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1. Introduction 

At the end of the 50s scientists from different countries [25, 18, 35] explored in 
detail evolutionary systems and independently came to the conclusion that they 
could use the theory of evolution as an instrument for optimization in the process of 
solution for problems of different nature with the main goal creating a population of 
eventual solutions using some of the most characteristic peculiarities of nature – 
heredity, changeability, selection and so on. 

Genetic algorithms are a method for search based on the selection of the best 
species in the population in analogy to the theory of evolution of Ch. Darwin [18]. 

Their origin is based on the model of biological evolution and the methods of 
random search. From the bibliographical sources [25, 18, 35, 14] it is evident that 
the random search appeared as a realization of the simplest evolutionary model 
when the random mutations are modeled during random phases of searching the 
optimal solution and the selection is modeled as “removal” of the unfeasible 
versions. 

From the point of view of the information change, the evolutionary search is a 
sequential transformation of a single fuzzy (imprecise) set of some solutions into 
another one. The transform itself can be named a searching algorithm or a Genetic 
Algorithm (GA).The GA is not simply a random search, but an efficient usage of 
information in the evolutionary process [14, 19]. 

The main goal of GA-s is twofold: 
– abstract and formal explanation of the adaptation processes in evolutionary 

systems; 
– modeling natural evolutionary processes for efficient solution of determined 

class of optimization and other problems. 
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During the last years a new paradigm is applied to solve optimization 
problems GA-based and modifications of GA. GA realize searching a balance 
between efficiency and quality of solutions at the expense of selecting the strongest 
alternative solution [19]. 

Usually in the multi-objective optimization problems several criteria (objective 
functions) are optimized simultaneously in a set of feasible alternatives. In the 
general case there does not exist an alternative (solution), which is optimal for all 
the solutions. But there exists a set of alternatives (solutions), characterized by the 
following property: each improvement of the value of one of the criteria leads to the 
deterioration of the value of at least one of the other criteria. A set of alternative 
solutions is obtained, each of the alternatives in this set could be a solution of the 
multiobjective problem. 

The notion of optimality was originally introduced by F. Edgeworth in 1881 
and later generalized by V. Pareto in 1896. It is called Edgeworth-Pareto optimum or 
Pareto optimum, use of this concept almost always gives not a single solution but a 
set of them, which is called the Pareto optimal set. The vectors of the decision 
variables corresponding to the solutions included in the Pareto optimal set are called 
nondominated. The plot of the objective functions whose nondominated vectors are 
in the Pareto optimal set is called the Pareto front [6]. 

The Operations Research community has developed approaches to solve 
MOPs since the 1950s. Currently, a wide variety of mathematical programming 
techniques to solve MOPs are available in the specialized literature. However, 
mathematical programming techniques have certain limitations when tackling 
MOPs. Many of them are susceptible to the shape of the Pareto front and may not 
work when the Pareto front is concave or disconnected. Others require 
differentiability of the objective functions and the constraints. Also, most of them 
only generate a single solution from each run. Thus, several runs (using different 
starting points) are required in order to generate several elements of the Pareto 
optimal set. In contrast, evolutionary algorithms deal simultaneously with a set of 
possible solutions (the so-called population) which allows us to find several 
members of the Pareto optimal set in a single run of the algorithm. Additionally, 
evolutionary algorithms are less susceptible to the shape or continuity of the Pareto 
front (they can easily deal with discontinuous and concave Pareto fronts) [6]. 

2. The first steps in the application of the evolutionary approaches in 
solving Multiobjective Optimization Problems (MOP) 

The initial research of the possible application of the evolutionary approaches in 
solving MOP has appeared in the middle of the 20th century in which, however, no 
actual multi-objective evolutionary algorithm (MOEA) was developed (the multi-
objective problem was restated as a single-objective problem and solved with a 
genetic algorithm). David Schaffer is normally considered to be the first to have 
designed an MOEA during the mid-1980s [40]. Schaffer's approach, called Vector 
Evaluated Genetic Algorithm (VEGA) consists of a simple genetic algorithm with a 
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modified selection mechanism. At each generation, a number of sub-populations 
were generated by performing proportional selection according to each objective 
function in turn. These sub-populations would then be shuffled together to obtain a 
new population, on which the GA would apply the crossover and mutation 
operators in the usual way. VEGA had a number of problems, from which the main 
one had to do with its inability to retain solutions with acceptable performance, 
perhaps above average, but not outstanding for any of the objective functions. 
These solutions were perhaps good candidates for becoming nondominated 
solutions, but could not survive under the selection scheme of this approach. 

After VEGA, researchers adopted for several years other naive approaches. 
The most popular were the linear aggregating functions, which consist in adding all 
the objective functions into a single value which is directly adopted as the fitness of 
an evolutionary algorithm [13]. Lexicographic ordering was another interesting 
choice. In this case, a single objective (which is considered the most important) is 
chosen and optimized without considering any of the others. Then, the second 
objective is optimized but without decreasing the quality of the solution obtained 
for the first objective. This process is repeated for all the remaining objectives [17]. 

Despite all these early efforts, the direct incorporation of the concept of Pareto 
optimality into an evolutionary algorithm was first hinted by David E. Goldberg in 
his seminal book on genetic algorithms [18]. While criticizing Schaffer's VEGA, 
Goldberg suggested the use of nondominated ranking and selection to move a 
population toward the Pareto front in a multi-objective optimization problem. The 
basic idea is to find the set of solutions in the population that are Pareto 
nondominated by the rest of the population. These solutions are then assigned the 
highest rank and eliminated from further contention. Another set of Pareto 
nondominated solutions is determined from the remaining population and are 
assigned the next highest rank. This process continues until all the population is 
suitably ranked. Goldberg also suggested the use of some kind of niching technique 
to keep the GA from converging to a single point on the front. 

3. The enhancement of the research in the last decade of the 20th 
century 

Goldberg does not provide a real execution of his procedures in multi-objective 
optimization (MOP), but in fact all the variants of this algorithm, later developed, 
are on the basis of his theory and are influenced by them. 

3.1. Genetic algorithm of Srinivas and Deb 

This algorithm is suggested by S r i n i v a s  and  D e b [42] and it is known as 
Nondominated Sorting Genetic Algorithm (NSGA). The NSGA is based on several 
layers of classifications of the individuals as suggested by G o l d b e r g [18]. 
Before selection is performed, the population is ranked on the basis of 
nondomination: all nondominated individuals are classified into one category (with 
a dummy fitness value, which is proportional to the population size, to provide an 
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equal reproductive potential for these individuals). To maintain the diversity of the 
population, these classified individuals are shared with their dummy fitness values. 
Then this group of classified individuals is ignored and another layer of 
nondominated individuals is considered. The process continues until all individuals 
in the population are classified. Since individuals in the first front have the 
maximum fitness value, they always get more copies than the rest of the population. 
The algorithm of the NSGA is not very efficient, because Pareto ranking has to be 
repeated over an over again. 

3.2. Genetic algorithm of Horn, Natpliotis and Goldberg 

This algorithm is suggested in [26] and it is known as Niched-Pareto Genetic 
Algorithm (NPGA). The NPGA uses a tournament selection scheme based on 
Pareto dominance. The basic idea of the algorithm is: two individuals are randomly 
chosen and compared against a subset from the entire population (typically, around 
10% of the population). If one of them is dominated (by the individuals randomly 
chosen from the population) and the other is not, then the nondominated individual 
wins. All the other situations are considered a tie (i.e., both competitors are either 
dominated or nondominated). When there is a tie, the result of the tournament is 
decided through fitness sharing. 

3.3. Genetic algorithm of Fonseca and Fleming 

This algorithm is suggested in [15] and it is known as Multi-Objective Genetic 
Algorithm (MOGA). In MOGA, the rank of a certain individual corresponds to the 
number of chromosomes in the current population by which it is dominated. All 
nondominated individuals are assigned the highest possible fitness value (all of 
them get the same fitness, such that they can be sampled at the same rate), while 
dominated ones are penalized according to the population density of the 
corresponding region to which they belong (i.e., fitness sharing is used to verify 
how crowded is the region surrounding each individual). 

3.4. Investigations of Tanaka 

Tanaka  has developed the first scheme to incorporate user’s preferences into an 
MOEA [43]. In real-world applications it is normally the case that the user does not 
need the entire Pareto optimal set, but only a small portion of it. Normally the user 
can define certain preferences that can narrow the search and that can magnify 
certain portions of the Pareto front. 

3.5. Comparative analysis 

Making comparative analysis of the algorithms, above pointed, it is established with 
no doubt, that MOGA is excelling, followed by NPGA and NSGA. 

The main conclusion about the implementations of this generation of GA is, 
that in order to be successful, one MOEA, a good mechanism has to be combined 
for the selection of the nondominated species, with a good mechanism for variety 
support, which will enable the generation of MOEA. 
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4. The new studies for MOEA – variety of measures for realization 
quality, enabling quantitotive comparison 

The wide development of MOEA in the recent years has begun after the works of   
E.  Z i t z l e r  and  L. T h i e l e  [46], due to it the elitism has become a standard 
mechanism in the development in this direction. In the context of multi-objective 
optimization, elitism usually (although not necessarily) refers to the use of an 
external population (also called secondary population) to retain the nondominated 
individuals found along the evolutionary process. The main motivation for this 
mechanism is the fact that a solution that is nondominated with respect to its current 
population is not necessarily nondominated with respect to all the populations that 
are produced by an evolutionary algorithm. Thus, what we need is a way of 
guaranteeing that the solutions that we will report to the user are nondominated with 
respect to every other solution that our algorithm has produced. Therefore, the most 
intuitive way of doing this is by storing in an external memory (or archive) all the 
nondominated solutions found. If a solution that wishes to enter the archive is 
dominated by its contents, then it is not allowed to enter. Conversely, if a solution 
dominates anyone stored in the file, the dominated solution must be deleted. 

After the offered by Zitzler theory, most of researchers began to started to 
incorporate external populations in their MOEAs and the use of this mechanism (or 
an alternative form of elitism) became a common practice. In fact, the use of elitism 
is a theoretical requirement in order to guarantee convergence of an MOEA and 
therefore its importance. 

Further on the exposition we shall make an attempt to discuss some of the new 
MOEA suggested, which have been implemented in the last years. 

4.1. Algorithm of Zitzler and Thiele 

This algorithm is known as Strength Pareto Evolutionary Algorithm (SPEA) and 
was introduced in [46]. This approach was conceived as a way of integrating 
different MOEAs. SPEA uses an archive containing nondominated solutions previ-
ously found (the so-called external nondominated set). At each generation, 
nondominated individuals are copied to the external nondominated set. For each 
individual in this external set, a strength value is computed. This strength is similar 
to the ranking value of MOGA [15], since it is proportional to the number of 
solutions to which a certain individual dominates. In SPEA, the fitness of each 
member of the current population is computed according to the strengths of all 
external nondominated solutions that dominate it. The fitness assignment process of 
SPEA considers both closeness to the true Pareto front and even distribution of 
solutions at the same time. Thus, instead of using niches based on distance, Pareto 
dominance is used to ensure that the solutions are properly distributed along the 
Pareto front. Although this approach does not require a niche radius, its 
effectiveness relies on the size of the external nondominated set. In fact, since the 
external nondominated set participates in the selection process of SPEA, if its size 
grows too large, it might reduce the selection pressure, thus slowing down the 
search. Because of this, the authors decided to adopt a technique that primes the 
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contents of the external nondominated set so that its size remains below a certain 
threshold. 

4.2. Second algorithm of Zitzler and Thiele 

This algorithm is known as Strength Pareto Evolutionary Algorithm 2 (SPEA2) [33, 
45] has three main differences with respect to its predecessor: 

(1) it incorporates a fine-grained fitness assignment strategy which takes into 
account for each individual the number of individuals that dominate it and the 
number of individuals by which it is dominated; 

(2) it uses a nearest neighbor density estimation technique which guides the 
search more efficiently; 

(3) it has an enhanced archive truncation method that guarantees the 
preservation of boundary solutions. 

4.3. Algorithm of Knowles and Corne 

This algorithm is known as Pareto Archived Evolution Strategy (PAES) is 
introduced in [31]. PAES consists of a 1+1 evolution strategy (i.e., a single parent 
that generates a single offspring) in combination with a historical archive that 
records the nondominated solutions previously found. This archive is used as a 
reference set against which each mutated individual is being compared. Such a 
historical archive is the elitist mechanism adopted in PAES. Special feature of this 
algorithm is the procedure used to maintain diversity which consists of a crowding 
procedure that divides objective space in a recursive manner. Each solution is 
placed in a certain grid location based on the values of its objectives (which are 
used as its “coordinates” or “geographical location”). A map of such grid is 
maintained, indicating the number of solutions that reside in each grid location. 
Since the procedure is adaptive, no extra parameters are required (except for the 
number of divisions of the objective space). This adaptive grid (or variations of it) 
has been adopted by several modern MOEAs [3]. 

4.4. Algorithm of Deb and Agarwal 

This algorithm is knon as Nondominated Sorting Genetic Algorithm II (NSGA-II) 
is introduced in [10] as an improved version of the NSGA [42]. In the NSGA-II. for 
each solution one has to determine how many solutions dominate it and the set of 
solutions to which it dominates.The NSGA-II estimates the density of solutions 
surrounding a particular solution in the population by computing the average 
distance of two points on either side of this point along each of the objectives of the 
problem. This value is the so-called crowding distance. During selection, the 
NSGA-II uses a crowded-comparison operator which takes into consideration both 
the nondomination rank of an individual in the population and its crowding distance 
(i.e., nondominated solutions are preferred over dominated solutions, but between 
two solutions with the same nondomination rank, the one that resides in the less 
crowded region is preferred). The NSGA-II does not use an external memory. 
Instead, the elitist mechanism of the NSGA-II consists of combining the best 
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parents with the best offspring obtained (i.e., a ( λµ + )-selection). Its mechanism is 
better. 

4.5. Some other algorithms 

Due to the enhancement of the research in this area, the algorithms, pointed in 
Section 4 are just a small part of those, offered in different references. We shall 
mention some other interesting developments: 

– algorithm of C o e l l o and P u l i d o [3]– a micro-genetic algorithm is 
proposed for multi-objective optimization (MOMGA). The basis of this algorithm is 
a variant of adaptive grid, described in PAES, using one parent in combination with 
historical archive, which records the earlier found nondominated solutions. 

– algorithm of C o r n e  and al. [8] – PESA2 – an improved variant of PAES. 
– The use of alternative bio-inspired heuristics for multi-objective optimization 

[7]. The most remarkable examples are particle swarm optimization and differential 
evolution [36], whose use has become increasingly popular in multi-objective 
optimization [1, 4]. However, other bio-inspired algorithms such as artificial 
immune systems and ant colony optimization have also been used to solve multi-
objective optimization problems [2, 23] 

5. Application domains 

The advance in the research of MOEA ensures them their widening application. In 
order to give a general fancy for the type of applications, they could be classified in 
four main directions [5]: science, engineering, industry and various other directions 
(miscellaneous applications). Some specific areas inside any of these directions are 
discussed below. 

– Engineering applications [5, 14, 20, 22] – electrical, hydraulic, structural, 
aeronautical, robotics and control and all. 

– Industrial applications [5, 29, 36, 37] – design, manufacture, scheduling, 
management and all. 

– Scientific applications [5, 21, 27, 32, 34, 39]– of chemical, analysis of 
spectroscopy, medical image reconstruction [32], computer aided diagnosis, 
machine-learning in high-dimensional data, the analysis of promoters in biological 
sequences in the problem to deal with [37] and all. 

– Miscellaneous applications [5, 43, 41, 24] – problem of attribute selection in 
data mining, decisions support system, finance, optimization a forecast model, 
forest management and all. 

The strong interest for MOEA in so many different disciplines reinforces the 
idea that there will be new possibilities for solving still more real-life problems. 
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6. Conclusions 

After the attempt for a short survey it could be noted, that the scientific research in 
the area considered are directed towards different aspects, but one of the major 
aspects is the efficiency, which is regarded at algorithmic level and at data structure 
level [28, 30]. A variety of measures for implementation quality are suggested, it 
allow a quantitative (rather than only qualitative), comparison of results [44, 16, 
46]. Z i t z l e r  et al. [44] stated that, when assessing performance of an MOEA, 
one was interested in measuring three things: 

– Maximize the number of elements of the Pareto optimal set found. 
– Minimize the distance of the Pareto front produced by algorithm with 

respect to the global Pareto front (assuming we know its location). 
– Maximize the spread of solutions found, so that we can have a distribution of 

vectors as smooth and uniform as possible. 
Concurrently with the research on performance measures, other researchers 

were designing test functions. K. Deb proposed a methodology to design MOPs that 
is widely used [9]. Later on, an alternative set of test functions was proposed, but 
this time, due to their characteristics, no enumerative process was required to 
generate their true Pareto front [11, 12]. These test functions are also scalable, their 
use has become spread. Researchers in the field normally validate their MOEAs 
with problems having three or more objective functions, and 10 or more decision 
variables. 

 
Type of publications 

Fig. 1  

For the enhancing development of the scientific investigations in thus direction 
(MOEA) the basic proof is the continuously increasing number of references and 
applications in the last ten years. In a paper of his Coello [7] represents approximate 
graphics of the publications according their type. Fig. 1 represents the distribution 
of the publications, depending on the issue: 1 – journal papers, 2 – books, 3 – book 
chapters, 4 – conference papers, 5 – master’s theses, 6 – Ph.D. theses, 7 –  technical 
reports. Fig. 2 gives the distribution in years. 
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(Р е з ю м е) 
В работе обсуждается развитие эволюционных подходов и генетических 
методов при решении задач многокритериальной оптимизации. 
Представленны некоторые из самых фундаментальных алгоритмов последных 
десятилетий. Показаны также и направления, связаны с использованием 
многокритериальных эволюционных алгоритмов и их применения. Показано 
развитие научных исследований в этой области в последных годах. 


