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Abstract: This article summarizes the optimal strategies approaches for decision 
making under uncertainty conditions in case of engineering systems maintenance. 
The characteristics of uncertainty information and approaches to decision making 
based on optimization models are described.  A generalized problem for the 
optimization predictive model for the diagnostic goals of engineering systems is 
shown. 
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1. Introduction 

The machine reliability improving is the major industry focus to gain the maximum 
machinery working life while minimizing the maintenance and operating costs. 
Therefore it is necessary to establish maintenance monitoring strategies to predict 
the engineering system life efficiency. Any engineering system is subject to 
deterioration over time. This natural process of deterioration of the technological 
parameters during operation can be accelerated by uncertain factors or can be 
decelerated by monitoring, diagnostics and the corresponding relevant activities. 
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For this propose appropriate strategies for decisions making under uncertainty 
conditions and incomplete information about the system must be developed. The 
strategies can involve the predictive life assessment system [1]. This could be 
realized by a proper system for control and management of the investigated object 
(engineering system). The structure of such a system consists of four main 
components [2].  

 
Fig. 1. Control and management structure   

The goal of the subsystem “Information” is to prepare the database for the 
objects state data collected by the subsystem “Monitoring”. There are different 
methods that can be employed for machine condition monitoring to support 
maintenance decisions [3]. “Security” is a subsystem, which determines the degree 
of access to the collected information. The subsystem “Management” is designed to 
assist decision making according to a predefined situations set. The monitoring 
subsystem is one of the most important in the control and management structure 
because it provides data for diagnosis and decision making. The choice of 
monitoring strategy depends on the requirements and knowledge about the object 
(the engineering system). If the knowledge of the object is incomplete, the life cycle 
forecast using an adaptive model is useless because the model input parameters are 
more or less unknown. In such cases monitoring can be used to observe the 
threshold values of certain essential object parameters. To overcome such situations 
some innovative methods [4, 5] for monitoring and diagnosis, and effective 
allocation of resources to maintain the deteriorating parameters of the object could 
be used. That is why the ISO 13381-1: 2004 Standard prescribes to start with 
monitoring, followed by diagnostic, prediction and posterior actions (Fig. 2) [6].  

 
Fig. 2. Stages of ISO 13381-1: 2004 Standard  

The object life cycle cost analysis facilitates the cost effective alternative 
solutions comparison. The condition monitoring has become a recognized tool for 
assessment of the operational state of industrial equipment. Maintenance decisions, 
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such as when to undertake an action and what type of an action to realize, can be 
made based on the analysis of condition monitoring information. The ultimate goal 
is to improve the condition, safety and long-term performance of the system while 
reducing the lifecycle cost. The predictive maintenance strategies are very efficient 
in mechanical-failure modes, when the failure probability increases with time, and 
one or more condition-monitoring techniques can predict the failure before 
breakage [7]. Predictive maintenance seeks for a much more cost-effective analysis 
than preventive maintenance. The intersection point between the value of each 
parameter or feature and its corresponding alarm threshold leads to what is known 
as remaining useful life of the system (Fig. 3) [8].  

 
Fig. 3. Estimation of the remaining useful life 

Depending on the estimated remaining useful life, appropriate maintenance 
actions can be taken. These actions may aim at eliminating the origin of a failure 
which can lead the system to evolve to any critical failure mode, delaying the 
instant of a failure by some maintenance actions or simply stopping the system if 
this is considered necessary. 

2. Optimal decision making strategies under uncertainty conditions  

Forecasting deterioration of the engineering systems characteristics during the time 
and proper decision making is associated with considerable uncertainty [9]. The 
decision maker under uncertainty conditions has an idea about the goals to be 
achieved, but the information about alternatives and future events is incomplete. 
Usually, there is no sufficient data to assess the risk of each alternative.  

When considering the decision making problem under uncertainty conditions 
some starting prerequisites should be noted: 

• in all cases there exists a decision-maker; 
• the optimal solution implies the existence of a function f, which should be 

optimized, 
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)(maxopt xfx = , 
where x is the set of analyzed alternatives,  xopt is the optimal solution.  

The decision maker’s preference is considered as a function called preference 
utility function f(x) on the set of possible alternative solutions: 

{ }mxxxx ,...,, 21=  
under the environment state s ={s1, s2, … , sn}.  

The choice of solution under uncertainty has to be done in the case of 
environment and object information lack or shortage. Assuming that the decision 
maker can assess the usefulness Eij of alternatives xi (i=1, 2, …, m) in some 
dimensionless units, he can use the known optimization approaches, using the 
following criteria: 

Wald Criterion. In this case, the decision maker selects the strategy 
associated with the best possible among the worst outcomes regardless of whether 
the probabilities are available or not. For each alternative solution xi (i=1, 2,…, m), 
the worst output minEij (j=1, …, n) is defined. Next, an alternative solution is 
determined for which minEij (j=1, …, n) has a maximum magnitude [10, 11]: 

)....,,2,1;...,,2,1(minmaxopt njmiEx ij ===>  

Savage Criterion. This criterion looking at small loss of efficiency due to 
missed opportunities is calculated by the formula   

ijijij EER max−= . 

Based on a “regret matrix” which compares (subtracts) the highest outcomes 
of each strategy from other outcomes [12]. The Wald’s solution rule 
(maximin/minimax) is applied to this new matrix to gain the minimax regret 
solution. The optimum would be the minimum losses value Rij among all 
alternatives: 

)....,,2,1;...,,2,1(maxminopt njmiRx ij ===>  

Laplace Criterion. The core of Laplace principle is based on the fact that if 
there is no information to determine a condition as more likely than another, then 
the optimal solution can be determined as  
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i.e., all possible states have equal probability when no other information is 
available.  

Hurwicz Criterion. This decision criterion is a simplified version of Laplace 
principle and involves the identification of the worst and best outcomes for each 
strategy. Under certain probabilities of particular states, the arithmetic average of 
the results of the best solutions is taken [13]. The optimal solution can be 
determined taking into account both the minimum and maximum profit: 

{ }ijij EEx min)1(maxmaxopt αα −+=> , 

where α  is  optimism coefficient (0<α<1). When α = 0, Hurwicz solution is the 
same as the pure Wald solution; when α  = 0.5 it corresponds to the equivalent 
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antagonistic and friendly environment and the case α  = 1 corresponds to the 
maximum favourable environment.  

3. Problems under uncertainty conditions  

Among the many sources of uncertainty the main distinguished incompleteness is 
the lack of information, fortuitousness, which cannot be predicted. In the decision 
making process there are various kinds of uncertainty, depending on the reasons for 
its occurrence. Uncertainty appears in diagnosis problems at different levels, that 
can be classified as information and/or model flaws. There exist two main 
characteristics of uncertainty of the available information for solving decision 
making – fuzziness and stochasticity of the information. The stochastic 
programming problems consider decision making problems under conditions of 
random factors needed to be considered into corresponding mathematical models 
formulation. A typical task for mathematical programming [14] can be written as: 

To find such a vector X, for which 

min)( →Xf   
subject to 

0)( ≤Xig , i = 1, …, m.  

The stochastic programming problems consider the functions f(Х), gi(Х) as 
dependent on the random parameters ω, where ω is an element of the random 
parameters space Ω.  

The formulation of the problem of stochastic programming is characterized by 
three features: 1) nature of the decisions; 2) choice of the quality of the decision 
(criterion); 3) tools of decomposition of the task constraints. The task of stochastic 
programming could be formulated as: 

To minimize ),( ωXf  
subject to 0),( ≤ωXig , i = 1, …, m. 

The formulation of the stochastic programming problem depends on the 
existence of the possibility in the decision choice to clarify the nature of ω by 
observations. Two types of tasks could be distinguished – operational stochastic 
programming and perspective stochastic programming. 

In practice the stochastic programming tasks are based on one of the following 
two forms. 

1. To minimize )()},({ XX FfM =ωω   
subject to 0)()},({ ≤= XX ii GgM ωω , i = 1, …, m,   
where Mω is the mathematical expectation. 

2. To minimize }),({ afP ≥ωX ,  
subject to ii PgP ≥≤ }0),({ ωX , i = 1, …, m,   
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where a, Pi  are some numbers; P denotes probability. 
Some combinations between these formulations are also possible. 

4.  General prognostic model for engineering systems  

The prognostic model could be essentially considered as an optimization problem. 
The aim of a prognostic model is to predict the probability of a particular outcome 
as optimally as possible, and not just to explore the causality of the association 
between a specific factor and the outcome. The way in which a prognostic model is 
developed differs therefore from the method for building an explanatory model. 
When building a prognostic model the focus is on the search for a combination of 
factors which are as strongly as possible related to the outcome. Accurate 
prognostic models are based on algorithms that are capable of predicting future 
component failure rates or performance degradation rates. This prognostic 
algorithm must collect the data in real time to provide the best estimation about the 
remaining useful system lifetime. It could be expressed as minimization of the 
possible costs of overstatement and understatement: 

),)(())(()(min uuuooo CtPkCtPktf +=  

where t is the predicted remaining working system lifetime, f(t) is the total 
estimated cost assessment, Po(t) is the probability of overestimating and Pu(t) is the 
probability of underestimating, Co and Cu are overestimated and underestimated 
costs, ko and ku are trustworthy coefficients of overestimating and underestimating. 

The development of strategies for assessment prognostic modeling of 
machinery working life involves various methods including structural system 
reliability, probabilistic based life cycle assessment and maintenance, optimization 
of multiple criteria under uncertainty and integration of monitoring in life cycle 
management. Combining the advantages of these methods could aid the decision 
maker in decision making process for engineering systems diagnostics under 
uncertainty or incomplete information conditions.  

5. Discussion and conclusion 

The increasing competitiveness in the industrial world is motivated by the interest 
in improvement of asset effectiveness. The application of engineering systems 
condition monitoring is growing and it is a challenge for researchers to develop 
appropriate methods. The natural process of deterioration of the technological 
parameters of the engineering systems in the process of operation can be delayed by 
appropriate strategies for predictive maintenance. A benefit of such predictive 
maintenance is the general maintenance level improving of the system that leads to 
enhanced productivity. Employing this technique on a regular basis will ensure the 
system reliability improvement by an essential percentage. This is due to the fact 
that any potential eventualities have been adequately addressed. Such techniques 
help to reduce the costs usually used for engineering systems replacements. Many 
components become faulty because the problems are not detected in due time. By 
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identifying the problems in their initial stages, the predictive maintenance system gives notice 
of impending failure, so repair downtime can be scheduled for the most convenient and 
inexpensive time. Using a predictive maintenance program, machines are only dismantled 
when necessary, so the frequency of equipment disassembly is minimized. To achieve these 
benefits, optimization models and methods can be used. In most cases these optimization 
techniques are associated with uncertainty – stochastic or fuzzy information. Depending on 
the specifics of the investigated object, different principles for optimization problems 
formulation could be applied. The particular optimal strategies for decision making under 
conditions of uncertainty information for engineering systems maintenance goal depend on 
the system nature and the individual decision maker's preferences. 
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Техническое обслуживание инженерных систем при помощи 
оптимальных стратегий для принятия решений в условиях 
неопределенности  
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(Р е з ю м е) 

В работе обсуждается применение оптимальной стратегии для принятия 
решений в условиях неопределенности для диагностики инженерных систем. 
Описаны характеристики неопределенности информации и подходов к 
принятию решений на основе оптимизационных моделей. Показаны 
обобщеная прогнозирующая модель для диагностики, а также и техническое 
обслуживание инженерных систем. 

 


