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I. General data about the implicit Runge-Kutta schemes 

Some basic notions and results are presented herein, needed for the construction of 
a procedure of the type of Runge-Kutta implicit scheme. For more thorough 
analysis of the notions and methods, connected with stability, you may see [1, 2]. 

Let the system ( , ( ))y f t y t=& be given, for which we would like to solve 
Cauchy’s problem for 0 t T≤ ≤  and 0(0)y y= . We assume that y(t) is a real        
m-dimensional vector.  

I.1. Structure of Runge-Kutta methods 
The single-step Runge-Kutta methods are presented as an implicit relation (between 
yn+1 and yn, which denotes the approximate values for the successive steps) 
(1) 1 1 1[ , , ], ( 1)n n n n n ny y y y t t nτ τ τ+ + += + Φ = − ≥ , 
where yn denotes the approximation of y(t) for tn. The length of step τ  can be 
altered by n. 

One single-step Runge-Kutta method is described with the help of the formula 
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Formula (2) is called  s-staged and it is based on s calculations of function f for 
the derivative of the solution. In the case when  aij = 0 for j i≥ , the coefficients ki 
may be explicitly calculated  from the values of k1, …, ki−1. Similar formulae are 
called  explicit. In case aij = 0 at j i> , but 0iia ≠ , each ki is implicitly defined by 
the equation  
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This requires calculation of approximate values for ki. Such Runge-Kutta 
methods are called diagonally implicit. The execution of one step for such method 
requires the solution of s nonlinear systems of algebraic equations of m-th order 
with the help of an iterative procedure. The methods, which are not explicit, or are 
diagonally implicit, are called implicit. All ki must be simultaneously calculated in 
implicit methods. Hence, one step of an implicit method requires the solution of a 
nonlinear system of algebraic equations of ms order. The coefficients in formulae 
(2) and (3) usually satisfy the condition  
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In order to present a Runge-Kutta method (by its coefficients), the so called 
Butcher table is used: 
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I.2. Definition of an approximation degree. Simplifying conditions 
If the following is assumed for a local error in discretization  
(6) 1 1 1 1 1

ˆ ˆ ˆ ˆ( ) , ( ) [ , ( ), ]n n n n n n nl y t y y y t y t yτ τ+ + + + += − = + Φ , 
the approximation degree of the method is defined as the biggest non-negative 
integer number p, for which 
(7) 1

1
ˆ ( ), 0p
nl O τ τ+

+ = → . 

For the methods considered the approximation degree may be determined with 
the help of Butcher simplifying conditions.  

It is known that the s-stage method of Runge-Kutta meets the condition  
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The condition A(ξ) means that the method has an approximation degree not 
smaller than ξ. The application of Runge-Kutta method to the differential equation 

( ) ( ), ( ) 0ny t f t y t= =&  gives the quadrature formula 

(13) 
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the right side of which approximates the integral  
1

1
0

( ) ( )n ny t f t x dxτ τ+ = +∫ . 

The method of digital integration (13) is defined entirely by the abscissas ci 
and the weights bi of Runge-Kutta method. Hence, condition B(ξ) means that the 
quadrature formula is exact in case f is a polynomial of a degree not higher than  
ξ – 1. This is equivalent to the affirmation that the quadrature formula (13) is of 
degree ξ . 

The following results reflecting the relations among the conditions are in 
power: 

Theorem 1 (Butcher). If for a given s-stage Runge-Kutta method all the 
abscissas  c1, …, cs are different, and all the weights b1, …, bs are different from 
zero, then the following logical relations are valid: 
(14) ( ) ( )A Bξ ξ⇒ , 
(15) ( ) ( , )A Eη ξ η ξ+ ⇒ , 
(16) ( ) ( ) ( , )B C Eη ξ ξ η ξ+ ∧ ⇒ , 
(17) ( ) ( ) ( , )B D Eη ξ η η ξ+ ∧ ⇒ , 
(18) ( ) ( , ) ( )B s E s Cξ ξ ξ+ ∧ ⇒ , 
(19) ( ) ( , ) ( )B s E s Dη η η+ ∧ ⇒ , 
(20) ( ) ( ) ( ) ( ) ( min( 1,2 2))B p C D A p pξ η ξ η ξ∧ ∧ ⇒ ≤ + + + . 

Theorem 2 (Butcher). Let for a given s-stage method all the abscissas be 
different, and the weights − different from zero. Then the following relations are 
valid: 
(21) (2 ) (2 ) ( ) ( )A s B s C s D s⇒ ∧ ∧ , 
(22) (2 ) ( ) ( )B s C s D s∧ ⇒ , 
(23) (2 ) ( ) ( )B s D s C s∧ ⇒ , 
(24) (2 ) ( ) ( ) (2 )B s C s D s A s∧ ∧ ⇒ . 

The next result (refer to [1]) enables the calculation of the coefficients of A in 
Butcher table: 
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Theorem 3. Let s different abscissas c1, …, cs be given. Then conditions B(s) 
and C(s) define unambiguously a Runge-Kutta scheme. The same is also true for 
conditions B(s) and D(s). The method defined by conditions B(s) and C(s) has an 
approximation degree not smaller than s. 

The approximation degree can be greater than s at appropriate choice of the 
abscissas. More concretely, this is so when the abscissas are selected to be nodes of 
the qadrature formula of high order. We shall discuss the case of an s-stage method 
of Gauss-Legendre,  the abscissas of which are roots of the modified polynomial of 
Legendre *( )sP x  of s order, determined in the interval [0, 1] (refer to [3] ). If matrix 
V is defined as  
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then the weights of this method are defined by the condition B(s) as follows: 
VTb = Se, 

where b is the weights vector, and e = [1, 1, …, 1]T. 
The remaining parameters are defined by condition C(s). The method thus 

constructed satisfies condition B(2s) and it follows from Theorem 2 that the s-stage 
method of Gauss-Legendre has an approximation degree of 2s. 

II. The mpmath library 

It is obvious from the previous chapter that theoretically an implicit Runge-Kutta 
scheme may be designed of an arbitrary approximation degree. With a sufficiently 
small step and a method with an approximation degree of 20 (for example the       
10-stage method of Gauss-Legendre) we would achieve accuracy of the order of 
1.0е−40. A necessary condition is that the calculations be accomplished with 
sufficient accuracy; both in calculating the coefficients for the method step, and also 
for probable alteration of the step length under condition of convergence absence in 
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the iterative procedure, determining these coefficients. The mpmath library provides 
this possibility (as well as other built-in tools). It contains a built-in method for 
solving systems of differential equations, but based on another approach, which is 
not rectilinear in parameters setting for high accuracy. There is not a realized 
adaptive scheme for step length alteration in the illustrating program, given below. 
However, the user realizes what happens at convergence lack and he/she may 
realize the respective logic of step length alteration. Only the library elements, used 
in the program are explained here. For more detail information [4] is to be seen. 

The library presents several digital types, from which the following two are 
used: mpf – for real numbers with a floating point and matrix – for matrices. Copies 
of mpf class can be created by strings (representing numbers), integers, floating, or 
of another mpf copy. mpmath library uses the global operating accuracy of the 
calculations. The execution of arithmetic operations or the invoking of mpf() rounds 
the result up to the given operating accuracy. This accuracy is set through the 
number of decimal characters or the number of bits for the global mp object. For 
example: 

mp.dps = 100    # number of decimal characters, by default it is 15, 
mp.prec = 333   # number of bits, by default it is 53. 

If higher accuracy is needed for certain calculations, it may be changed. For 
example: 

mp.dps + = 10, 
# Calculations of increased accuracy are done 

mp.dps – = 10. 
The matrices in mpmath can be created setting the number of rows and 

columns (one parameter for the design of a quadrature matrix) or by a list. By 
default the elements type is mpf, but it can be separately given. The matrices are 
realized as Python lists. An example: 

 
A = matrix(2), 
b = [1, 2, 3], 

B = matrix(b). 

A is a quadratic matrix 2×2 with null elements; B is a single-row matrix. The 
access to a specific element is with the help of the syntax A[i, j], where i denotes the 
row and j − the column. 

lu_solve(A, b) gives back the solution of the linear system (Ax = b, in a matrix 
record). The function polyroots() is also used in the program, that computes all the 
roots of a polynomial. The function polyroots accepts the list with polynomial 
coefficients as an argument. The value eps presents the current accuracy, and nprint 
prints out with a given number of decimal characters (the second argument). 
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III. Example 

The program is a realization of the implicit Runge-Kutta scheme of Gauss-Legendre 
type. Its kernel consists of a solver module. A test module for the solver is also 
provided. The solver is realized as a class, considering the scheme order and the 
computing accuracy as parameters and it computes the nodes and the weights of 
Gauss-Legendre quadrature formula with the specified parameters when creating a 
copy of the class. It contains a method for additional initialization init, which 
accepts as parameters the system of differential equations to be solved (in the form 
of a function), the step and the initial conditions of Cauchy problem. The method  
step accomplishes the calculations for one step, using iterate method. Method 
iterate uses a simple iteration to find the coefficients for a given step, using as an 
initial point the coefficients from the previous step. With such selection of an initial 
point, the existence of a step with a positive value, for which the simple iteration 
converges, is guaranteed (refer to [1]), but in iterate and step no built-in adaptive 
scheme is available for alteration of the step at convergence absence.  

III.1. Solver code 
# module irk_solver 
""" 
Generating the coefficients of an implicit Runge-

Kutta scheme of a given order. 
For the moment <= 68. 
The coefficients are set with an arbitrary accuracy, 

user defined. 
One step of the method is executed. 
""" 
from __future__ import division 
from mpmath import mp, mpf, matrix, lu_solve, 

factorial, polyroots, eps, sqrt 
 
class irk(object): 
    #__slots__ = 

['__init__','init','iterate','step','rang','acc','r','b'
,'a','size','f','t','h','yb','ks','tn','y','yn'] 

    def __init__(self,rang=10,acc=100): 
        # Generates the coefficients of Legendre 

polynomial of  n-th order. 
        # acc is the number of decimal characters of 

the coefficients. 
        # self.cf is the list with coefficients. 
        self.rang = rang 
        self.acc = mp.dps = acc 
        cn = mpf(0.0) 
        k = mpf(0) 
        n = mpf(rang) 
        m = mpf(n/2) 
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        cf = [] 
        for k in range(n+1): 
            cn = (-

1)**(n+k)*factorial(n+k)/(factorial(n-
k)*factorial(k)*factorial(k)) 

            cf.append(cn) 
        cf.reverse() 
        # Generates the coefficients of of the 

implicit Runge-Kutta scheme of Gauss-Legendre type. 
        # acc is the number of the decimal 

characters of the coefficients. 
        # Gives back the cortege (r,b,a), the terms 

of which correspond to Butcher scheme 
        # 
        # r1 | a11 . . . а1n 
        #  . |  .         . 
        #  . |  .         . 
        #  . |  .         . 
        # rn | an1 . . . ann 
        # ---+-------------- 
        #    |  b1 . . .  bn 
        self.r  = polyroots(cf) 
        A1 = matrix(rang) 
        for  j in range(n): 
            for k in range(n): 
                A1[k,j] = self.r[j]**k 
        bn = [] 
        for j in range(n): 
            bn.append(mpf(1.0)/mpf(j+1)) 
        B = matrix(bn) 
        self.b = lu_solve(A1,B) 
        self.a = matrix(rang) 
        for i in range(1,n+1): 
            A1 = matrix(rang) 
            cil = [] 
            for l in range(1,n+1): 
                cil.append(mpf(self.r[i-

1])**l/mpf(l)) 
                for j in range(n): 
                    A1[l-1,j] = self.r[j]**(l-1) 
            Cil = matrix(cil) 
            an = lu_solve(A1,Cil) 
            for k in range(n): 
                self.a[i-1,k] = an[k] 
 
    def init(self,f,t,h,initvalues): 
        self.size = len(initvalues) 
        self.f = f 
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        self.t = t 
        self.h = h 
        self.yb = matrix(initvalues) 
        self.ks = matrix(self.size,self.rang) 
        for k in range(self.size): 
            for i in range(self.rang): 
                self.ks[k,i] = self.r[i] 
        self.tn = matrix(1,self.rang) 
        for i in range(self.rang): 
            self.tn[i] = t + h*self.r[i] 
        self.y = matrix(self.size,self.rang) 
        for k in range(self.size): 
            for i in range(self.rang): 
                self.y[k,i] = self.yb[k] 
                temp = mpf(0.0) 
                for j in range(self.rang): 
                    temp += self.a[i,j]*self.ks[k,j] 
                self.y[k,i] += temp 
        self.yn = matrix(self.yb) 
         
    def iterate(self,tn,y,yn,ks): 
        # Generates the coefficients of the implicit 

Runge-Kutta scheme for the given step 
        # with the method of the simple iteration 

with an initial value, coinciding with the coefficients, 
        # calculated at the previous step. At 

sufficiently small step this must 
        # work. There exists such a value of the 

step, Under which convergence is guaranteed. 
        # No automatic re-setup of the step is 

foreseen in this procedure. 
        mp.dps = self.acc 
        y0 = matrix(yn) 
        norme = mpf(1.0) 
        #eps0 = pow(eps,mpf(3.0)/mpf(4.0)) 
        eps0 = sqrt(eps) 
        ks1 = matrix(self.size,self.rang) 
        yt = matrix(1,self.size) 
 
        count = 0 
        while True: 
            count += 1 
            for i in range(self.rang): 
                for k in range(self.size): 
                    yt[k] = y[k,i] 
                for k in range(self.size): 
                    ks1[k,i] = self.f(tn,yt)[k] 
            norme = mpf(0.0) 
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            for k in range(self.size): 
                for i in range(self.rang): 
                    norme += (ks1[k,i]-

ks[k,i])*(ks1[k,i]-ks[k,i]) 
            norme = sqrt(norme) 
            for k in range(self.size): 
                for i in range(self.rang): 
                    ks[k,i] = ks1[k,i] 
            for k in range(self.size): 
                for i in range(self.rang): 
                    y[k,i] = y0[k] 
                    for j in range(self.rang): 
                        y[k,i] += 

self.h*self.a[i,j]*ks[k,j] 
            if norme <= eps0: 
                break 
            if count >= 100: 
                print unicode('No convergence','UTF-

8') 
                exit(0) 
 
        return ks1 
 
    def step(self): 
        mp.dps = self.acc 
        self.ks = 

self.iterate(self.tn,self.y,self.yn,self.ks) 
        for k in range(self.size): 
            for i in range(self.rang): 
                self.yn[k] += 

self.h*self.b[i]*self.ks[k,i] 
        for k in range(self.size): 
            for i in range(self.rang): 
                self.y[k,i] = self.yn[k] 
                for j in range(self.rang): 
                    self.y[k,i] += 

self.a[i,j]*self.ks[k,j] 
        self.t += self.h 
        for i in range(self.rang): 
            self.tn[i] = self.t + self.h*self.r[i] 
        return self.yn 

III.2. Code of the test module 
The test module below given is for illustration. Lorenz system is used, at parameter 
r = 28 (r > 24.74), i.e., description of a chaotic mode of Lorenz attractor. The initial 
point is selected close to the attractor (in order to avoid the time for entering it). 
Description and studies of this system can be found at many places. For more 
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details about nonlinear dynamics [5, 6] may be referred to. 100 steps are computed 
with a value of  0.01 according to the 10- and 12-stage scheme, in order to obtain 
accuracy evaluation. The calculations are with an accuracy up to 100 decimal 
characters. After 100 steps the differences, obtained from both schemes are smaller 
than 1.0e−33. At module beginning the object odefun of mpmath library is used to 
realize computations in the same interval and with the same operating accuracy and 
without setting an additional parameter for the part of Tayler series used (for 
odefun). The results are printed out with 20 characters and set after the code. A 
convenient possibility is provided to enter some parameters from the command line. 
It is interesting to establish after what time the trajectory “splits” – i.e., the error 
accumulated leads to trajectory split, described by schemes of different order. The 
experiment (the results are given in the next chapter) shows that for schemes of a 
relatively high order, 10 for example, thousand iterations are needed.  

 
# Test for the module irk_solver.py 
from __future__ import division 
#from mpmath import mp, mpf, linspace, zeros, nprint 
from mpmath import * 
from irk_solver import irk 
import sys 
import getopt 
def usage(): 
    print '\n' 
    print u'Използване: ' + sys.argv[0] + u' 

[options]' 
    print '\n' 
    print u'Options:' 
    print u'  -h, --help                      Prints 

out this message and quits the program' 
    print u'  -p ПАРАМЕТЪР, --param=ПАРАМЕТЪР 

Parameter r in Lorenz system' 
    print u'  -r РАНГ, --rang=РАНГ            Rank 

of the implicit scheme' 
    print u'  -a ТОЧНОСТ, --acc=ТОЧНОСТ       

Accuracy of calculation (in decimal characters)' 
    print u'  -s СТЪПКА, --step=СТЪПКА        Step 

of integration' 
    print u'  -m МНОЖИТЕЛ, --mlt=МНОЖИТЕЛ     

Multiplier for the number of the points' 
    print '\n' 
mp.dps = 100 
print '=== odefun ===' 
ff = odefun(lambda t, y: [mpf(10.0)*(y[1]-

y[0]),mpf(28.0)*y[0]-y[1]-y[0]*y[2],-
mpf(mpf(8.0)/mpf(3.0))*y[2]+y[0]*y[1]], 0, 
[mpf(10.6451),mpf(4.06125),mpf(36.057)]) 

nprint(ff(1),20) 
acc = 100 
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try: 
    options, args = getopt.getopt(sys.argv[1:], 

'p:r:s:a:m:h', 
['rang=','step=','acc=','mlt=','param=','help']) 

except getopt.GetoptError, err: 
    print '\n' + str(err) 
    usage() 
    sys.exit(2) 
rang = 10 
t0 = mpf(0.0) 
h  = mpf(0.01) 
mlt = 1 
disp = 'xz' 
r = mpf(28.0) # 24.74 
b0 = mpf(mpf(8.0)/mpf(3.0)) 
s = mpf(10.0) 
for option, value in options: 
    if option in ('-r', '--rang'): 
        rang = int(value) 
    if option in ('-p', '--param'): 
        r = mpf(value) 
    if option in ('-s', '--step'): 
        h = mpf(value) 
    if option in ('-a', '--acc'): 
        acc = mpf(value) 
    if option in ('-m', '--mlt'): 
        mlt = int(value) 
    if option in ('-h', '--help'): 
        usage() 
        sys.exit() 
def F(t,y): 
    global s 
    global b0 
    global r 
    y0 = mpf(y[0]) 
    y1 = mpf(y[1]) 
    y2 = mpf(y[2]) 
    res0 = mpf(s*(y1-y0)) 
    res1 = mpf(r*y0-y1-y0*y2) 
    res2 = mpf(-b0*y2+y0*y1) 
    return (res0,res1,res2) 
yb = [mpf(10.6451),mpf(4.06125),mpf(36.057)] 
solver = irk(rang,acc) 
solver.init(F,t0,h,yb) 
solver1 = irk(rang+2,acc) 
solver1.init(F,t0,h,yb) 
num_points = mlt*int(1.0/h + 0.1) + 1 
tpa = linspace(0,h*(num_points-1),num_points) 
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for k in range(num_points-1): 
    solver.yn = solver.step() 
    solver1.yn = solver1.step() 
print '===== IRK =====' 
print 'x = ', 
nprint(solver.yn[0],20) 
print 'y = ', 
nprint(solver.yn[1],20) 
print 'z = ', 
nprint(solver.yn[2],20) 
print '===== ERR =====' 
nprint(solver1.yn[0]-solver.yn[0],20) 
nprint(solver1.yn[1]-solver.yn[1],20) 
nprint(solver1.yn[2]-solver.yn[2],20) 

III.3. Test results 
=== odefun === 
[-0.10454605687628689048, -1.2345223788685477043, 

20.029753956718710011] 
===== IRK ===== 
x =  -0.1045460568762871257 
y =  -1.234522378868547696 
z =  20.029753956718708902 
===== ERR ===== 
8.8113415875398021481e-35 
3.6191682314597705644e-34 
-8.9322105203614438561e-34 

IV. More detailed results and illustrations  

Since increased accuracy is on account of time, it would be nice to preserve the 
calculations results.  With the help of (lorenz_save.py) module the computation 
results for 10 000 iterations were stored as ordinary text files from one and the same 
initial point (0.01) for order of the scheme 10 and 12 respectively. 

# Results saving in a file 
from __future__ import division 
from mpmath import mp, mpf, nprint, matrix 
from irk_solver import irk 
from pylab import * 
import sys 
import getopt 
def usage(): 
    print '\n' 
    print u'Използване: ' + sys.argv[0] + u' 

[options]' 
    print '\n' 
    print u'Options:' 
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    print u'  -h, --help                      Prints 
out this message and quits the program' 

    print u'  -p ПАРАМЕТЪР, --param=ПАРАМЕТЪР 
Parameter r in Lorenz system ' 

    print u'  -r РАНГ, --rang=РАНГ            Rank 
of the implicit scheme' 

    print u'  -a ТОЧНОСТ, --acc=ТОЧНОСТ       
Computing accuracy (in decimal characters)' 

    print u'  -s СТЪПКА, --step=СТЪПКА        Step 
of integration' 

    print u'  -m МНОЖИТЕЛ, --mlt=МНОЖИТЕЛ     
Multiplier for the number of points' 

    print u'  -f ЗАПИСВАНЕ, --file=ЗАПИСВАНЕ  Name 
of the file, where the results are saved' 

    print '\n' 
mp.dps = 100 
acc = 100 
rang = 10 
t0 = mpf(0.0) 
h  = 

mpf('0.0100000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000') 

mlt = 1 
fname = "" 
try: 
    options, args = getopt.getopt(sys.argv[1:], 

'p:r:s:a:m:f:h', 
['rang=','step=','acc=','mlt=','param=','file=','help']) 

except getopt.GetoptError, err: 
    print '\n' + str(err) 
    usage() 
    sys.exit(2) 
r = mpf(28.0) # 24.74 
b0 = mpf(mpf(8.0)/mpf(3.0)) 
s = mpf(10.0) 
for option, value in options: 
    print (option,value) 
    if option in ('-r', '--rang'): 
        rang = int(value) 
    if option in ('-p', '--param'): 
        r = mpf(value) 
    if option in ('-s', '--step'): 
        h = mpf(value) 
    if option in ('-a', '--acc'): 
        acc = mpf(value) 
    if option in ('-m', '--mlt'): 
        mlt = int(value) 
    if option in ('-f', '--file'): 
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        fname = value 
    if option in ('-h', '--help'): 
        usage() 
        sys.exit() 
def F(t,y): 
    global s 
    global b0 
    global r 
    y0 = mpf(y[0]) 
    y1 = mpf(y[1]) 
    y2 = mpf(y[2]) 
    res0 = mpf(s*(y1-y0)) 
    res1 = mpf(r*y0-y1-y0*y2) 
    res2 = mpf(-b0*y2+y0*y1) 
    return (res0,res1,res2) 
ybf = [10.6451,4.06125,36.057] 
yb = [mpf(ybf[0]),mpf(ybf[1]),mpf(ybf[2])] 
zero = mpf(0.0) 
solver = irk(rang,acc) 
solver.init(F,t0,h,yb) 
num_points = mlt*int(1.0/h + 0.1) + 1 
tmp = [] 
for k in range(num_points): 
    tmp.append(zero) 
tpa = tmp[:] 
for k in xrange(num_points-1): 
    tpa[k+1] = tpa[k] + h 
xpa = tmp[:]; xpa[0] = ybf[0] 
ypa = tmp[:]; ypa[0] = ybf[1] 
zpa = tmp[:]; zpa[0] = ybf[2] 
for k in xrange(num_points-1): 
    solver.yn = solver.step() 
    #print 'step: ', 
    #print k+1 
    xpa[k+1] = solver.yn[0] 
    ypa[k+1] = solver.yn[1] 
    zpa[k+1] = solver.yn[2] 
fsave = open(fname,'w') 
for k in xrange(num_points): 
    tstr = str(tpa[k]) 
    xstr = str(xpa[k]) 
    ystr = str(ypa[k]) 
    zstr = str(zpa[k]) 
    line = "%s %s %s %s \n" % (tstr,xstr,ystr,zstr) 
    fsave.write(line) 
fsave.close() 
print u'Натисни ENTER за излизане', 
raw_input() 
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Deriving information with the purpose to visualize and save in graphical 
format may be realized very easy, for example in the following way (the first 
parameter for the program is the name of the file with the results saved, and the 
second one is the plane, where projected on): 

 
#Visualization of the data stored and saving of a 

graphical file 
from mpmath import mp, mpf 
from pylab import * 
import sys 
fname = sys.argv[1] 
disp = sys.argv[2] 
taf = [] 
xaf = [] 
yaf = [] 
zaf = [] 
fread = open(fname,'r') 
for line in fread.readlines(): 
    point = line.split(' ') 
    taf.append(float(mpf(point[0]))) 
    xaf.append(float(mpf(point[1]))) 
    yaf.append(float(mpf(point[2]))) 
    zaf.append(float(mpf(point[3]))) 
fig = figure() 
xlabel(disp[0].upper()+' Axis') 
ylabel(disp[1].upper()+' Axis') 
if disp=='xz': 
    plot(xaf[0:],zaf[0:],'b-') 
elif disp=='xy': 
    plot(xaf[0:],yaf[0:],'b-') 
elif disp=='yz': 
    plot(yaf[0:],zaf[0:],'b-') 
elif disp=='tx': 
    plot(taf[0:],xaf[0:],'b-') 
elif disp=='ty': 
    plot(taf[0:],yaf[0:],'b-') 
elif disp=='tz': 
    plot(taf[0:],zaf[0:],'b-') 
fig.show() 
fig.savefig(disp+'_10000.png', format='png') 
raw_input() 
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Fig. 1 shows the result for the case of a second parameter XZ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 
 

The chaotic state may be illustrated visualizing the value of any of the 
coordinates in time duration. For example (Fig. 2) with the second parameter TZ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 



 40

The illustrations obtained are classical, but at first glance the contribution of 
high accuracy is not clear, since the qualitative image would be the same using 
other methods. As above mentioned, it is interesting to trace up to what moment the 
increased accuracy of the computations keeps down the error accumulation. Here is 
an example code, using two apriori saved files that will demonstrate this. 

from mpmath import mp, mpf 
from pylab import * 
import sys 
fname1 = sys.argv[1] 
fname2 = sys.argv[2] 
disp = sys.argv[3] 
taf = [] 
xaf1 = [] 
yaf1 = [] 
zaf1 = [] 
xaf2 = [] 
yaf2 = [] 
zaf2 = [] 
file1 = open(fname1,'r') 
for line in file1.readlines(): 
    point = line.split(' ') 
    taf.append(float(mpf(point[0]))) 
    xaf1.append(float(mpf(point[1]))) 
    yaf1.append(float(mpf(point[2]))) 
    zaf1.append(float(mpf(point[3]))) 
file1.close() 
file2 = open(fname2,'r') 
for line in file2.readlines(): 
    point = line.split(' ') 
    xaf2.append(float(mpf(point[1]))) 
    yaf2.append(float(mpf(point[2]))) 
    zaf2.append(float(mpf(point[3]))) 
file2.close() 
fig = figure() 
xlabel('T Axis') 
ylabel(disp[0].upper()+' Axis') 
scnd = [] 
dim = len(taf) 
if disp=='x': 
    for k in xrange(dim): 
        scnd.append(xaf2[k] - xaf1[k]) 
elif disp=='y': 
    for k in xrange(dim): 
        scnd.append(yaf2[k] - yaf1[k]) 
elif disp=='z': 
    for k in xrange(dim): 
        scnd.append(zaf2[k] - zaf1[k]) 
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plot(taf[0:],scnd[0:],'b-') 
fig.show() 
name = disp + '_diff.png' 
fig.savefig(name,format='png') 
raw_input() 

The first two parameters are for the names of the two files with apriori written 
results, and the third one is for difference in time along a given axis. The results are 
similar for the three axes. The difference along x axis (x_diff.png) is as shown in 
Fig. 3. 
 
 
 

 

 

 

 

 
 
 
 

 

 

 

 

 
Fig. 3 

 
Having in mind that in the case discussed one unit along the axis of time 

corresponds to 100 iterations, for the parameters given the results could be 
considered as exact for more than  8000 iterations.  

V. Conclusion 

The idea of designing irk_solver.py came after visiting the site of Pavel 
Holoborodko. And particularly, the part, concerning digital integration (at current 
address http://www.holoborodko.com/pavel/?page_id=679,). The challenge was 
how this will be done nowadays, compared to 15 years ago. Every one, who has 
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written a library for computations with arbitrary accuracy, would evaluate the 
labour consumption of a similar task. But today the situation is different. It is not 
absolutely necessary to create the tools from the lowest level. This refers to 
visualization as well. The researcher who wants to focus on solving and/or study of 
a given type of mathematic models, can design the corresponding tool much faster, 
using already existing tools as built-in blocks. This predetermined the choice of 
Python, which is an excellent environment for the purpose considered. The straight-
forward code above given may be still improved in many ways, including the 
application of some idioms, typical for Python. However, the utility and efficiency 
of Python are of no doubt. Efficiency means mainly the expressing power and time 
saving of the design. The efficiency, concerning execution, is another aspect (yet, it 
is an interpreted language, though written, as well as the packages, in C), but 
Python has the possibility to integrate with C in several approaches, which is 
another topic. 
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(Р е з ю м е)  

В работе обсуждается метод вычисления нелинейных дифференциальных 
уравнений с повышеной точностью. Реализация основана на неявной схеме 
Рунге–Кута. Коэффициенты, необходимые для въчислений, генерируются во 
времени выполнения задачи при помощи библиотеки mpmath в среде Python.  


