
 24

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ • BULGARIAN ACADEMY OF SCIENCES

ПРОБЛЕМИ НА ТЕХНИЧЕСКАТА КИБЕРНЕТИКА И РОБОТИКАТА, 62
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 62

София • 2010 • Sofia

Using Implicit Runge-Kutta Methods for Multi Precision Solving

of Nonlinear Differential Equations

Velichko Djambov
Institute of Information and Communication Technologies, 1113 Sofia
E-mail: vili_jambov@abv.bg

I. General data about the implicit Runge-Kutta schemes

Some basic notions and results are presented herein, needed for the construction of
a procedure of the type of Runge-Kutta implicit scheme. For more thorough
analysis of the notions and methods, connected with stability, you may see [1, 2].

Let the system (, ())y f t y t=& be given, for which we would like to solve
Cauchy’s problem for 0 t T≤ ≤ and 0(0)y y= . We assume that y(t) is a real
m-dimensional vector.

I.1. Structure of Runge-Kutta methods
The single-step Runge-Kutta methods are presented as an implicit relation (between
yn+1 and yn, which denotes the approximate values for the successive steps)
(1) 1 1 1[, ,], (1)n n n n n ny y y y t t nτ τ τ+ + += + Φ = − ≥ ,
where yn denotes the approximation of y(t) for tn. The length of step τ can be
altered by n.

One single-step Runge-Kutta method is described with the help of the formula

(2) 1
1

s

n n i i
i

y y b kτ+
=

= + ∑ ,

where

 25

(3)
1

(,)
s

i n i n ij j
j

k f t c y a kτ τ
=

= + + ∑ .

Formula (2) is called s-staged and it is based on s calculations of function f for
the derivative of the solution. In the case when aij = 0 for j i≥ , the coefficients ki
may be explicitly calculated from the values of k1, …, ki−1. Similar formulae are
called explicit. In case aij = 0 at j i> , but 0iia ≠ , each ki is implicitly defined by
the equation

(4)
1

1

(,)
i

i n i n ij j ii i
j

k f t c y a k a kτ τ τ
−

=

= + + +∑ .

This requires calculation of approximate values for ki. Such Runge-Kutta
methods are called diagonally implicit. The execution of one step for such method
requires the solution of s nonlinear systems of algebraic equations of m-th order
with the help of an iterative procedure. The methods, which are not explicit, or are
diagonally implicit, are called implicit. All ki must be simultaneously calculated in
implicit methods. Hence, one step of an implicit method requires the solution of a
nonlinear system of algebraic equations of ms order. The coefficients in formulae
(2) and (3) usually satisfy the condition

(5)
1

(1)
s

i ij
j

c a i s
=

= ≤ ≤∑ .

In order to present a Runge-Kutta method (by its coefficients), the so called
Butcher table is used:

.
||

|

1

1

1111

T
s

sss

s

s

bb
aa

aa

c

c

b
Ac

L

L

MM

L

M

=

I.2. Definition of an approximation degree. Simplifying conditions
If the following is assumed for a local error in discretization
(6) 1 1 1 1 1

ˆ ˆ ˆ ˆ() , () [, (),]n n n n n n nl y t y y y t y t yτ τ+ + + + += − = + Φ ,
the approximation degree of the method is defined as the biggest non-negative
integer number p, for which
(7) 1

1
ˆ (), 0p
nl O τ τ+

+ = → .

For the methods considered the approximation degree may be determined with
the help of Butcher simplifying conditions.

It is known that the s-stage method of Runge-Kutta meets the condition

(8)),(ˆif),(1
1

+

+ = ξτξ OlA n

(9)),1(1if),(1

1
ξξ ≤≤=−

=
∑ k

k
cbB k

i

s

i
i

 26

(10)),1,1(1if),(1

1
sikc

k
caC k

i
k
j

s

j
ij ≤≤≤≤=−

=
∑ ξξ

(11)),1,1()1(1if),(1

1
ηη ≤≤≤≤−=−

=
∑ lsjcb

l
acbD l

jjij
l
i

s

i
i

(12)).1,1(
)(

1if),,(11

1,
ξηηξ ≤≤≤≤

+
=−−

=
∑ kl

klk
cacbE k

jij
l
i

s

ji
i

The condition A(ξ) means that the method has an approximation degree not
smaller than ξ. The application of Runge-Kutta method to the differential equation

() (), () 0ny t f t y t= =& gives the quadrature formula

(13)
1

()
s

n i n i
i

y b f t cτ τ
=

= +∑ ,

the right side of which approximates the integral
1

1
0

() ()n ny t f t x dxτ τ+ = +∫ .

The method of digital integration (13) is defined entirely by the abscissas ci
and the weights bi of Runge-Kutta method. Hence, condition B(ξ) means that the
quadrature formula is exact in case f is a polynomial of a degree not higher than
ξ – 1. This is equivalent to the affirmation that the quadrature formula (13) is of
degree ξ .

The following results reflecting the relations among the conditions are in
power:

Theorem 1 (Butcher). If for a given s-stage Runge-Kutta method all the
abscissas c1, …, cs are different, and all the weights b1, …, bs are different from
zero, then the following logical relations are valid:
(14) () ()A Bξ ξ⇒ ,
(15) () (,)A Eη ξ η ξ+ ⇒ ,
(16) () () (,)B C Eη ξ ξ η ξ+ ∧ ⇒ ,
(17) () () (,)B D Eη ξ η η ξ+ ∧ ⇒ ,
(18) () (,) ()B s E s Cξ ξ ξ+ ∧ ⇒ ,
(19) () (,) ()B s E s Dη η η+ ∧ ⇒ ,
(20) () () () () (min(1,2 2))B p C D A p pξ η ξ η ξ∧ ∧ ⇒ ≤ + + + .

Theorem 2 (Butcher). Let for a given s-stage method all the abscissas be
different, and the weights − different from zero. Then the following relations are
valid:
(21) (2) (2) () ()A s B s C s D s⇒ ∧ ∧ ,
(22) (2) () ()B s C s D s∧ ⇒ ,
(23) (2) () ()B s D s C s∧ ⇒ ,
(24) (2) () () (2)B s C s D s A s∧ ∧ ⇒ .

The next result (refer to [1]) enables the calculation of the coefficients of A in
Butcher table:

 27

Theorem 3. Let s different abscissas c1, …, cs be given. Then conditions B(s)
and C(s) define unambiguously a Runge-Kutta scheme. The same is also true for
conditions B(s) and D(s). The method defined by conditions B(s) and C(s) has an
approximation degree not smaller than s.

The approximation degree can be greater than s at appropriate choice of the
abscissas. More concretely, this is so when the abscissas are selected to be nodes of
the qadrature formula of high order. We shall discuss the case of an s-stage method
of Gauss-Legendre, the abscissas of which are roots of the modified polynomial of
Legendre *()sP x of s order, determined in the interval [0, 1] (refer to [3]). If matrix
V is defined as

1
1 1

1
2 2

1

1 . . .
1 . . .
. . .
. . .
. . .
1 . . .

s

s

s
s s

c c
c c

V

c c

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,

and the diagonal matrix S as
1

1
2

.
.

1

S

s

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

,

then the weights of this method are defined by the condition B(s) as follows:
VTb = Se,

where b is the weights vector, and e = [1, 1, …, 1]T.
The remaining parameters are defined by condition C(s). The method thus

constructed satisfies condition B(2s) and it follows from Theorem 2 that the s-stage
method of Gauss-Legendre has an approximation degree of 2s.

II. The mpmath library

It is obvious from the previous chapter that theoretically an implicit Runge-Kutta
scheme may be designed of an arbitrary approximation degree. With a sufficiently
small step and a method with an approximation degree of 20 (for example the
10-stage method of Gauss-Legendre) we would achieve accuracy of the order of
1.0е−40. A necessary condition is that the calculations be accomplished with
sufficient accuracy; both in calculating the coefficients for the method step, and also
for probable alteration of the step length under condition of convergence absence in

 28

the iterative procedure, determining these coefficients. The mpmath library provides
this possibility (as well as other built-in tools). It contains a built-in method for
solving systems of differential equations, but based on another approach, which is
not rectilinear in parameters setting for high accuracy. There is not a realized
adaptive scheme for step length alteration in the illustrating program, given below.
However, the user realizes what happens at convergence lack and he/she may
realize the respective logic of step length alteration. Only the library elements, used
in the program are explained here. For more detail information [4] is to be seen.

The library presents several digital types, from which the following two are
used: mpf – for real numbers with a floating point and matrix – for matrices. Copies
of mpf class can be created by strings (representing numbers), integers, floating, or
of another mpf copy. mpmath library uses the global operating accuracy of the
calculations. The execution of arithmetic operations or the invoking of mpf() rounds
the result up to the given operating accuracy. This accuracy is set through the
number of decimal characters or the number of bits for the global mp object. For
example:

mp.dps = 100 # number of decimal characters, by default it is 15,
mp.prec = 333 # number of bits, by default it is 53.

If higher accuracy is needed for certain calculations, it may be changed. For
example:

mp.dps + = 10,
Calculations of increased accuracy are done

mp.dps – = 10.
The matrices in mpmath can be created setting the number of rows and

columns (one parameter for the design of a quadrature matrix) or by a list. By
default the elements type is mpf, but it can be separately given. The matrices are
realized as Python lists. An example:

A = matrix(2),
b = [1, 2, 3],

B = matrix(b).

A is a quadratic matrix 2×2 with null elements; B is a single-row matrix. The
access to a specific element is with the help of the syntax A[i, j], where i denotes the
row and j − the column.

lu_solve(A, b) gives back the solution of the linear system (Ax = b, in a matrix
record). The function polyroots() is also used in the program, that computes all the
roots of a polynomial. The function polyroots accepts the list with polynomial
coefficients as an argument. The value eps presents the current accuracy, and nprint
prints out with a given number of decimal characters (the second argument).

 29

III. Example

The program is a realization of the implicit Runge-Kutta scheme of Gauss-Legendre
type. Its kernel consists of a solver module. A test module for the solver is also
provided. The solver is realized as a class, considering the scheme order and the
computing accuracy as parameters and it computes the nodes and the weights of
Gauss-Legendre quadrature formula with the specified parameters when creating a
copy of the class. It contains a method for additional initialization init, which
accepts as parameters the system of differential equations to be solved (in the form
of a function), the step and the initial conditions of Cauchy problem. The method
step accomplishes the calculations for one step, using iterate method. Method
iterate uses a simple iteration to find the coefficients for a given step, using as an
initial point the coefficients from the previous step. With such selection of an initial
point, the existence of a step with a positive value, for which the simple iteration
converges, is guaranteed (refer to [1]), but in iterate and step no built-in adaptive
scheme is available for alteration of the step at convergence absence.

III.1. Solver code
module irk_solver
"""
Generating the coefficients of an implicit Runge-

Kutta scheme of a given order.
For the moment <= 68.
The coefficients are set with an arbitrary accuracy,

user defined.
One step of the method is executed.
"""
from __future__ import division
from mpmath import mp, mpf, matrix, lu_solve,

factorial, polyroots, eps, sqrt

class irk(object):
 #__slots__ =

['__init__','init','iterate','step','rang','acc','r','b'
,'a','size','f','t','h','yb','ks','tn','y','yn']

 def __init__(self,rang=10,acc=100):
 # Generates the coefficients of Legendre

polynomial of n-th order.
 # acc is the number of decimal characters of

the coefficients.
 # self.cf is the list with coefficients.
 self.rang = rang
 self.acc = mp.dps = acc
 cn = mpf(0.0)
 k = mpf(0)
 n = mpf(rang)
 m = mpf(n/2)

 30

 cf = []
 for k in range(n+1):
 cn = (-

1)**(n+k)*factorial(n+k)/(factorial(n-
k)*factorial(k)*factorial(k))

 cf.append(cn)
 cf.reverse()
 # Generates the coefficients of of the

implicit Runge-Kutta scheme of Gauss-Legendre type.
 # acc is the number of the decimal

characters of the coefficients.
 # Gives back the cortege (r,b,a), the terms

of which correspond to Butcher scheme
 #
 # r1 | a11 . . . а1n
 # . | . .
 # . | . .
 # . | . .
 # rn | an1 . . . ann
 # ---+--------------
 # | b1 . . . bn
 self.r = polyroots(cf)
 A1 = matrix(rang)
 for j in range(n):
 for k in range(n):
 A1[k,j] = self.r[j]**k
 bn = []
 for j in range(n):
 bn.append(mpf(1.0)/mpf(j+1))
 B = matrix(bn)
 self.b = lu_solve(A1,B)
 self.a = matrix(rang)
 for i in range(1,n+1):
 A1 = matrix(rang)
 cil = []
 for l in range(1,n+1):
 cil.append(mpf(self.r[i-

1])**l/mpf(l))
 for j in range(n):
 A1[l-1,j] = self.r[j]**(l-1)
 Cil = matrix(cil)
 an = lu_solve(A1,Cil)
 for k in range(n):
 self.a[i-1,k] = an[k]

 def init(self,f,t,h,initvalues):
 self.size = len(initvalues)
 self.f = f

 31

 self.t = t
 self.h = h
 self.yb = matrix(initvalues)
 self.ks = matrix(self.size,self.rang)
 for k in range(self.size):
 for i in range(self.rang):
 self.ks[k,i] = self.r[i]
 self.tn = matrix(1,self.rang)
 for i in range(self.rang):
 self.tn[i] = t + h*self.r[i]
 self.y = matrix(self.size,self.rang)
 for k in range(self.size):
 for i in range(self.rang):
 self.y[k,i] = self.yb[k]
 temp = mpf(0.0)
 for j in range(self.rang):
 temp += self.a[i,j]*self.ks[k,j]
 self.y[k,i] += temp
 self.yn = matrix(self.yb)

 def iterate(self,tn,y,yn,ks):
 # Generates the coefficients of the implicit

Runge-Kutta scheme for the given step
 # with the method of the simple iteration

with an initial value, coinciding with the coefficients,
 # calculated at the previous step. At

sufficiently small step this must
 # work. There exists such a value of the

step, Under which convergence is guaranteed.
 # No automatic re-setup of the step is

foreseen in this procedure.
 mp.dps = self.acc
 y0 = matrix(yn)
 norme = mpf(1.0)
 #eps0 = pow(eps,mpf(3.0)/mpf(4.0))
 eps0 = sqrt(eps)
 ks1 = matrix(self.size,self.rang)
 yt = matrix(1,self.size)

 count = 0
 while True:
 count += 1
 for i in range(self.rang):
 for k in range(self.size):
 yt[k] = y[k,i]
 for k in range(self.size):
 ks1[k,i] = self.f(tn,yt)[k]
 norme = mpf(0.0)

 32

 for k in range(self.size):
 for i in range(self.rang):
 norme += (ks1[k,i]-

ks[k,i])*(ks1[k,i]-ks[k,i])
 norme = sqrt(norme)
 for k in range(self.size):
 for i in range(self.rang):
 ks[k,i] = ks1[k,i]
 for k in range(self.size):
 for i in range(self.rang):
 y[k,i] = y0[k]
 for j in range(self.rang):
 y[k,i] +=

self.h*self.a[i,j]*ks[k,j]
 if norme <= eps0:
 break
 if count >= 100:
 print unicode('No convergence','UTF-

8')
 exit(0)

 return ks1

 def step(self):
 mp.dps = self.acc
 self.ks =

self.iterate(self.tn,self.y,self.yn,self.ks)
 for k in range(self.size):
 for i in range(self.rang):
 self.yn[k] +=

self.h*self.b[i]*self.ks[k,i]
 for k in range(self.size):
 for i in range(self.rang):
 self.y[k,i] = self.yn[k]
 for j in range(self.rang):
 self.y[k,i] +=

self.a[i,j]*self.ks[k,j]
 self.t += self.h
 for i in range(self.rang):
 self.tn[i] = self.t + self.h*self.r[i]
 return self.yn

III.2. Code of the test module
The test module below given is for illustration. Lorenz system is used, at parameter
r = 28 (r > 24.74), i.e., description of a chaotic mode of Lorenz attractor. The initial
point is selected close to the attractor (in order to avoid the time for entering it).
Description and studies of this system can be found at many places. For more

 33

details about nonlinear dynamics [5, 6] may be referred to. 100 steps are computed
with a value of 0.01 according to the 10- and 12-stage scheme, in order to obtain
accuracy evaluation. The calculations are with an accuracy up to 100 decimal
characters. After 100 steps the differences, obtained from both schemes are smaller
than 1.0e−33. At module beginning the object odefun of mpmath library is used to
realize computations in the same interval and with the same operating accuracy and
without setting an additional parameter for the part of Tayler series used (for
odefun). The results are printed out with 20 characters and set after the code. A
convenient possibility is provided to enter some parameters from the command line.
It is interesting to establish after what time the trajectory “splits” – i.e., the error
accumulated leads to trajectory split, described by schemes of different order. The
experiment (the results are given in the next chapter) shows that for schemes of a
relatively high order, 10 for example, thousand iterations are needed.

Test for the module irk_solver.py
from __future__ import division
#from mpmath import mp, mpf, linspace, zeros, nprint
from mpmath import *
from irk_solver import irk
import sys
import getopt
def usage():
 print '\n'
 print u'Използване: ' + sys.argv[0] + u'

[options]'
 print '\n'
 print u'Options:'
 print u' -h, --help Prints

out this message and quits the program'
 print u' -p ПАРАМЕТЪР, --param=ПАРАМЕТЪР

Parameter r in Lorenz system'
 print u' -r РАНГ, --rang=РАНГ Rank

of the implicit scheme'
 print u' -a ТОЧНОСТ, --acc=ТОЧНОСТ

Accuracy of calculation (in decimal characters)'
 print u' -s СТЪПКА, --step=СТЪПКА Step

of integration'
 print u' -m МНОЖИТЕЛ, --mlt=МНОЖИТЕЛ

Multiplier for the number of the points'
 print '\n'
mp.dps = 100
print '=== odefun ==='
ff = odefun(lambda t, y: [mpf(10.0)*(y[1]-

y[0]),mpf(28.0)*y[0]-y[1]-y[0]*y[2],-
mpf(mpf(8.0)/mpf(3.0))*y[2]+y[0]*y[1]], 0,
[mpf(10.6451),mpf(4.06125),mpf(36.057)])

nprint(ff(1),20)
acc = 100

 34

try:
 options, args = getopt.getopt(sys.argv[1:],

'p:r:s:a:m:h',
['rang=','step=','acc=','mlt=','param=','help'])

except getopt.GetoptError, err:
 print '\n' + str(err)
 usage()
 sys.exit(2)
rang = 10
t0 = mpf(0.0)
h = mpf(0.01)
mlt = 1
disp = 'xz'
r = mpf(28.0) # 24.74
b0 = mpf(mpf(8.0)/mpf(3.0))
s = mpf(10.0)
for option, value in options:
 if option in ('-r', '--rang'):
 rang = int(value)
 if option in ('-p', '--param'):
 r = mpf(value)
 if option in ('-s', '--step'):
 h = mpf(value)
 if option in ('-a', '--acc'):
 acc = mpf(value)
 if option in ('-m', '--mlt'):
 mlt = int(value)
 if option in ('-h', '--help'):
 usage()
 sys.exit()
def F(t,y):
 global s
 global b0
 global r
 y0 = mpf(y[0])
 y1 = mpf(y[1])
 y2 = mpf(y[2])
 res0 = mpf(s*(y1-y0))
 res1 = mpf(r*y0-y1-y0*y2)
 res2 = mpf(-b0*y2+y0*y1)
 return (res0,res1,res2)
yb = [mpf(10.6451),mpf(4.06125),mpf(36.057)]
solver = irk(rang,acc)
solver.init(F,t0,h,yb)
solver1 = irk(rang+2,acc)
solver1.init(F,t0,h,yb)
num_points = mlt*int(1.0/h + 0.1) + 1
tpa = linspace(0,h*(num_points-1),num_points)

 35

for k in range(num_points-1):
 solver.yn = solver.step()
 solver1.yn = solver1.step()
print '===== IRK ====='
print 'x = ',
nprint(solver.yn[0],20)
print 'y = ',
nprint(solver.yn[1],20)
print 'z = ',
nprint(solver.yn[2],20)
print '===== ERR ====='
nprint(solver1.yn[0]-solver.yn[0],20)
nprint(solver1.yn[1]-solver.yn[1],20)
nprint(solver1.yn[2]-solver.yn[2],20)

III.3. Test results
=== odefun ===
[-0.10454605687628689048, -1.2345223788685477043,

20.029753956718710011]
===== IRK =====
x = -0.1045460568762871257
y = -1.234522378868547696
z = 20.029753956718708902
===== ERR =====
8.8113415875398021481e-35
3.6191682314597705644e-34
-8.9322105203614438561e-34

IV. More detailed results and illustrations

Since increased accuracy is on account of time, it would be nice to preserve the
calculations results. With the help of (lorenz_save.py) module the computation
results for 10 000 iterations were stored as ordinary text files from one and the same
initial point (0.01) for order of the scheme 10 and 12 respectively.

Results saving in a file
from __future__ import division
from mpmath import mp, mpf, nprint, matrix
from irk_solver import irk
from pylab import *
import sys
import getopt
def usage():
 print '\n'
 print u'Използване: ' + sys.argv[0] + u'

[options]'
 print '\n'
 print u'Options:'

 36

 print u' -h, --help Prints
out this message and quits the program'

 print u' -p ПАРАМЕТЪР, --param=ПАРАМЕТЪР
Parameter r in Lorenz system '

 print u' -r РАНГ, --rang=РАНГ Rank
of the implicit scheme'

 print u' -a ТОЧНОСТ, --acc=ТОЧНОСТ
Computing accuracy (in decimal characters)'

 print u' -s СТЪПКА, --step=СТЪПКА Step
of integration'

 print u' -m МНОЖИТЕЛ, --mlt=МНОЖИТЕЛ
Multiplier for the number of points'

 print u' -f ЗАПИСВАНЕ, --file=ЗАПИСВАНЕ Name
of the file, where the results are saved'

 print '\n'
mp.dps = 100
acc = 100
rang = 10
t0 = mpf(0.0)
h =

mpf('0.01000
000')

mlt = 1
fname = ""
try:
 options, args = getopt.getopt(sys.argv[1:],

'p:r:s:a:m:f:h',
['rang=','step=','acc=','mlt=','param=','file=','help'])

except getopt.GetoptError, err:
 print '\n' + str(err)
 usage()
 sys.exit(2)
r = mpf(28.0) # 24.74
b0 = mpf(mpf(8.0)/mpf(3.0))
s = mpf(10.0)
for option, value in options:
 print (option,value)
 if option in ('-r', '--rang'):
 rang = int(value)
 if option in ('-p', '--param'):
 r = mpf(value)
 if option in ('-s', '--step'):
 h = mpf(value)
 if option in ('-a', '--acc'):
 acc = mpf(value)
 if option in ('-m', '--mlt'):
 mlt = int(value)
 if option in ('-f', '--file'):

 37

 fname = value
 if option in ('-h', '--help'):
 usage()
 sys.exit()
def F(t,y):
 global s
 global b0
 global r
 y0 = mpf(y[0])
 y1 = mpf(y[1])
 y2 = mpf(y[2])
 res0 = mpf(s*(y1-y0))
 res1 = mpf(r*y0-y1-y0*y2)
 res2 = mpf(-b0*y2+y0*y1)
 return (res0,res1,res2)
ybf = [10.6451,4.06125,36.057]
yb = [mpf(ybf[0]),mpf(ybf[1]),mpf(ybf[2])]
zero = mpf(0.0)
solver = irk(rang,acc)
solver.init(F,t0,h,yb)
num_points = mlt*int(1.0/h + 0.1) + 1
tmp = []
for k in range(num_points):
 tmp.append(zero)
tpa = tmp[:]
for k in xrange(num_points-1):
 tpa[k+1] = tpa[k] + h
xpa = tmp[:]; xpa[0] = ybf[0]
ypa = tmp[:]; ypa[0] = ybf[1]
zpa = tmp[:]; zpa[0] = ybf[2]
for k in xrange(num_points-1):
 solver.yn = solver.step()
 #print 'step: ',
 #print k+1
 xpa[k+1] = solver.yn[0]
 ypa[k+1] = solver.yn[1]
 zpa[k+1] = solver.yn[2]
fsave = open(fname,'w')
for k in xrange(num_points):
 tstr = str(tpa[k])
 xstr = str(xpa[k])
 ystr = str(ypa[k])
 zstr = str(zpa[k])
 line = "%s %s %s %s \n" % (tstr,xstr,ystr,zstr)
 fsave.write(line)
fsave.close()
print u'Натисни ENTER за излизане',
raw_input()

 38

Deriving information with the purpose to visualize and save in graphical
format may be realized very easy, for example in the following way (the first
parameter for the program is the name of the file with the results saved, and the
second one is the plane, where projected on):

#Visualization of the data stored and saving of a

graphical file
from mpmath import mp, mpf
from pylab import *
import sys
fname = sys.argv[1]
disp = sys.argv[2]
taf = []
xaf = []
yaf = []
zaf = []
fread = open(fname,'r')
for line in fread.readlines():
 point = line.split(' ')
 taf.append(float(mpf(point[0])))
 xaf.append(float(mpf(point[1])))
 yaf.append(float(mpf(point[2])))
 zaf.append(float(mpf(point[3])))
fig = figure()
xlabel(disp[0].upper()+' Axis')
ylabel(disp[1].upper()+' Axis')
if disp=='xz':
 plot(xaf[0:],zaf[0:],'b-')
elif disp=='xy':
 plot(xaf[0:],yaf[0:],'b-')
elif disp=='yz':
 plot(yaf[0:],zaf[0:],'b-')
elif disp=='tx':
 plot(taf[0:],xaf[0:],'b-')
elif disp=='ty':
 plot(taf[0:],yaf[0:],'b-')
elif disp=='tz':
 plot(taf[0:],zaf[0:],'b-')
fig.show()
fig.savefig(disp+'_10000.png', format='png')
raw_input()

 39

Fig. 1 shows the result for the case of a second parameter XZ.

Fig. 1

The chaotic state may be illustrated visualizing the value of any of the
coordinates in time duration. For example (Fig. 2) with the second parameter TZ.

Fig. 2

 40

The illustrations obtained are classical, but at first glance the contribution of
high accuracy is not clear, since the qualitative image would be the same using
other methods. As above mentioned, it is interesting to trace up to what moment the
increased accuracy of the computations keeps down the error accumulation. Here is
an example code, using two apriori saved files that will demonstrate this.

from mpmath import mp, mpf
from pylab import *
import sys
fname1 = sys.argv[1]
fname2 = sys.argv[2]
disp = sys.argv[3]
taf = []
xaf1 = []
yaf1 = []
zaf1 = []
xaf2 = []
yaf2 = []
zaf2 = []
file1 = open(fname1,'r')
for line in file1.readlines():
 point = line.split(' ')
 taf.append(float(mpf(point[0])))
 xaf1.append(float(mpf(point[1])))
 yaf1.append(float(mpf(point[2])))
 zaf1.append(float(mpf(point[3])))
file1.close()
file2 = open(fname2,'r')
for line in file2.readlines():
 point = line.split(' ')
 xaf2.append(float(mpf(point[1])))
 yaf2.append(float(mpf(point[2])))
 zaf2.append(float(mpf(point[3])))
file2.close()
fig = figure()
xlabel('T Axis')
ylabel(disp[0].upper()+' Axis')
scnd = []
dim = len(taf)
if disp=='x':
 for k in xrange(dim):
 scnd.append(xaf2[k] - xaf1[k])
elif disp=='y':
 for k in xrange(dim):
 scnd.append(yaf2[k] - yaf1[k])
elif disp=='z':
 for k in xrange(dim):
 scnd.append(zaf2[k] - zaf1[k])

 41

plot(taf[0:],scnd[0:],'b-')
fig.show()
name = disp + '_diff.png'
fig.savefig(name,format='png')
raw_input()

The first two parameters are for the names of the two files with apriori written
results, and the third one is for difference in time along a given axis. The results are
similar for the three axes. The difference along x axis (x_diff.png) is as shown in
Fig. 3.

Fig. 3

Having in mind that in the case discussed one unit along the axis of time

corresponds to 100 iterations, for the parameters given the results could be
considered as exact for more than 8000 iterations.

V. Conclusion

The idea of designing irk_solver.py came after visiting the site of Pavel
Holoborodko. And particularly, the part, concerning digital integration (at current
address http://www.holoborodko.com/pavel/?page_id=679,). The challenge was
how this will be done nowadays, compared to 15 years ago. Every one, who has

 42

written a library for computations with arbitrary accuracy, would evaluate the
labour consumption of a similar task. But today the situation is different. It is not
absolutely necessary to create the tools from the lowest level. This refers to
visualization as well. The researcher who wants to focus on solving and/or study of
a given type of mathematic models, can design the corresponding tool much faster,
using already existing tools as built-in blocks. This predetermined the choice of
Python, which is an excellent environment for the purpose considered. The straight-
forward code above given may be still improved in many ways, including the
application of some idioms, typical for Python. However, the utility and efficiency
of Python are of no doubt. Efficiency means mainly the expressing power and time
saving of the design. The efficiency, concerning execution, is another aspect (yet, it
is an interpreted language, though written, as well as the packages, in C), but
Python has the possibility to integrate with C in several approaches, which is
another topic.

R e f e r e n c e s

1. D e k k e r, K., J. G. V e r w e r. Stability of Runge–Kutta Methods for Stiff Nonlinear Differenrial
Equations. North-Holland, 1984. Превод на руски: К. Деккер, Я. Вервер. Устойчивость
методов Рунге–Куты для жестких нелинейных дифференциальных уравнений. M.,
Мир, 1988.

2. B u t c h e r, J. C. Numerical Methods for Ordinary Differential Equations. Second Ed. John Wiley
& Sons, Ltd., 2008.

3. K y t h e, P., K. Mi c h e l, R. S c h ä f e r k o t t e r. Handbook of Computational Methods for
Integration. Chapman & Hall/CRC Press, 2005.

4. http://mpmath.googlecode.com/svn/tags/0.13/doc/build/index.html
5. T a b o r, M. Chaos and Integrability in Nonlinear Dynamics. An Introduction. John Wiley & Sons,

1989.
6. O t t, E. Chaos in Dynamical Systems. Cambridge University Press, 1993.
7. L a n g t a n g e n, H. P. Python Scripting for Computational Science. Third Edition. Springer, 2008.

Использование неявных методов Рунге–Куты для прецизного
вычисления нелинейных дифференциальных уравнений

Величко Джамбов
Институт информационных и коммутационных технологий, 1113 София
E-mail: vili_jambov@abv.bg

(Р е з ю м е)

В работе обсуждается метод вычисления нелинейных дифференциальных
уравнений с повышеной точностью. Реализация основана на неявной схеме
Рунге–Кута. Коэффициенты, необходимые для въчислений, генерируются во
времени выполнения задачи при помощи библиотеки mpmath в среде Python.

