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I. Introduction  

The evolutionary multi-objective optimization (EMOO) is a popular and useful 
field of research and developing algorithms to solve many real-life multiobjective 
problems (see for example [6, 18, 38]). During the World Congress of 
Computational Intelligence (WCCI) in Vancouver 2006, EMOO has been evaluated 
as one of the three fastest growing fields of research and application among all 
computational intelligence topics.  

The Evolutionary Optimization (EO) algorithms use a population-based 
approach, in which the iterations are performed on a set of solutions (called 
population) and more than one solution is generated at each iteration. The main 
reasons for the popularity of EO algorithms are as follows: (i) They do not require 
any derivative information; (ii) EO algorithms are relatively simple to implement; 
(iii) EO algorithms are flexible and robust, i.e. they perform very well on a wide 
spectrum of problems; (see [23]). The use of a population in EO algorithms has a 
number of advantages (see [3]): (i) it provides an EO procedure with a parallel 
processing power, (ii) it allows EO procedures to find multiple optimal solutions, 
thereby facilitating the solution of multimodal and multiobjective optimization 
problems, and (iii) it provides an EO algorithm with the ability to normalize 
decision variables (as well as objective and constraint functions) within an evolving 
population using the best  minimum and maximum values in the population. The 
shortcoming of working with a population of solutions is the computational cost 
and the memory necessary for the execution of each iteration.  

Some EO algorithms use an elitism operator, which combines the old 
population with the newly created population and chooses to keep better solutions 
from the combined population. Such an operation makes sure that an algorithm has 
a monotonically non-degrading performance. The presented survey of EO 
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algorithms designed to solve multi-objective optimization problems categorizes the 
algorithms as elitist (which use an elitism operator) and non-elitist algorithms.  

The paper is organized as follows: In section II the principles of evolutionary 
multi-objective optimization are given. A short survey of evolutionary multi-
objective optimization (EMOO) algorithms is presented in section III. Convergence 
properties of some EMOO algorithms are discussed in section IV. Some current and 
future challenges are outlined in section V. Conclusions are made in section VI. 

II. EMOO principles 

The multi-objective optimization problem has the following general form: 
(1)                      Minimize/Maximize fm(x),                 m = 1, 2,…,  M; 

subject to  
(2)                                            gj(x) ≥ 0,                   j = 1, 2,..., J; 
(3)                                           hk(x) = 0,                  k = 1, 2,…, K; 
(4)                                        xi

(L) ≤ xi ≤ xi
(U),          i = 1, 2,…, n. 

Here we consider the term “solution” as a variable vector and the term “point” 
as the corresponding objective vector. 

A solution x ∈ Rn is a vector of n decision variables: x = (x1, x2 , …, xn)T. The 
value   xi

(L) is the known lower bound and the value xi
(U is correspondingly the upper 

bound of variable xi.  The solutions satisfying the constraints (2)-(4) constitute a 
feasible decision variable space S ⊂ Rn. The objective functions (1) constitute a M-
dimensional space, called objective space Z ⊂ RM. For each solution x in the 
decision variable space, there exists a point z ∈ RM in the objective space, denoted 
by f (x) = z = (z1, z2, …, zM)T. 

The domination between two solutions is defined as follows (see [3, 18]): 
Definition 1. A solution x(1) is said to dominate the other solution x(2), if the  

both following conditions are true: 
1. The solution x(1)  is not worse than x(2) in all objectives. Thus, the solutions 

are compared based on their objective function values (or location of the 
corresponding points z(1) and z(2) on the objective space). 

2. The solution x(1)  is strictly better than x(2) in at least one objective. 
All points which are not dominated by any other point z ∈ Z are called the 

non-dominated points of class one, or simply non-dominated points. Usually the 
non-dominated points together make up a front in the objective space and are often 
visualized to represent a non-domination front. The points lying on the non-
domination front, by definition, do not get dominated by any other point in the 
objective space, hence they are Pareto-optimal points (together they constitute the 
Pareto-optimal front), and the corresponding variable vectors are called Pareto-
optimal solutions. 

The Pareto-optimal solutions are defined in multiobjective optimization (see 
[3, 18]) as follows: 



 44 

Definition 2. If for every member x in a set P  there exists no solution y (in the 
neighborhood of x such that ⎢⎢y – x ⎢⎢∝ ≤ ε, where ε is a small positive scalar) 
dominating any member of the set P, then the solutions belonging to the set P 
constitute a local Pareto-optimal set. 

In the multi-objective optimization there are two ideal goals: 
1. Find a set of solutions, which lie on the Pareto-optimal front, and 
2. Find a set of solutions which are diverse enough to represent the entire 

range of the Pareto-optimal front. 
An EMOO algorithm works with the following principle in handling 

multiobjective optimization problems (see [3]): 
Step 1. Find multiple non-dominated points as close to the Pareto-optimal 

front as possible, with a wide trade-off among objectives. 
Step 2. Choose one of the obtained points using higher-level information. 
In the “a posteriori” MCDM approaches (also known as “generating MCDM 

methods”) the task of finding multiple Pareto-optimal solutions is achieved by 
executing many independent single-objective optimizations, each time finding a 
single Pareto-optimal solution (see [3]). A parametric scalarizing approach (such as 
the weighted-sum approach, ε-constraint approach, and others) can be used to 
convert multiple objectives into a parametric single-objective function. By simply 
varying the parameters (weight vector or ε-vector) and optimizing the scalarized 
function, different Pareto-optimal solutions can be found. In contrast, in an EMOO 
procedure, multiple Pareto-optimal solutions are attempted to be found in a single 
simulation by emphasizing multiple non-dominated and isolated solutions. 

III. Short survey of evolutionary algorithms in the EMOO 

Here we present a short chronological survey of the basic EMOO algorithms during 
the last two decades in terms of non-elitist and elitist algorithms.  

In brief the aggregating functions algorithms will be also mentioned  (see 
[47]), which could be used in combination either with the non-elitist or with the 
elitist approach. 

− Aggregation functions 
Each evolutionary algorithm needs a scalar fitness function to work. Then, in 

the multiobjective case, it is almost natural to propose a combination of all 
objectives into a single one using either an addition, multiplication or any other 
combination of arithmetical operations, devised by the developer of the algorithm. 
In fact, this is also the oldest mathematical programming method for multi-
objective optimization, since it can be derived from the Kuhn-Tucker conditions for 
nondominated solutions (see [35]). An example of this approach is a sum of weights 
of the form: 

(5)                                               Min 
1

( )
m

i
i iw f x

=
∑  

where wi ≥ 0 are the weighting coefficients representing the relative importance of 
the m objective functions of problem (1)-(4). The drawback here is that the weights 
should be selected very intelligently, and this is difficult (see [45, 46]). 



 45 

 
III. 1. Non-Elitist Multi-Objective Evolutionary Algorithms 

 − Schaffer’s vector-evaluated genetic algorithm (VEGA) 
The first implementation of a real multi-objective evolutionary algorithm 

(vector-evaluated genetic algorithm or VEGA) was suggested by David Shaffer in 
the year 1984 (see [45, 46]). He modified the simple three-operator genetic 
algorithm (with selection, crossover and mutation) by performing independent 
selection cycles according to each objective. The selection method is separated for 
each individual objective to fill up a portion of the mating pool. Then the entire 
population is thoroughly shuffled to apply crossover and mutation operators. This is 
performed to achieve the mating of individuals of different subpopulation groups. 
The algorithm worked efficiently for some generations but in some cases suffered 
from its bias towards some individuals or regions (mostly individual objective 
champions). This does not fulfill the second goal in multi-objective optimization, 
mentioned in section II. 

− Multi-Objective Genetic Algorithm (MOGA) 
This algorithm is suggested by Fonseca and Fleming in [22]. In MOGA, the 

rank of a certain individual corresponds to the number of chromosomes in the 
current population by which it is dominated. All non-dominated individuals are 
assigned the highest possible fitness value (all of them get the same fitness, such 
that they can be sampled at the same rate), while dominated ones are penalized 
according to the population density of the corresponding region to which they 
belong (i.e., fitness sharing is used to verify how crowded is the region surrounding 
each individual). 

− Niched-Pareto Genetic Algorithm (NPGA) 
This algorithm is suggested by Horn, Natpliotis and Goldberg in [28]. The 

NPGA uses a tournament selection scheme based on Pareto dominance. The basic 
idea of the algorithm is: two individuals are randomly chosen and compared against 
a subset from the entire population (typically, around 10% of the population). If one 
of them is dominated (by the individuals randomly chosen from the population) and 
the other is not, then the non-dominated individual wins. All the other situations are 
considered a tie (i.e., both competitors are either dominated or non-dominated). 
When there is a tie, the result of the tournament is decided through fitness sharing. 

− Non-dominated Sorting Genetic Algorithm (NSGA) 
This algorithm is suggested by Srinivas and Deb [48] and it is known as Non-

dominated Sorting Genetic Algorithm (NSGA). The NSGA is based on several 
layers of classifications of the individuals as suggested by Goldberg [23]. Before 
selection is performed, the population is ranked on the basis of non-domination: all 
non-dominated individuals are classified into one category (with a dummy fitness 
value, which is proportional to the population size, to provide an equal reproductive 
potential for these individuals). To maintain the diversity of the population, these 
classified individuals are shared with their dummy fitness values. Then this group 
of classified individuals is ignored and another layer of non-dominated individuals 
is considered. The process continues until all individuals in the population are 
classified. Since individuals in the first front have the maximum fitness value, they 
always get more copies than the rest of the population. The algorithm of the NSGA 
is not very efficient, because Pareto ranking has to be repeated over and over again. 
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− Investigations of Tanaka 
Tanaka has developed the first scheme to incorporate user's preferences into an 

EMOO algorithm [49]. In real-world applications it is normally the case that the 
user does not need the entire Pareto optimal set, but only a small portion of it. 
Normally the user can define certain preferences that can narrow the search and that 
can magnify certain portions of the Pareto front. 

− Comparative analysis 
Making comparative analysis of the algorithms, above pointed, it is established 

with no doubt, that MOGA is excelling, followed by NPGA and NSGA. 
The main conclusion about the implementations of this generation of GA is, 

that in order one EMOO algorithm to be successful, a good mechanism for the 
selection of the non-dominated solutions has to be combined with a good 
mechanism for variety support, which will guarantee the good performance of the 
algorithm. 
III. 2. Elitist Multi-Objective Evolutionary Algorithms 
The elitist EMOO methodologies include an elite-preservation mechanism in their 
procedures. As above mentioned the addition of elitism in an evolutionary 
optimization algorithm provides a monotonically non-degrading performance. The 
non-elitist EMOO algorithms do not use such a mechanism and usually perform 
worse than the elitist algorithms. 

The wide development of EMOO algorithms in the recent years has begun 
after the works of Eckart Zitzler [56], due to it the elitism has become a standard 
mechanism in the development in this direction. In the context of multiobjective 
optimization, elitism usually (although not necessarily) refers to the use of an 
external population (also called secondary population) to retain the non-dominated 
individuals found along the evolutionary process. The main motivation for this 
mechanism is the fact that a solution that is non-dominated with respect to its 
current population is not necessarily non-dominated with respect to all the 
populations that are produced by an evolutionary algorithm. Thus, what we need is 
a way of guaranteeing that the solutions that we will report to the user are non-
dominated with respect to every other solution that our algorithm has produced. 
Therefore, the most intuitive way of doing this is by storing in an external memory 
(or archive) all the non-dominated solutions found. If a solution that wishes to enter 
the archive is dominated by its contents, then it is not allowed to enter. Conversely, 
if a solution dominates anyone stored in the file, the dominated solution must be 
deleted. 

After the theory offered by Zitzler, most of the researchers began to 
incorporate external populations in their EMOO algorithms and the use of this 
mechanism (or an alternative form of elitism) became a common practice. In fact, 
the use of elitism is a theoretical requirement in order to improve and guarantee 
convergence of an EMOO algorithm and therefore it is important. 

− Non-dominated Sorting Genetic Algorithm II (NSGA-II)  
This algorithm is known as Non-dominated Sorting Genetic Algorithm II 

(NSGA-II) is introduced by Deb and Agarwal in [17] as an improved version of the 
NSGA [48]. In NSGA-II. for each solution one has to determine how many 
solutions dominate it and the set of solutions to which it dominates. The NSGA-II 
estimates the density of solutions surrounding a particular solution in the population 
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by computing the average distance of two points on either side of this point along 
each of the objectives of the problem. This value is the so-called crowding distance. 
During selection, the NSGA-II uses a crowded-comparison operator which takes 
into consideration both the non-domination rank of an individual in the population 
and its crowding distance (i.e., non-dominated solutions are preferred over 
dominated solutions, but between two solutions with the same non-domination 
rank, the one that resides in the less crowded region is preferred). The NSGA-II 
does not use an external memory. Instead, the elitist mechanism of the NSGA-II 
consists of combining the best parents with the best offspring obtained. Its 
mechanism is better. 

− Strength Pareto Evolutionary Algorithm (SPEA)  
This algorithm is known as Strength Pareto Evolutionary Algorithm (SPEA) 

and was introduced by Zitzler and Thiele in [56]. This approach was conceived as a 
way of integrating different EMOO algorithms. SPEA uses an archive containing 
non-dominated solutions previously found (the so-called external non-dominated 
set). At each generation, non-dominated individuals are copied to the external non-
dominated set. For each individual in this external set, a strength value is computed. 
This strength is similar to the ranking value of MOGA [22], since it is proportional 
to the number of solutions to which a certain individual dominates. In SPEA, the 
fitness of each member of the current population is computed according to the 
strengths of all external non-dominated solutions that dominate it. The fitness 
assignment process of SPEA considers both closeness to the true Pareto front and 
even distribution of solutions at the same time. Thus, instead of using niches based 
on distance, Pareto dominance is used to ensure that the solutions are properly 
distributed along the Pareto front. Although this approach does not require a niche 
radius, its effectiveness relies on the size of the external non-dominated set. In fact, 
since the external non-dominated set participates in the selection process of SPEA, 
if its size grows too large, it might reduce the selection pressure, thus slowing down 
the search. Because of this, the authors decided to adopt a technique that primes the 
contents of the external non-dominated set so that its size remains below a certain 
threshold. 

− Strength Pareto Evolutionary Algorithm 2 (SPEA 2) 
This algorithm is a second algorithm by Zitzler and Thiele, and is known as 

Strength Pareto Evolutionary Algorithm 2 (SPEA2) [36, 54]. It has three main 
differences with respect to its predecessor SPEA: 

(1) it incorporates a fine-grained fitness assignment strategy which takes into 
account for each individual the number of individuals that dominate it and the 
number of individuals by which it is dominated; 

(2) it uses a nearest neighbor density estimation technique which guides the 
search more efficiently; 

(3) it has an enhanced archive truncation method that guarantees the 
preservation of boundary solutions. 

− Pareto Archived Evolution Strategy (PAES) Algorithm 
This algorithm is introduced by Knowles and Corne in [34]. PAES consists of 

a 1 + 1 evolution strategy (i.e., a single parent that generates a single offspring) in 
combination with a historical archive that records the non-dominated solutions 
previously found. This archive is used as a reference set against which each mutated 
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individual is being compared. Such a historical archive is the elitist mechanism 
adopted in PAES. A special feature of this algorithm is the procedure used to 
maintain diversity which consists of a crowding procedure that divides objective 
space in a recursive manner. Each solution is placed in a certain grid location based 
on the values of its objectives (which are used as its “coordinates” or “geographical 
location”). A map of such grid is maintained, indicating the number of solutions 
that reside in each grid location. Since the procedure is adaptive, no extra 
parameters are required (except for the number of divisions of the objective space). 
This adaptive grid (or variations of it) has been adopted by several modern EMOO 
algorithms [10]. 

− Pareto Envelope based Selection Algorithm (PESA) 
Corne et al. [13] suggested an algorithm known as PESA, which combines the 

good aspects of SPEA and PAES. Like SPEA, PESA carries two populations (a 
smaller EA population and a larger archive population). Non-domination and the 
PAES crowding concept is used to update the archive with the newly created child 
solutions. 

In an extended version of PESA (see [12]), instead of applying the selection 
procedure on population members, hyperboxes in the objective space are selected 
based on the number of solutions residing in the hyperboxes. After hyperboxes are 
selected, a random solution from the chosen hyperboxes is kept. This region-based 
selection procedure has shown to perform better than the individual-based selection 
procedure of PESA. In some sense the PESA2 selection scheme is similar in 
concept to ε-dominance (see [36]), in which predefined ε values determine the 
hyperbox dimensions. Other ε-dominance based EMOO procedures (see [15]) have 
shown computationally faster and better distributed solutions than NSGA-II or 
SPEA2.  

−Bio-inspired and evolution-based heuristic algorithms 
There exist also many bio-inspired heuristics for multi-objective optimization 

(see [4]) and different evolution-based EMOO algorithms (see [2]). The most 
important among them are the particle swarm optimization and differential 
evolution [39], whose use has become increasingly popular in multi-objective 
optimization [1, 7, 8, 40]. However, other bio-inspired algorithms such as artificial 
immune systems and ant colony optimization have also been used to solve multi-
objective optimization problems [5, 24, 25, 37]. 

IV. Convergence properties of some EMOO algorithms 

In the context of investigations on convergence to the Pareto-optimal front, some 
authors (see [44, 52]) have considered the distance of a given set to the Pareto-
optimal set for finitely large search spaces. Related works treating continuous 
search spaces are [43, 26]. The distribution was not taken into account, because the 
focus was not on this matter. However, in comparative studies, the distance alone is 
not sufficient for performance evaluation, since extremely differently distributed 
fronts may have the same distance to the Pareto-optimal front. 

Two complementary metrics of performance were presented in [56, 57]. The 
second metric is in some way similar to the comparison methodology proposed in 
[21]. In summary, it may be said, that the performance metrics are hard to define 
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and it probably will not be possible to define a single metric that allows for all 
criteria in a meaningful way. Along with that problem, the statistical interpretation 
associated with a performance comparison is rather difficult and still needs to be 
answered, since multiple significance tests are involved, and thus, tools from 
analysis of variance may be required. In [55] a simulation study was performed on 
six EMOO algorithms: SPEA, NSGA, VEGA, HLGA, NPGA, FFGA. It was found 
that there is a clear performance gap between SPEA and NSGA, as well between 
NSGA and the remaining algorithms, but the fronts achieved by VEGA, HLGA, 
NPGA and FFGA are rather close together. The results indicated that VEGA might 
be slightly superior to the last three algorithms, while NPGA achieves fronts closer 
to the global optimum than FFGA. It seems that VEGA and HLGA have difficulties 
evolving well-distributed trade-off fronts on the nonconvex function. Another result 
was that the elitism is an important factor in evolutionary multi-objective 
optimization. On one hand SPEA clearly outperformed all other considered 
algorithms and this was the only method among all considered, that incorporates 
elitism as a central part of the algorithm. On the other hand, the performance of the 
other algorithms improved significantly when SPEA’s elitist strategy was included. 
Some results indicated that NSGA with elitism equals the performance of SPEA. 

However, it should be mentioned that in certain situations, e.g., when 
preference information is included in the fitness assignment process and the 
preferences change over time, elitism may have its drawbacks. 

In [42] the number of objectives is considered as a convergence factor. The 
results showed that the performance of multiobjective evolutionary algorithms, such 
as NSGA-II and SPEA2, deteriorates substantially as the number of objectives 
increases. NSGA-II, for example, did not even converge for problems with six or 
more objectives.  

In [41] different performance indices were investigated. The conclusion was 
that the researchers should be very careful in evaluating and comparing the EMOO 
algorithms according to performance indices only. This is particularly important, 
when there is little information about the shape of the true Pareto-optimal front, and 
this is the case in most real-world applications. 

V. Current and future challenges  

Probably the number of evolutionary metaheuristics designed to solve multi-
objective problems will increase further in the next decade. As noted in [9, 11] a lot 
of significant methods have been proposed in literature since the pioneering work of 
Shaffer [45, 46]. 

Janssens [29] pointed out some current and future challenges: 
− Usually the decision makers want a small set of solutions to make a choice 

among them. The challenge is to provide them with a set, as small as possible, that 
represents the whole set of choices, but to compute this set in an efficient way. 

− The Pareto-curve should be presented to the decision maker, who can select 
a solution lying on this curve according to her or his preferences. The problem here 
is that the solutions number is typically exponential for discrete problems or is of 
infinite size for continuous problems. It is often difficult to construct the full Pareto-
curve, so that an approximation of the curve is required. 
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− Some heuristics have been proposed to construct an approximation of the 
curve, but their performance and complexity remain still unexplored. Some research 
in this area has been done introducing the concept of ε-Pareto set, a set Pε of 
solutions, which approximately dominate every other solution s. The set Pε  contains 
a solution s’ that is within a factor 1 + ε of s, or better, in all the objectives. Such 
kind of approximation has been studied in [27, 50, 53]. 

− The evaluation of metaheuristics is still under discussion. Usually 
metaheuristics are evaluated according to two criteria: computational effort and 
quality of the solutions. Quantitative measures instead of graphical visualization 
should be used in many evolutionary algorithms to produce an evaluation. 
Standards for evaluation have to be developed and more theoretical work regarding 
quality evaluation has to be done (see [33]). 

− Solving many multiobjective optimization problems it becomes clear, that it 
is impractical or unnecessary to store all non-dominated solutions obtained during 
the search process. Many algorithms are designed to store an “archive” (i.e. a subset 
of the discovered non-dominated points). It is interesting to study the computational 
complexity of maintaining the archive. It is proposed that the archive should be of a 
bounded and modest size (see [32]). 

VI. Conclusions 

This paper has presented a short review of algorithms in the fast growing area of 
evolutionary multiobjective optimization. The EMOO procedures are designed to 
achieve two goals: (i) convergence to as close to the Pareto-optimal front as 
possible and (ii) maintenance of a well distributed set of trade-off solutions.  

The early research efforts in this area were focused on finding a set of well-
converged and well distributed near-optimal trade-off solutions. At the next stage 
the EMOO researchers concentrated on developing better and computationally 
faster algorithms by means of scalable test problems [51] and adequate 
performance metrics to evaluate EMOO algorithms. One of the major aspects of 
scientific research is the efficiency, which is regarded at algorithmic level and at 
data structure level [30, 31]. A variety of measures for implementation quality are 
suggested, allowing a quantitative (rather than only qualitative), comparison of 
results [20, 55, 56]. Z i t z l e r  et  al. [55] stated that when assessing performance of 
an EMOO algorithm, one was interested in measuring three things: 

− Maximize the number of elements of the Pareto optimal set found. 
− Minimize the distance of the Pareto front produced by the algorithm with 

respect to the global Pareto front (assuming we know its location). 
− Maximize the spread of solutions found, so that we can have a distribution of 

vectors as smooth and uniform as possible. 
Concurrently with the research on performance measures, other researchers 

were designing test functions. K. Deb proposed a methodology to design 
multiobjective problems that is widely used [19]. Later on, an alternative set of test 
functions was proposed, but this time, due to their characteristics, no enumerative 
process was required to generate their true Pareto front [16, 14]. These test 
functions are also scalable, their use has become spread. Researchers in the field 
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normally validate their EMOO algorithms with problems having three or more 
objective functions, and ten or more decision variables. 

As noted in [47] some important research directions remain still unexplored. 
There is a need for detailed studies of the different aspects involved in the 
parallelization of EMOO techniques (e.g., load balancing, impact on Pareto 
convergence, performance issues, etc.), including new algorithms that are more 
suitable for parallelization than those currently in use. It will be also very 
interesting to study, for example, the structure of fitness landscapes in 
multiobjective problems. Such study could provide some insights regarding the sort 
of problems that are particularly difficult for evolutionary algorithms and could also 
provide clues with respect to the design of more powerful EMOO techniques. 
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(Р е з ю м е) 
В работе рассматриваются эволюционные подходы и алгоритмы при решении 
задач многокритериальной оптимизации. Обсуждены сравнения некоторых из 
самых фундаментальных алгоритмов последних двух десятилетий, а так же и 
сходимость эволюционных алгоритмов в многокритериальной оптимизации. 
Рассмотрены некоторые направления для будущих исследованиях. Сделаны 
выводы об ∋той научной области. 


