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1. Introduction

Manipulation mechanisms are the main part of technological robots (Kozarev,
1988). These mechanisms direct a point in a given path (path-generating
mechanisms), or guide a solid body along a given trajectory of its characteristic
point and orientation of this solid body (transpose mechanisms) [Suh et a. 1978],
(Erdman et al., 1991; Galabov, 1992). The geometry of the purpose mation
can be achieved by manipulation mechanism or by active control of the motorsasin
the case of SCARA robots.

The definition of the variable input geometrical and kinematic mechanisms
parameters as a result from a given motion of the end-effector, usualy is referred to
the inverse kinematics (Erdman, 1993). Explicit solutions can be obtained only
for particular cases of kinematics chains, which most of the utilized in practice
mechanisms possess (Gal abov, 1998).

In this publication, the inverse kinematic problem is brought to determination
of the functions, over which the input parameters (positions, angle velocities,
accelerations) are changed. These functions are necessary for control of the purpose
motions of the robot. The solution of the direct kinematic problem serves as a test
for the solution of the inverse kinematic problem.

The kinematics of the SCARA robots can be researched by different methods
(Lebedev, 1966; Minkov, 1985), however the most effective method in this
case is the method of the vector loop, developed in detail by Zinoviev, since the
essence of the structure of SCARA robotsis planar.
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2. Essence of the method

The Zinoviev method for solving the direct and inverse kinematic problem of planar
and spatia linkages is based on the theory of closed vector loops, substituting the
mechanisms kinematic scheme. Thus, a vector with a defined direction corresponds
to every mechanisms link. The vector direction is positive along the direction of the
loop circuit and backward. The vector sum of these vectors represents an equation
of the closed vector loop, equivalent to the mechanism loop.

The universal robots have mainly open kinematic chain and an open vector
loop corresponds to it. This open vector loop is conditionally closed by a vector
describing the purpose rabot path. The vector equation is presented by projection
equations along the axes of a properly selected coordinate system. From the
obtained system of equations, the positional direct or inverse problem is solved.
This problem is nonlinear by definition.

The projection equations are differentiated with respect to timet. Theam isto
solve two problems in relation to the velocities and accelerations. The obtained
system of derivative equations is linear in relation to unknown velocities and
accelerations.

3. Direct kinematic problem

The parameters of the robot kinematic scheme are given. From these parameters
l;=0C, I,=CH, 7, z, are constants. The generalized coordinates ¢y, @21,

zz and their derivatives with respect to time t, so called kinematic input parameters,

are variables (Fig. 1). The problem is to find the law of motion of the characteristic
point H of the robot end-effector: a trajectory t with vector equation

F=F(t)=xt) +y(t)] +z(t)k and projection equations x=x(t), y=y(t),
z=z(t); velocity F=F(t)=x{t) +yt)J+zt)k and projection equations
Xx=x(t), y=y(t), z=2(t); acceleration F =r(t)F =X(t)i + y(t)] +Z(t)k and
projection equations X = X(t), V= Vy(t), z=Z(t). The units vectors i, j and k are
constants.

From the equations of the closed vector loop
(1) Z+h+2+l+23-F=0,
the coordinates of the characteristic point H are obtained

X= Il COS(DLO + |2 COS(Q)_LO + (/’2,1)’
) y=lising g +l2sin(gro+¢21),
1= —-2p—Z3
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and the distance o = [F| =1 =+/x? + y? + 2% , together with the direction cosines
3 COS@(, r)= ?X: COS@/, r= ?y; cos@z, r)= ?Z .

After differentiation of the equations (2), the velocity components of point H
are abtained

X=—lysingyg.¢10—l2SiN(e1o + @21) (P10 + P21).
4 Yy =l1€08p1 0.0 +12COS(10 + @21 )10+ P21)
7=-7
and the magnitude of the velocity ‘F‘ =F =X+ y2 +2% with directions, defined
through direction cosines
z
.

(5) 00s(%,F) =?):(; cos(Y,F) =%:/; 0s(2,F) =

After differentiation of the equations (4), the acceleration components of point
H are obtained,

= (cosgro(610)” +Singro 10| ~I2(COS(pr0 + 920) (10 + 21) +
+sin (@10 + 021) (@10 + #21)),

6) y= —|1(Si NeLo(pr0)” - COS(/>1,0-¢51,0) -2 (Si M@0+ @21) (PLo + $21)° —
—00 (p10+ P21)(¢10 + $21)).

2=—7

and the magnitude of the accel eration"r"‘ =1 =4 %2+ y2 +7% with directions,

defined through direction cosines

7) cos(X,F) == costy,F)=2: cos(2,i)=2.
i i

r

After differentiation of equations (6), the second acceleration of point H can be
obtained, but they are rarely used in practice.
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Fig. 1. Kinematics scheme of the SCARA Robot

4. Inverse kinematics problem

On given: tragjectory T of point H with the corresponding equations 1 =1 (t),
respectively x=x(t), y=y(t), z=zt); velocity F=F(t), respectively x=x(t),
y=y(t), z=2(t); acceleration F =F(t), respectively. X=x(t), V= y(t), 2= Z(t)
and known constant parameters |, -0C, I =CH, 7, z, of the robot kinematic
scheme, the generalized coordinates ¢, @21, 23 and their derivatives with
respect to timet — generalized (input) velocities and accelerations are sought.
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The projection equations system (2) is utilized for solving the positional
problem. This system is nonlinear according the unknowns ¢; o and ¢,, and hasa

solution

I.yi\/(l.y)z—p2(lz—x2)
(8) @1o=arcsin 5 ,

2

. y-lising o
9) ¢z,1=af08|n—(pl—¢1,ov
where the symbols are introduced

pP+I1Z-12

(10) |=# PP =X+ YR

1

After successive k-times differentiation of the equations (2) with respect to t,
systems of three linear equations according the input velocities ¢, @21, Z3

(where k=1), input equations ¢ o, @21, Z3 (Where k=2) and etc., are obtained.

These systems have the form
(k)

a ol +b(¢£'(‘)) +¢§'f1))=ck ,a=-l;sing g, b=—l,sin(pLg + 1),
d oy +elolg +057) = fi, d= lcosig, e= I5cos(prg + ¢21),
A9 =¥
and solutions
k) _ (Da)k K _ Dk (k K K
(1) (pio):%, (0§71)=T—(p£0), A0 =20 k=123,
where
ab i
(12) D= d :|1|23|n¢2,1.
If k=1then ¢ =X, f; =y and determinants:
b .
(13) (Da)1=(;l e‘=|2(>'<009(<01,o+(/?2,1)+ySn((PLoﬂﬂz,l)),
1
a ¢ ) .
(14) (Dp)1= 4 f =-ly(Xcosp o+ ysing, g) .
1

The input velocities are respectively
(D)1 Xcos(pyg+¢21) + YSin(gy g + ¢21)
0~ - ’

(15) :
D I]_SIn@Z‘l
XCOS@y g + YSiN
(16) Po1= (Do) _ PLo yaheio PLo, Z3=-2
D —|2$|n¢)2,1

Similar at k=2 isit obtained:
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(17) oy =X+11cospy 0.1 o° +1p COS(@1 o + 2.1) (10 + P21)°,
(18)  fy=y-lsin (01,0-(/"1,02 +la8in(@1 o+ @21) (@10 + (/"2,1)2,

c, b a
(19) (Do) = e‘,(Db)f 7
2 2
and input accelerations
. D .. D . .
(20) ¢1,0=( 8)2 , ¢2,1=( B)z—gow, Z3=-2,k=123,..

From the equations (2), (4) and (6) follows: z, = z— z, — z,; z, = z; 2, = z.
In asimilar way, the higher accelerations can be defined, but they are not used
for arobot control.

5. Motion laws and verification of the results

Let the problem is to synthesize the laws of motion x(t), y(t), z(t) on the
corresponding axis under the following conditions. motion of characteristic point H
from point A(500, 0, 50) to point B (0,500, 260) on a straight line for time T=2 s, at
nullification of the first and second derivatives of x(t), y(t), z(t) for the boundary

point A and B. Like thisin these points, the manipulated object is gripped or |eft, the
inertial load originated from the mass of the end-effector is nullified.
Determination of laws of motion. The trgjectory straightness condition will be
fulfilled, if the laws of motion on the according axes are homogenous from the type:
X=X, + AX(t) = x, + C,u(t),
(21) Y=Ya+Ay(t) =y, +Cou(t),
z=12, +Az(t) = z, + C,u(t).
Then the angle coefficients, which the projections of the trgectory in the
planes xy, yz, xz enclose, are constant:
Ay C, Az C, Az C,
W= T o Ke= o=t Ke ==t =k K
Ax C, Ay Cy Ax C,
which proves the statement for the straightness of the trajectory mentioned above.
Let for the definition of the motion laws (21) a normalized power polynomial

u(£)=> a,é’ is utilized, where the argument£ =t /T (t is the flowing time, T is
j

the time for redlization of the transposition) and the function u are changed in the
same interval [0; 1]. To nullify the components of the velocity and acceleration of
point H, respectively u’'=u"=0 in the range [O; 1], is necessary j>3. At this
condition the polynomial leading to minimal values of the velocity and acceleration,
is  u@)=ac-a,ct+as®  with  coefficients  a, =10; a, =-15;
a;, =1-a, — a, =6, defined from the system of algebraic equations
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5 5 5
(22) da =1 Y»aj=0 >aj(j-1=0.
j=3 j=3 j=3

The last system is obtained by substitutions u=1, u'=u"=0 in the end of the
interval [0; 1]. When the normalized polynomia u(&)=10&° -15£* +6£° is
utilized, the positional functions

X=X, +C u(¢&) =500-31.25(20t° - 15t* + 3t°) ,
(23) y=Ya+C,u(£) =0+54.125(20t> - 15" + 3t°),

z=2z, +C,u(¢&) =500-15(20t° - 15t* + 3t°)
are formed, where the constants C,,C,,C,, are defined from the conditions
t=T=2s. Xx=X; =500mm; y=y,=0mm; z=2z, =500 mm, and ¢ is substituted
with therelation £=t/T .

The second differentiation of (23) leads to determination of the velocity and
accel eration components of point H:

X =—468.75(4t* — 4t° +t*) ,
(24) y =811.875(4t% - 4t° + %),
7=-225(4t" — 4t + t7) ,
X =-1875(2t —3t* +t°) ,
(25) § =3247.5(2t - 3t* +t°),
2=-900(2t — 3t +t%).
Solution of the inverse problem at parameters |, =1, =500 mm. The input
coordinates ¢,,, ¢,, and their derivatives (the input angle velocities and
accelerations) ¢,,, @,, ¢,,, ¢,, are determined by the equations (8), (9), (15)-

(21), respectively. From equation (8), two solutions of the given problem are found.
At the first solution the initial values of the generalized coordinates are
¢, =-60°and ¢,, =120°, and at the second ¢, , =60° and ¢,, =-120°. The first

solution is preferred due to the closer to the trandation motion of the second link in
the second stage of motion from t =1s to t=2s. Thefunctions ¢, ,, ¢,,, ¢, and
0,11 §y1, §,, arerepresented on the Figs. 2 and 3.

Thedirect problem is utilized for verification of the inverse problem solution,
where the obtained functions ¢,,, ¢,,, ¢, and @,,, @,,, ¢,, are substituted by
the equations (2), (4) and (6). The determined functions x=x(t), y=y(t),
z=12z(t), x=Xx(t), y=y(t), z=2(), X=X(t), y=y(t), Z=2(t) coincidewith the
given (23), (24), (25), which means that the inverse problem solution is correct.
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6. Conclusion

For the control of the SCARA rabot, the inverse kinematic problem is solved for
determination of the angle parameters and their derivatives (angle velocities and
accelerations) in the function of coordinates (trgectory) and their derivatives
(velocities and accelerations) of the characteristic point of the end-effector. So
defined input parameters, verified by solving of the direct kinematic problem are
achieved through control of the gear-motors.

The statement of straightness is proved of the generated trgectory, which is
obtained when the laws of motion x(t), y(t), z(t) of the corresponding axes are
homogenous from the type (21). There are synthesized parabolic laws of the
purpose motion on the coordinate axes, over the basis of normalized power
polynomial, derived from the condition for nullifying of the inertia load, originated
from the end-effector’ s mass.
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(Pesrome)

IlocraBnensl W pemieHbl MpsMas ¥ WHBEPCHAs 3ajadya KHHEMaTHKU. JTH 3a1add
KacaroT ofpeieseHns (pyHKINH, B COOTBETCTBUU C KOTOPBIMHI MEHSIOTCS BXOISIIIHE
napaMeTpbl s yrpasieHus apmwkennem SCARA poGoToB 1o 3alaHHOMY IyTH H
WX TIPOU3BOIHBIX.

CuHTE3UpYIOTCS TapadOIMIecKre 3aKOHBI IBIKEHHS Ha OCHOBE ITOJTYY€HHOTO
HOPMAaJTU3UPAHHOTO TIOJMHOMA 3aJaHHBIX TPACKTOPHI.
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