BBIITAPCKA AKAJTEMUS HA HAVKUTE o BULGARIAN ACADEMY OF SCIENCES

ITPOBJIEMU HA TEXHUYECKATA KHUBEPHETHMKA WU POBOTHKATA, 62
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 62

Codust » 2010 e Sofia

Robot Arm Control under ROS/Ubuntu

Nayden Chivarov

Institute of Systems Engineering and Robotics, 1113 Sofia
E-mail: nshivarov@code.bg

1. Introduction

ROS is an open-source meta-operating system. It is a platform for applications in
the field of robotics. The term meta-operating system means that there is an
operating system installed on the hardware already, and ROS platform is installed
over this operating system. For the moment Linux distribution Ubuntu is the
operating system that supports fully ROS. This distribution has great future related
to porting and integration into embedded world. That gives ROS an excellent
perspective for development and use of robot-related applications in systems,
varying greatly in scale and complexity.

This article describes such an application of this meta-operating
system/platform — control of a robotic arm from a terminal running application
under ROS/Ubuntu.

2. Short survey of ROS features

ROS is an applications platform very convenient for development and use of
applications in the field of robotics. There are large numbers of drivers for various
types of sensors and control of different mechanisms, as well as packages for robot
vision, navigation and others for ROS.

Some of the basic ROS concepts are nodes, topics and services. They help the
creation of the skeleton of every ROS application.

16

Nodes are processes implementing a given function. They are the basic unit of
execution in ROS. All functions and the whole logic of a ROS application are
implemented in nodes.

Topics are tools of IPC (Inter-Process Communication), a way to exchange
messages of a defined format. They allow detaching between the message sender
and receiver because both sides “know” the name of the topic only, and not of each
other. This allows implementing extremely scalable and flexible software and lets
the developer focus on the very logic and creativeness of the application at hand.

The services give very convenient tools of two-way message communications
and easy implementation of client-server relations between nodes.

ROS implements a very convenient format of defining services and messages
passed between the nodes and this format is language-independent. Thus there can
be multiple nodes written in different programming languages (i.e., C/C**, Python)
and communicating with each other implementing a complete and integrate system.

The communications between different nodes can be implemented over a
network TCP/IP link that makes possible the cooperation between nodes running on
different computers over Internet and logic/load distribution between multiple
machines.

3. Common architecture

The control is implemented by means of a computer terminal and can be manual or
automatic (Fig. 1). In manual control mode the operator controls every movement
of the robot by pressing the corresponding button on the keyboard. Each of robot’s
joints has two corresponding keys that drive it in a clockwise or counterclockwise
direction. In automatic control mode the user chooses a script file containing a
sequence of commands that are sent to the robot arm and implement a whole

program of movements.
.
(Sl

Embedded
Controller

Robot
Arm

pd

Fig. 1. Common arhitecture black diagram

17

That sequence, once started is carried on without user interference. The
corresponding commands are received and processed by a node working under
RQOS, and transmitting it to the robot arm through a serial interface. Inside the robot
arm there is an embedded controller that receives the commands and drives the
corresponding robot mechanisms implementing the given commands.

4. Software architecture

The following graphic is generated using the rxgraph tool of the ROS system. It
displays the node architecture of the application (Fig. 2).

atdinG - Dot VIEWEr

frosout

control_if

/control_if '

Fig. 2. Node architecture of the application

A basic software is called roscore and it is a part of every standard ROS
application. It can be started from a shell console using command roscore (Fig. 3).

File' Edit View Terminal Help

cimi—bas@cimi—bas—desktop:-$ roscore
. logging to /home/clmi-bas/.ros/log/648a727e-8dca-11df-a446-0050878451366/rosl
aunch-clmi-bas-desktop-1749.log

started roslaunch server http://127.9.8.1:47224/

starting new master (master configured for auto start)
process[master]: started with pid [1762]
ROS_MASTER URI=http://127.6.8.1:113L1L)

setting /run_id to 648a727e-Bdca-11df-ad46-8856878451366
process[rosout-1]: started with pid [1773]
started core service [/rosout]

Fig. 3. Rosout node
18

The node rosout (Fig. 3) is a standard node for almost every application under
ROS and it implements visualization of various system messages — information and
error logs and other changes of the state of application. It takes messages from all of
the rest of nodes that belong to the application and displays them in the console.

The application itself consists of the nodes:

— Controller,

—Keycontrol,

— Scripter.

The Controller node (Fig. 4) takes commands from the other two modules and
implements their validation, formatting and transmitting through the serial link to
the embedded controller of the robot arm. It is accomplished by registering for
receiving messages on the topic control_if.

File Edit View Terminal Tabs Help

roscore http:(/127.0.0.1:11311/
clmi-bas@clmi-bas-desktop:~%

[INFO]
[INFOI]

INFO]
INFO]
INFO]
INFO]

INFO]
INFO]

INFO]
INFO]

INFO]
INFO]

INFO]
INFO]

1278948838.
1278948838.

1278871052.

1278871052.

1278871373.

1278871373.

1278871373.
1278871373.

1278871373.
1278871373.

1278871373.
1278871373.

1278871373.
1278871373.

279813000:
280176000 :

249692000 :

250421000:

568357060 :

568524000 :

668422080 :
668567008 :

768489000 :
768569000

868457000 :
8686128000

968474000 :
968623000 :

8 clmi-bas@clmi-bas-desktop: ~ b 4

rosrun robotarm step controller
serial port handle = 3
written:st 1 -b

L3
Received [stop all -b

written:stop all -b

Received [bw 6 5 @ @
written:bw 6 5 0 ©

Received [jg 5 5 -500 8
written:jg 5 5 -5608 @

Received [jg © 5 -1588 ©
written:jg © 5 -1580 @

Received [jg 1 8 -1128 @ -5
written:jg 1 8 -11280 @ -s

Received [jg 5 5 20 58 -s
written:jg 5 5 20 50 -s

Fig. 4. Controller node

The other two nodes transmit commands for the manual and automatic mode

of operation correspondingly.

The Keycontrol node (Fig. 5) reads commands from user input (terminal
console), generates appropriate commands, formats them into messages and
publishes them on control_if topic.

19

co

File Edit View Terminal Tabs Help

roscore http://127.0.0.1:11... $ clmi-bas@cimi-bas-deskto... $ cImi-bas@clmi-bas-deskto... ¥

clmi-bas@clmi-bas-desktop:~$ rosrun robotarm step keycontrol
[INFO] 1278948915.052168000: I ﬂhblished [fw 8 10 8 ©

INFO] 1278948916.844081000: I published [bw © 10 8 ©
INFO] 1278948918.113321e00: I published [fw 1 10 8 ©
INFO] 1278948919.041555000: I published [bw 1 10 8 ©
INFO] 1278948920.007528000: I published [bw 2 10

INFO] 1278948920.628066600: I published [fw 2 10

INFO] 1278948922.518451000: I published [bw 3 10
INFO] 1278948923.3486058000: I published [fw 4 10

]
[
]
[
]
[
]
[
]
[
]
[INFD] 1278948921.793473000: I published [fw 3 10
]
[
]
[
]
[INFO] 1278948926.716079000: I published [bw 4 10
]
i

Fig 5. Keycontrol node

The Scripter node (Fig. 6) reads commands from a given script file (a text file,
ntaining commands to the robot arm’s embedded controller), filters and formats

them and publishes them on the topic control_if.

20

File Edit View Terminal Tabs Help

clmi-bas@cl... $ roscore http:/... 8 clmi-bas@cl... & cmi-bas@cl... & clmi-bas@cl... ¥
clmi-bas@clmi-bas-desktop:~/code/robotarm step$ rosrun robotarm step scripter gel

t-table.txt

Script file:get-table.txt
INFO] 1278871373.4682670600:
INFO] 1278871373.567996000:
INFO] 1278871373.668010000:
INFO] 1278871373.768027000:
INFO] 1278871373.8680190600:
INFO] 1278871373.968021000:
INFO] 1278871374.8679990600:
INFO] 1278871374.168009000:
INFO] 1278871374.268008000:
INFO] 1278871374.368008000:

published [st
published
published
published
published
published
published
published
published
published
published
published
published
published
published
published []

INFO] 1278871374.468009000:
INFO] 1278871374.568018000:
INFO] 1278871374.667999000:
INFO] 1278871374.7680811000:
INFO] 1278871374.868013000:
INFO] 1278871374.968016000:

T et b i el il Nt ' i’ N i
Pt bt b e et bt bl bl b b b el bl bl bl el

Fig. 6. Scripter node

In this application the flexibility of the ROS platform is clearly visible. Such a
system becomes very scalable and easily extendable. New nodes can easily be
added, for example a node for receiving commands from a remote terminal and
many others. All those nodes can publish on the same topic control_if without
changing the Controller node, as there is no need for any node to be aware of the
number and functions of the others that publish on the same topic.

5. Sample source code

The source code implementing one of the nodes — the Controller — is shown below:

/*

* listener.cpp

*

* Created on: Jun 27, 2010
* Author: ivaylo

*/

#include <stdio.h> /* Standard input/output definitions */
#include <string.h> /* String function definitions */

#include <termios.h> /* POSIX terminal control definitions */
#include <unistd.h> /* UNIX standard function definitions */
#include <fcntl.h> /* File control definitions */

#include <ros/ros.h>
#include <std_msgs/String.h>

#include "common.h"
#include "ser.h"

int serial;

void listenCallback(const std_msgs::StringConstPtr& msg)

{
char line[254];
ROS_INFO("Received [%s]", msg->data.c_str());
if (write(serial, msg->data.c_str(), msg->data.length()))
{
ROS_ERROR("write failed\n");
1 close(serial);
return;
¥

ROS_INFO("written:%s\n", msg->data.c_str());

21

/I Read a line until it contains "ok" or "err"

do
if (freadIn(serial, line))
continue;

}

while (!strstr(line, "ok™) && Istrstr(line, "err"));
}
int main(int argc, char** argv)
{

serial = initport();
ROS_INFO("serial port handle = %d", serial);

ros::init(argc, argv, CTRL_NODE_NAME);

ros::NodeHandle n;

ros::Subscriber chatter_sub = n.subscribe(CTRL_TOPIC, 1000,
listenCallback);

ros::spin();

6. Conclusion

The meta-operating system ROS makes it easy to implement applications in the
fields of robotics and embedded control. Its open source architecture (flexible and
scalable itself) allows the convenient development and integration of a large variety
of application in this field. Using the tools and means that it supplies, the developer
can focus on efforts of the creativeness and increase his/her productivity. Not only
the development and integration are made easy but also future support and
extension of the code too. ROS is firstly implemented under Ubuntu Linux, which
makes it easy to port and integrate into embedded systems. The tools it introduces
for distribution of an application over multiple computers allow the cooperation of
nodes on an embedded system with those working on a local or remote computer
terminal, and in future eventually the control through handheld computer devices
and smartphones. All these features make ROS a candidate for the first choice and
excellent perspective in the field of robotics and embedded control.

References

http://www.ros.org/wiki/
http://www.care-o-bot.org/
http://www.ubunto.com
http://www.linux.org

el N

22

VYupasnenue podborom manunysstopom mox ROS/Ubuntu

Haiioen Illusapos

Hncmumym cucmemmnoeo unocenepcmea u pobomomexuuxu, 1113 Sofia
E-mail: nshivarov@code.bg

(PesromMme)

POC npezcrasinsier coboii MeTa-onepairontas cucrema (marhpopma) ¢ OTKPBITBIM
KOJIOM JUIsl pa3BUTHS U IPUMEHEHHH B 00JIACTH POOOTOTEXHHKH.

MerTa-onepannoHHas CHCTEMa 03HAYaeT, YTO B OMPEICICHHON YIPaBIsIONeH
CHCTEMeE, IOCTPOCHHOW Ha PEAIbHBIX AJIEKTPOHHBIX KOMIIOHEHTAX, YK€ CYLIECTBYET
BCTPOCHHAsI ONIEpaIlMOHHAs CHCTeMa, Ha KOTOpoil nHcTanupoBana miatdpopma POC.

B wmacrosmmii Moment pacnpenencuue (distribution) Ubuntu ssasiercs
OTIEpallMOHHOW CHCTeMOH, MONHOCTRI0 momaepxuBatomeir POC. Takoe Jlmaykc
pacrpeneneHne umeeT 0oJIbIIoe Oyayiee, CBA3aHOe ¢ IIEPEHOCOM U HHTErpalueii B
Mainbix BerpoeHHbIX (embedded) cucremax. Dto maer cucteme POC orimuHbIe
HEepCHEKTHBBl Ul pPa3sBUTHA W HCIONB30BaHUS POOOTOB, CBSI3aHHBIX C
NPUMEHEHUSIMU B PA3JIMYHBIX 10 MacIiTaly ¥ KOMIUICKHOCTH POOOTOTEXHUIECKHX
cucTeMax.

B Hacrosimieli craTbe OMHMCaHO MOJOOHOE TNPUMEHEHHE JTOW Mera-
OIEPAIIMOHHOM crcTeMbl (1aT)OpMBI) VIS yIpaBiIeHHs POOOTOM-MaHUITYJISITOPOM
C TIOMOIIBIO KOMIBIOTEPHOTO TEPMHHANA, Ha KOTOPOM HHCTaJIMpOBaHA
POC/Ubuntu.

23

