element without a weighting function, then all Hankel singular
values of the rational function are equal to one and the error of approximation
cannot be reduced further. This result shows that it is not possible to approximate
the delay operator arbitrarily closely by rational functions, but the situation changes
when the approximation method is applied to weighted delay elements. The second
observation is that the error of approximation decreases by increasing the time
constant of the weighting function. The Hankel singular values of a multiple
Laguerre shift with multiplicity n approximation for the same values of T are shown
in Fig. 2. The approximation polynomial has the following coefficients:

Q, =[0.0002 0.0078 0.0938 0.5 1.0].
Insignificant difference for the Hankel singular values in the case of the fourth
order Pade approximation is observed. For example, for T =1s the [4,4] Pade

series approximation has Hankel singular values
S ={0.7373,0.3528, 0.1846, 0.1054, 0.0363}, while the Laguerre shift 4

approximation has S = {0.7367, 0.3445, 0.1622, 0.0781, 0.0237}.

Hankel singular values Hankel; singular values
1 I st 1

12f e L EH 06t

s
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DB 03

04 02
v

0z 0.1

1 5 5.5 B

Fig. 3. Hankel singular values of 4th order Fig. 4. Hankel singular values of 4th
Laguerre shift: T;=T,=0 (---); T;=0.5, T,=2 (...); order: Pade (---); shift Laguerre-4 (...);

T,=0.1, T,=10 (- -); T;=10, T,=10 (-.-.) shift Kautz-2 (- -); shift Pade-2 (-.-.)

It is seen again that by slowing down the filter dynamics, the approximation
error is reduced. Next, we consider a time delay element with a second order

e—&s
(Ts +1)T,s +1)
different filter time constants: T, =0, T,=0; T,=0.5s, T,=2s; T, =0.1s,
T,=10s and T, =1s, T, =10 s. The approximation model used is Laguerre shift

with multiplicity n=4. The results are shown in Fig. 3. Similarly to the case of the
first order weighting function when T, =T, =0, the Hankel singular values are

equal to one. When one of the time constants is increasing, the Hankel singular
values have higher rate of decline and the approximation error becomes smaller.

weighting function of the form H(s)= . We explore four cases for
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When both time constants are large, the decline rate is the fastest one. Fig. 4 shows
the Hankel singular values for T, =0.5s and T, =2s for the approximation

models: [4, 4] Pade series, Laguerre shift with n = 4, Pade and Kautz shift with

n = 2. It is observed that all four approximation models give almost the same
Hankel singular values with the same rate of decay. This result shows that in the
low pass frequency range the approximation methods have similar approximation
capabilities.

-6

We consider a model of time delay with a first order weight: H(s)= Te 1
S+

Assume that #=5s and T =10 s. The Hankel singular values for [4, 4] Pade
series approximation are S ={0.6559, 0.2186,---0.0986, 0.0547,0.0188} and for shift
Laguerre-4 approximation are S = {0.6557, 0.2114, 0.0869, 0.0404, 0.0121}. For model

reduction, we apply the balanced truncation method. Fig. 5 presents the unit step
responses for a weighted time delay element which is approximated by [4, 4] Pade

series. The time responses for the full order system, the reduced fourth, third,
second and first order systems are shown. For all approximation models, except for
the first order approximation, the difference in the time response appears only in the
steady state value. Similar results are observed for the shift Laguerre-4
approximation models in Fig. 6. It is observed that the reduced fourth and third
order models closely approach the full order model. Therefore, the balanced
truncation method can reliably be used for weighted approximation of time delay
elements. Next, we assume a time delay element with a second order weighting

—0s
function H(s)= — <, where T; =55, T,=0.2s and =3 s.
(Tis+1)T,s+1)

Amplituds:
Amplitude

a 20 40 &0 a0 100 120 140 160 180 a 20 40 B0 a0 100 120 140 160 180
Time (sec) Time (3ec)

Fig. 5. Unit step response of [4, 4] Pade Fig. 6. Unit step response of shift
approximation with 1st order weight: Laguerre-4 approximation 1st order weight:
full order (---); reduced 4th order (- -); full order (---); reduced 4th order (- -);
reduced 3rd order (...); reduced 2nd order (--); reduced 3rd order (...); reduced 2nd order (-,-);
reduced 1st order (xxx) reduced 1st order (xxx)
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We consider the model of multiple Laguerre shift with multiplicity
n=4 approximation. The Hankel singular values of the weighted delay
element H(s) approximated by the shift Laguerre-4 are:
S ={0.6821, 0.2543, 0.1062, 0.0483, 0.0169, 0.0026}. The step responses to the full

order model, the reduced fifth, fourth and third order models by appplying the
Hankel norm approximation technique for model reduction are shown on Fig. 7.

12

Step Responze Step Response
T T T

1k

[k

0g

Ampltude
Amplitude

04

P Y

s A TN S R N R i i i i i i
a B 10 15 20 25 30 35 40 45 ad 10 20 30 40 50 B0
Time (sec) Time (sec)

Fig. 7. Unit step response of shift Laguerre-4 Fig. 8. Unit step response of shift Pade-2
approximation with 2nd order weight function: approximation with 2nd order weight
full order (---); reduced 5th order (- -); reduced  function: full order (---); reduced 5th order (- -);
4th order (...); reduced 3rd order (-.-.) reduced 4th order (...); reduced 3rd order (-.-.)

The Hankel norm approximation method gives the system errors in terms of
the Hankel norm: the error between the full order and reduced 5th order
approximation of H(s) is 0.0026, the error between the reduced 5th order and the

reduced 4th order shift Laguerre-4 approximations is 0.0169 and similarly the error
between the reduced 4th order and the reduced 3rd order shift Laguerre-4
approximations is 0.0483. It is observed from Fig. 7 that the unit step response
difference between the full order and reduced order systems appears in the steady
state values and it is very small. Similar results are obtained when the shift Pade-2
approximation is applied to the weighted delay system. The Hankel singular values
for the weighted time delay element with the same set of parameter values are
obtained as follows: S ={0.6823,0.2584,0.1156, 0.0583,0.0223,0.0036}. The unit

step time responses of the full order shift Pade-2 approximation and the reduced 5th
order, 4th order and 3rd order systems are shown in Fig. 8. It is observed that the
error between the system responses increases which is due to the larger values of
the Hankel singular values of the shift Pade-2 approximation and therefore the
larger Hankel norm difference between the reduced order approximations.

5. Conclusion

The paper considers the problem of the pure time delay element approximation by
applying Hankel norm and balanced realizations. The time delay element is
modeled in terms of Pade and Kautz series or Laguerre, Kautz and Pade shift
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operator representations. The error bounds for these different approximation models
are discussed and it is shown that time delays can be approximated successfully
only when utilizing some weighting functions. The first order and second order
weighting functions are used that corresponds to the practice to model industrial
processes most often by first order or second order lags and time delay. The Hankel
norm and balanced realizations are used to reduce the order of the weighted time
delay approximations. The balanced truncation method is a member of the family of
Lyapunov type approaches for balanced model reduction. It is based on a
numerically efficient algorithm utilizing Cholesky decomposition of both gramians.
The Hankel norm approximation uses the standard technique of sequentially
reducing the model order by applying balanced realizations and obtaining o all-
pass dilations of the error system. Both methods for model reduction are tested with
numerical examples and the corresponding errors are calculated in terms of the
Hankel singular values. The results obtained confirm the efficiency of the shift
operator approximation of time delay elements in combination with the balanced
and Hankel norm model reduction techniques.
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Anmnpokcumanys 3JeMEeHTa YUCTOTO 3aa3AbIBaHus C UCIIOIb30BAHUEM
XaHKeI0BOM HOPMBI U OATAHCOBOM peaTu3aiuu

Kamen Ilepes

Kageopa ,,Cucmemvi u ynpasnenus™, Texnuueckuii ynusepcumem — Coghusi, 1756 Cogpus
Email: kperev@tu-sofia.bg

(Pezrome)

B cratee paccmarpuBaeTrcsd 3ajada anmpOKCHUMAIMM  DJIEMEHTa YHUCTOrO
3ara3/IbIBaHUS C MCIIOJIb30BaHNEM XaHKEIOBOW HOPMBI U 0AJIaHCOBOM pea3ariiy.
B3BemanHnbiil a1eMeHT 3amna3zbiBaHus npezacTaBieH psgamu [lage m Kayrtua wnu
oneparopoM mnepemerienus Jlarepa, Ilage m Kaytma. 3amaHbl KOMHYeCTBEHHEIE
OIICHKH OIIMOKH ammpoKCHMAIlUU YUCTOTO 3alla3J(biBaHusl. XaHKEJIOBBIE HOPMBI H
OaslaHCOBBIE peaNn3alyy WCCIONB3YIOTCA JUIS ONpeAelieHHs TOpsaKa IMepephiBa
anmnpokcuMmanuu. PegynupoBaHHas MOJENb CPAaBHUBAETCS C allIpOKCHMAallMei
MOJILHOTO TOPSJIKA JIJISl ONpe/IeNieHUs 3P PEKTUBHOCTH TPEACTABICHHBIX METOJIOB.
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