
 25

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ • BULGARIAN ACADEMY OF SCIENCES

ПРОБЛЕМИ НА ТЕХНИЧЕСКАТА КИБЕРНЕТИКА И РОБОТИКАТА, 60
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 60

София • 2009 • Sofia

A Software System for Optimal Virtualization
of a Server Farm1

Daniel Vatov
Institute of Information Technologies, 1113 Sofia
E-mail: daniel.vatov@gmail.com

1. Introduction

The term virtualization broadly describes the separation of a resource or request for
a service from the underlying physical delivery of that service. With virtual
memory, for example, computer software gains access to more memory than is
physically installed, via the background swapping of data to disk storage. Similarly,
virtualization techniques can be applied to other IT infrastructure layers – including
networks, storage, laptop or server hardware, operating systems and applications.
This blend of virtualization technologies − or virtual infrastructure − provides a
layer of abstraction between computing, storage and networking hardware, and the
applications running on it. The deployment of virtual infrastructure is non-
disruptive, since the user experiences are largely unchanged. However, virtual
infrastructure gives administrators the advantage of managing pooled resources
across the enterprise.

A key benefit of virtualization is the ability to run multiple operating systems
on a single physical system and share the underlying hardware resources − known
as partitioning.

1 This work was supported by the European Social Fund and Bulgarian Ministry of Education and
Science under the Operation Programme “Human Resources Development”, Grand
BG051PO001/07/3.3-02/7.

 26

Today, virtualization can apply to a range of system layers, including
hardware-level virtualization, operating system-level virtualization, and high-level
language virtual machines. Hardware-level virtualization was pioneered on IBM
mainframes in the 1970s, and then more recently Unix/RISC system vendors began
with hardware-based partitioning capabilities before moving on to software-based
partitioning. For Unix/RISC and industry-standard ×86 systems, the two approaches
typically used with software-based partitioning are hosted and hypervisor
architectures. A hosted approach provides partitioning services on top of a standard
operating system and supports the broadest range of hardware configurations. In
contrast, a hypervisor architecture is the first layer of software installed on a clean
x86-based system (hence it is often referred to as a “bare metal” approach). Since it
has direct access to the hardware resources, a hypervisor is more efficient than
hosted architectures, enabling greater scalability, robustness and performance.

Virtual infrastructure initiatives often spring from data center server
consolidation projects, which focus on reducing existing infrastructure “box
count”, retiring older hardware or life-extending legacy applications. Server
consolidation benefits result from a reduction in the overall number of systems and
related recurring costs (power, cooling, rack space, etc.)

While server consolidation addresses the reduction of existing infrastructure,
server containment takes a more strategic view, leading to a goal of infrastructure
unification. Server containment uses an incremental approach to workload
virtualization, whereby new projects are provisioned with virtual machines rather
than physical servers, thus deferring hardware purchases.

Partitioning alone does not deliver server consolidation or containment, and in
turn consolidation does not equate to full virtual infrastructure management.
Beyond partitioning and basic component-level resource management, a core set of
systems management capabilities are required to effectively implement realistic
data center solutions. These management capabilities should include comprehensive
system resource monitoring (of metrics such as CPU activity, disk access, memory
utilization and network bandwidth), automated provisioning, high availability and
workload migration support.

2. Problem description

While the large scale virtuaqliztion is gaining speed, in many organizations it is for
first time when they decide to consolidate their server farms from physical
deployment to virtual machines. The problems that they face are:

• Is it worth doing this in our case?
• How much will it cost to virtualize the department X? What about

departments Y and Z?
• How much we will save in terms of maintenance cost and effort?
The overall efficiency of the solution and the confidence of the customer that

was chosen the right strategy is a precondition for the successful spread of the
virtualization in the data-centers. The optimization problem that should be solved
can be defined as:

 27

A set of physical machines with different OS is given and applications running
on them, owned by different departments in the organization, with different
importance for the successful daily operations and with different maintenance costs.
How these physical machines can be consolidated and virtualized in optimal way,
taking into account the organization's goals and specific constraints?

The strategy for virtualization that the company may choose can vary
depending on its goals. Below we shall describe several strategies but the real life
scenarios can be more numerous.

We define for each physical machine that should be virtualized a value v. We
can have a scenario where v is:

v = support effort .
usefulness

The machines that are taking too much effort for support but are considered
less valuable for achieving organization's goals receive higher v. In this scenario
they will be virtualized first which will improve the overall value for the server
farm

M
∑

i =1
(vi),

where M is the number of machines in the farm.

If we define v as
v = importance

probably it is wise to consider not to have too much virtual machines with high
importance on one hypervisor. Thus in case of failure of a hypervisor the impact
will be, hopefully, not fatal. On the contrary if the organization decides to address
this risk by installing redundant hypervisors it will be better if the most important
virtual machines are grouped together on less hypervisors thus reducing the cost of
the solution.

Another consolidation strategy may require to separate the physical
machines in groups depending on some predefined criteria. Such a criteria
can be departamental ownership, geographical location, machine's
architecture, operating system, etc.

3. Theoretical background

To get proper understanding of the consolidation algorithm, we shall introduce an
important class of combinatorial problems, known as the knapsack problems. These
types of problems are used to solve many practical problems like planning,
scheduling, resource allocation. More details about the Knapsack Problems can be
found in [2].

The classical 0-1 Knapsack Problem can be defined as follows. There are n
objects and a knapsack. Each object has an associated value and a resource
requirement. For example these can be price and weight and the knapsack can carry
not more than R kilograms. The goal is to pick a set of objects in such a way so that
the overall value of all the items in the knapsack to be maximized without
exceeding the capacity of the knapsack.

 28

Mathematically the problem is stated as follows:

maximize V =
n

 ∑
i =1

xi vi

such that

n
 ∑
 i =1

xi ri ≤ R,

xi ∈ {0, 1}, i = 1, 2,... , n.

In the problem definition xi is a variable for object i. The problem is called 0-1
knapsack problem because the variable xi can either take a value of 0 implying
object i is not picked, or a value of 1 implying object i is picked. Any set of picked
objects that satisfy the knapsack constraints is called feasible solution of the
problem. The solution of 0-1 knapsack problem is the feasible solution which
maximizes the sum of the values of picked objects. If we relax the integrality
constraints the resulting problem is a linear program. This is the LP relaxation of
the knapsack problem (KP) denoted LP (KP).

maximize V =
n

 ∑
i =1

xi vi

such that

n
 ∑
 i =1

xiri ≤ R

0 ≤ xi ≤ 1, i = 1, 2,..., n.
Since the constraints of LP(KP) are more relaxed than in 0-1 KP

VLP(KP) ≥ VKP
it can be used to obtain upper bound for KP solution (See [2]).

The classical 0-1 KP can be generalized for multiple resource constraints.
Such a problem is called multi constraint knapsack problem or Multi Dimension
Knapsack Problem (MDKP). In MDKP each object requires m resources and has
value v. Resource requirements are given by the resource vector ri = (ri1, ri2,...,rim).
The amounts of the resources available in the knapsack are given by
R = (R1, R2 ,..., Rm) .

The MDKP problem is stated as follows:

maximize V =
n

 ∑
i =1

xi vi

such that

n
 ∑
 i =1

xi rik ≤ Rk,

k = 1, 2, ..., m;

 xi ∈ {0, 1}, i = 1, 2,..., n.

 29

Another generalization of the knapsack problem that will be used is Multiple
Choice Multi-Dimension Knapsack Problem (MMKP). The problem definition is
the same as for MDKP but the objects are grouped in different stacks (groups). In
general every group has different number of objects. A feasible pick for the
knapsack can contain only one object from a group.

The MMKP problem is defined as follows. The i-th group has li objects.
Object j of group i has value vij, and requires resource rij = (rij1, rij2, ..., rijm). The
amounts of available resources are given by R = (R1, R2, ..., Rm),

maximize V =
n

 ∑
i =1

li
 ∑
 j =1

xij vij

such that

n

 ∑
 i =1

li

 ∑
j =1

xij rijk ≤ Rk,

k = 1, 2, ..., m,

li

∑
j =1

xij = 1,

i = 1, 2, ..., n,

 xij ∈ {0, 1}, i = 1, 2, ..., n;
 j = 1, 2, ..., li.
The special case of MMKP, where there is only one resource constraint (i.e.

m = 1), is called a Multiple-Choice Knapsack Problem (MCKP). Variants of
knapsack problems comprise an important class of combinatorial optimization
problems. The classical 0-1 knapsack problem is one of the most studied problems
in operations research or combinatorial optimization. Please refer to [2] for good
surveys of algorithms for the knapsack problems and some of their variants.

Since the 0-1 knapsack problems are NP-hard [2], the worst-case computation
time of the optimal solutions grows exponentially with the size of the problem. For
this reason, there are two types of solutions proposed for the KP and its variants:
optimal solutions, and near-optimal solutions. The objective of the near-optimal
solutions is to provide solutions which are close to optimal values, but require
computation times which are much shorter than those of the optimal solutions. Most
of the optimal algorithms for the variants of the KP uses a general search method,
called the branch and bound method.

3.1. Branch and bound method for MMKP
The branch and bound method provides a popular approach for many variants of
the KPs. This section describes shortly an extension of the branch and bound
method for MMKP which was proposed by Khan [1].

At any solution state of the MMKP, a group is either free denoting no item is
picked from this group, or it is fixed denoting an item is picked from this group. The
fixed/free status of the groups are indicated using the group status vector g. If group
i is free, gi is 0; otherwise, the group is fixed and gi is 1. The solution state of a node
is represented by a solution vector x = {xij} where i = 1, ..., n and j = 1, ..., li. For a

 30

fixed group i, if xij = 1, it implies that item j is picked, and otherwise xij = 0
implying that item j is not picked.

The branch and bound algorithm for the MMKP involves the iterative
generation of a search-tree. The basic algorithm works as follows:

Step 1. Start with a solution state where all groups are free. Compute the
upper bound, select the branching group, and initialize the search-tree with this
node as the only live node2.

Step 2. Find the e-node3 e which is the live node with the largest value of
upper bound.

Step 3. If node e does not have any free group (i.e. all the groups are fixed),
then this node represents the optimal solution, and the algorithm terminates.

Step 4. If node e has at least one free group, then this node is expanded by
fixing the branching group b. Fixing group b involves the following steps for each
item j of this group:

a) form a new node t where the picked items are the picked items of node e
and the item j of group b,

b) compute the upper bound at node t,
c) select the branching group if there exists any free group in t,
d) if node t is feasible, put node t as a live node into the search-tree.

Step 5. Go back to Step 2.
The main distinction of this algorithm from the well known 0-1 branch and

bound method lies in dealing with groups of items. In [1] a pseudo-code of the
branch and bound algorithm for the MMKP is given .

3.2. Heuristics HEU
Since MMKP is an NP-hard problem, the computation time for any optimal
algorithm, such as Bblp, may grow exponentially with the size of the problem
instance in the worst case. This may not be acceptable for time-critical applications
such as admission control and dynamic resource allocation in a multimedia system.
These applications are forced to accept a near-optimal solution if the computational
time for optimal solution exceeds real-time bounds.

Here are the main concepts of the heuristic:
• It starts with a solution where from each group the item with the smallest

value (vij) is picked, and iteratively improve the solution by gradually replacing
items of smaller values with those of larger values as long as the solution remains
feasible.

• It uses Toyoda’s concept of aggregate resource where the required resource
vector of an item is converted to a scalar index using penalty factors taken from the
current resource usage vector [1]. Here the main idea is to penalize the use of
resources depending on the current resource state. It applies a large penalty for a
heavily used resource, and a small penalty for a lightly used resource.

2 A node which has been generated and whose children have not yet been generated.
3 Called also branching or expanding node.

 31

• To find the next item to be picked, it chooses the one which maximizes the
savings in aggregate resource. But if no such item is found, it chooses the one
which maximizes the value gain per unit of aggregate resource.

A detailed algorithm and pseudo-code procedure for HEU can be found in [1].

4. Software system description

In this description we will skip the trivial functionalities of the system and will just
enumerate them. The focus will be put on the functionality concerning the
consolidation and the application of the MMKP algorithms in this process. The
system in which will be integrated the MMKP algorithms is VMWare's Capacity
Planner4.

At the core of VMware Capacity Planner5 is the Information Warehouse,
which contains a growing set of industry reference data. This information can be
leveraged for comparative analysis and benchmarking to help guide system
consolidation and capacity optimization decisions for the enterprise. VMware
Capacity Planner is used as a business analysis, planning and decision support tool
to direct the key phases within a variety of infrastructure assessment projects as
described below:

• Assess the current workload capacity of an IT infrastructure through
discovery and inventory of IT assets. Measure system workloads and capacity
utilization across various elements of the IT infrastructure - including by function,
location and environment.

• Plan for capacity optimization through utilization analysis, benchmarking,
trending and identification of capacity optimization alternatives. Identify resources
and establish plan for virtualization, hardware purchase or resource redeployment.

• Decide on the optimal solution by evaluating various alternatives through
scenario modeling and “what-if” analysis. Determine which alternative best meets
the pre-defined criteria.

• Monitor resource utilization through anomaly detection and alerts based on
benchmarked thresholds. Help generate recommendations to ensure ongoing
capacity optimization.

The sub-system that enables access to the gathered data and is used for
managing the consolidation and assessment process is web based J2EE application.
The assessment is configured in a five-step wizard where all the necessary
information is gathered. The parameters that are configured are:

• General information as name, ownership, access.
• Input systems that should be considered for consolidation.
• Consolidation settings
o Is it allowed systems to consolidate onto the same hardware when the

systems have different departments, environments, functions, locations or operating
systems?

o Should the consolidated systems be virtualized?

4 The opinions and ideas expressed here do not represent the official opinion of VMWare Inc.
5 http://www.vmware.com/products/capacity_planner

 32

o Is it allowed to consolidate systems with different processor architectures
onto the same hardware?

o Should the systems be redeployed only on new hardware or to use the old
hardware when possible.

o Level of details − summary or detailed information for each virtual
machine

• The type of the hypervisor hardware and the specific parameters − memory,
cpu, etc.

• The boundaries for the consolidation − consolidate over location,
environment, function, etc.

• Minimal limits under which machines will not take part in the assessment
process.

For the purpose of integrating MMKP algorithms in the consolidation engine
this wizard will be extended to allow supplying also:

• Value for each machine. The semantics of the values will depend on the
consolidation strategy chosen. Since number of servers may be quite big the value
will be assigned through regular expression besides enumerating each server
individually. For example − v = 50 if (software inventory contains postgres and
department equals “Accounting”).

• Threshold for the total value of the virtual machines running on the
hypervisor servers. This threshold will be used for strategies that do not consolidate
all the physical machines.

• Currently the attributes that are used for classification are: location,
function, environment, department and OS. The classification is done to separate
the input servers producing in this way several consolidation task - one per group.
To allow grouping of the physical machines in the sense of MMKP problem the
current groups will be extended with a free slot for a group with user chosen
semantics – e.g. importance of the server.

• The current functionality providing alternative scenario generation will be
extended to include the new parameters.

To illustrate usage lets consider the case where a virtualization have to take
place in a company whose IT infrastructure consists of 200 servers owned by three
departments. The servers are situated in two geographical locations. The software
that runs on the servers vary from databases to intranet sites. The utilization of the
servers also vary in terms of average and peak values.

Part of the assessment settings for this company are:
• Do not consolidate servers in different geographical locations;
• Group the machines by their departamental ownership.
The consolidation engine will solve two MMKP problems − one per a

geographical location. For each MMKP problem the physical servers will be
separated in groups according to their departamental ownership. Lets assume that
the consolidation strategy selected by the company assigns higher values to the
machines with lower importance for the organization but with higher maintenance
costs. In this way the company will put the consolidation threshold to such a value
that will ensure the expenses done for the new equipment and maintenance costs
spread over one year period will be less than the current sell price of the old

 33

hardware (or recycling costs) and its maintenance costs. Grouping the machines by
departments ensures that from the savings will benefit all departments.

5. Conclusion

This article presented the straightforward application of MMKP problem to model
the consolidation process. While using real-life scenarios the model is not as rich as
it can be. Future extension to the model may include the information for the
performance load during the different hours of the day. This will provide different
optimal consolidation solutions for each time interval. There exist software products
allowing dynamically, without stopping the virtual machine, to move it from one
hypervisor to another. An algorithm trying to find the optimal or near to the optimal
solution to the consolidation problem may benefit from this. On the other hand the
model is quite simple and can be easily integrated with other legacy software
systems. For example it can benefit from an ERP system to determine in automatic
way the values for v for each machine in the server farm.

R e f e r e n c e s

1. M d. S h a h a d a t u l l a h K h a n, C. F l m d S h a h a d a t u l l a h K h a n. Supervisors Dr.
Kin F. Li, Dr. Eric, and G. Manning. Quality Adaptation in a Multisession Multimedia
System: Model, Algorithms and Architecture. Technical Report, 1998.

2. M a r t e l l o, S., P. T o t h. Knapsack Problems: Algorithms and Computer Implementations.
Technical Report, 1990.

Софтверная система для оптимальной виртуализации серверной
фермы
Даниел Ватов

Институт информационных технологий, 1113 София
E-mail: daniel.vatov@gmail.com

(Р е з ю м е)

В работе представлено применение мультидименсионной задачи рюкзака с
множеством выборов. Когда используются сценарии реальной жизни, модель
не так богата. Расширение модели может включить информацию для
поведения нагрузки в разных часах сутoк. Это дает оптимальные решения в
каждом интервале времени. Существуют софтверные продукты, которые
позволяют динамично, не останавливая виртуальную машину, переходить с
одного хипервайзера к другому. Алгоритм, который ищет оптимального или
вблизи оптимального, решения задачи, может воспользоваться этим. С другой
стороны, модель очень простая и может быть легко интегрирована с другими
софтверными системами.

