
7 8

The Impact of Compiling a LINUX Kernel with INTEL
C/C++ Compiler on Computer Clusters Used by Science

Kalin Lilovski1, Nikolay Dokev1,2

1 Institute of Information Technologies, 1113 Sofia
2 New Bulgarian University, Sofia
Emails: kalin@cc.bas.bg n.dokev@nbu.bg

1. Inroduction

Intel C/C++ compiler for Linux gives the application developers access to the advanced
architecture of Intel Pentium 4 and Intel Xeon processors as well as to Intel Itanium
processor family. It is a highly optimizing compiler that generates application code
which generally supersedes in performance the one generated by GNU GCC. Intel
provides non-commercial license, meaning that anyone can download and use the full
compiler for non-profit work. Because of its efficiency and liberal license policy, the
Intel C/C++ compiler for Linux is often preferred by science for compiling applications
that perform heavy computational tasks.

Optimizing the very application is only one of the aspects of achieving high
performance. The others refer to the operating system and the hardware. The core of
the operating system is its kernel. It is responsible for handling the basic functions of
the OS, such as memory management, process and task management, disks and file
system management, network communication, etc. Obviously, kernel efficiency is crucial
for the overall performance. A suitable hardware solution on the other hand may be a
Symmetric Multi-Processing system. Unfortunately such systems are quite expensive
and offer no scalability. That is why clusters of inter-connected computers built on
commodity hardware are becoming more and more popular.

2. Patching the kernel

The GNU Compiler Collection is a full-featured ANSI C compiler that in addition
includes several non-standard features. Intel C/C++ compiler supports the ANSI C and
C++ standards and some but not all of GNU C language extensions [4]. So compiling
the kernel with ICC requires a set of patches to be applied.

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ  BULGARIAN ACADEMY OF SCIENCES

ПРОБЛЕМИ НА ТЕХНИЧЕСКАТА КИБЕРНЕТИКА И РОБОТИКАТА, 56
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 56

София  2006  Sofia

7 9

One of the most popular Linux distributions used by science was RedHat. For
example the EGEE (Enabling Grids for E-sciencE) project, in which some institutes
from the Bulgarian Academy of Sciences participate, was entirely based on RedHat
7.3. In 2003, Red Hat Inc. announced that Redhat 9 was to be their last release of an
operating system that would be freely downloadable in a binary form. Nevertheless,
the sources of Redhat Enterprise Linux were available, and it was possible to compile
distribution from them. So did Fermilab, CERN, and various other labs and universities
around the world who united their efforts in creating Scientific Linux distribution that
is binary compatible to RedHat Enterprise with only a few minor additions or changes.
Scientific Linux was well accepted by the scientific community and became the new
base of the EGEE project. So we decided to concentrate our efforts in patching the
RedHat Enterprise Kernel.

RedHat Enterprise Linux uses its own kernel. It is primarily based on a 2.4.21
kernel, but it has a huge number of features backported from the more recent 2.6
kernel. There were some attempts in the past for compiling the 2.4 kernel with icc [1]
and patches for some early versions of 2.6 kernel [2, 3]. Unfortunately none of them
was completely applicable in the current RedHat Enterprise kernel version that was
2.4.21-27.EL and we had to develop a patch of our own that proved to be not easy but
attainable. That process evolves editing of some parts of the kernel that contain GCC
extensions and interpreting them with a standard C/C++ code. After the patch was
successfully done, the next step was to evaluate the performance.

3. Measuring system performance

Tests were performed on:
CPU: Intel(R) Pentium(R) 4
Cpu MHz: 2800
Cache size: 512 kB,
MB: MSI chipset: Intel Corp. 82845 845
MemTotal: 512 MB
HDD: 160 GB ExcelStor Technology J680
NIC 100 Mbit/s Realtek Semiconductor RTL-8139
Software:
OS: Scientific Linux SL Release 3.0.3 (SL)
GCC: gcc version 3.2.3 (Red Hat Linux 3.2.3-42)
ICC: Intel(R) C++ Compiler 8.1 for Linux
Both kernels are compiled with

–march=pentium4
and maximum level of optimization – O2.

System performance is measured using the LMBench utility from BitMover that
is a free software program covered by GNU General Public License.

8 0

3.1. Processes
We measured the processes performance when making program calls and handling
signals as well as the time that it takes to create a basic thread of control.

3.1.1. Program calls
The null call is the most basic call a program can make. This benchmark measures
how long it takes for the getppid () function to return the process ID of the parent of
the current process. Since the null call is very basic, it is an important indicator of
kernel performance.

The null I/O benchmark measures the average of times for a one-byte read
from /dev/zero and a one-byte write to /dev/null.

The Stat call (“stat()”) is a call that programs usually make whenever a file’s
metadata is accessed. Stat returns information about the file including the access
permissions for the file, the date the file was created, last modified, and last accessed.
Stat speed depends on the speed of the CPU and the kernel’s efficiency, as well as on
the speed of the hard drive as well.

Open/close call measures how long it takes to open () and then close() a file.

3.1.2. Signal handling cost
It measures signal handling by installing a signal handler and then repeatedly sending
itself the signal. Note that there are no context switches in this benchmark; the signal
goes to the same process that generated the signal:

sig inst measures the time to catch signals;
sig hndl measures the time to handle signals.

3.1.3. Process creation
Process creation test creates processes in three different forms, each one more
expensive than the last. The purpose is to measure the time that it takes to create a
basic thread of control.

The fork proc benchmark measures the time that it takes to split a process into
two identical copies and have one exit.

The exec proc benchmark measures the time that it takes to create a new
process and have that new process run a new program which forms the basis of
every UNIX command line interface or shell. In this case – a tiny program that prints
“hello world” and exits.

The sh proc benchmark measures the time that it takes to create a new process
and have that new process run a new program by asking the system shell to find that
program and run it. In other words, the shell uses the user’s $PATH variable as a list
of places to find the application. It is the most general and the most expensive.

 Table 1. Processes times in s) the smaller is better

Kernel Program calls Signal
handling Process creation

OS null
call

null
I/O stat open

clos
sig
inst

sig
hndl.

fork
proc

exec
proc

sh
proc

GCC 0.39 0.43 1.56 2.11 0.67 2.34 110. 434. 1923
ICC 0.39 0.43 1.36 1.89 0.67 2.16 108. 426. 1932

8 1

3.2. Basic Integer/ Float/Double operations

Measures the latency of basic CPU operations. Results are reported as the average
operation latency divided by the minimum average latency across all levels of
parallelism. This benchmark showed no difference in performance.

Table 2. Basic integer, float and double operations times in ns)

3.3. Local communications

Local communication benchmark includes inter-process communication latencies, inter-
process communication bandwidth and memory performance

3.3.1. Inter-Process Communication Latency
Passing a small message (a byte or a word) back and forth between two processes.
No other work is done in the processes. This sort of benchmark is frequently referred
to as a “hot potato” benchmark.. The time reported is one round trip.

Pipe benchmark passes a token back and forth between the two processes.
AF UNIX measures inter-process connection latency via UNIX sockets.
TCP measures inter-process communication latency via TCP/IP.
TCP conn benchmark times the creation of an AF_INET (aka TCP/IP) socket

to a remote server.
Table 3. Local Communication latencies (in s) the smaller is better

3.3.2. Inter-Process Communication Bandwidth

Pipe creates an UNIX pipe between two processes and moves 50MB through
the pipe in 64KB chunks.

AF UNIX creates a pipe and forks a child process which keeps writing data to
the pipe as fast as it can. The benchmark measures how fast the parent process can
read the data from the pipe. Nothing is done with the data in either the parent (reader)
or the child (writer) processes.

TCP time data movement through TCP/IP sockets. It is a client/server program
that moves data over a TCP/IP socket. Nothing is done with the data on either side.

Table 4. Local Communication bandwidths in MBps – the bigger is better

OS Pipe AF
Unix

TCP TCP
conn

GCC 4.459 7.29 11.5 34.
ICC 4.289 6.82 11.0 32.4

OS Pipe AF Unix TCP
GCC 1498 2703 639
ICC 1480 2568 600

6 Problems of Engineering Cybernetics and Robotics, 56

Variable Bit Add Mul Div Mod

Integer 0.1800 0.1800 5.0400 20.7 23.1

Float 1.7900 2.5000 15.5

Double 1.7900 2.5000 15.5

8 2

3.3.3. Cached file read
File Reread measures the time of reading and summing of a file. It times the reading
of the specified file in 64KB blocks. Each block is summed up as series of 4 byte
integers in an unrolled loop. Results are reported in megabytes read per second. The
benchmark is intended to be used on a file that is in memory, i.e., the benchmark is a
reread benchmark.

Mmap Reread measures the time of reading and summing of a file.
bw_mmap_rd creates a memory mapping to the file and then reads the mapping in an
unrolled loop. The benchmark is intended to be used on a file that is in memory, i.e.,
the benchmark is a reread benchmark.

3.3.4. Memory Bandwidths
Allocates twice the specified amount of memory, zeroes it, and then times the copying
of the first half to the second half. Results are reported in megabytes moved per
second.

Memory copy
Measures how fast the system can bcopy data. Bcopy copies n bytes from a

string source to string destination.
An 8 MB to 8 MB copy does not fit in the cache Kernel bcopy and C library

bcopy.
Memory read/write
Read: Measures the time to read data into the processor. An unrolled loop that

sums up a series of integers.
Write: Measures the time to write data to memory. An unrolled loop that stores a

value into an integer.
Table 5. Local Memory Communication bandwidths in MBps  the bigger is better

3.4. Context switching

The processes are connected in a ring of UNIX pipes. Each process reads a token
from its pipe, possibly does some work, and then writes the token to the next process.
Context-switch time doesn’t include the overhead of doing the work.

Table 6. Context switching times in s)the smaller is better

Processes may vary in number. Smaller numbers of processes result in faster
context switches. Processes may vary in size. A size of zero is the baseline process

Kernel File
Reread

Mmap
reread

Bcopy
(libc)

Bcopy
(hand)

Mem
read

Mem
write

GCC 1462.6 1861.6 450.0 471.9 1865 668.3
ICC 1448.3 1861.4 454.9 479.3 1864 659.2

Procs 2 4 8 16 24
GCC 0k 0.94 1.38 1.35 1.46 1.49
ICC 0k 0.98 1.33 1.40 1.34 1.48
GCC 4k 1.17 1.77 1.78 1.85 2.38
ICC 4k 1.19 1.79 1.83 2.03 2.63
GCC 8k 1.17 1.66 1.69 2.23 4.26
ICC 8k 1.26 1.74 2.19 2.70 3.71

8 3

that does nothing except pass the token on to the next process. A process size greater
than zero means that the process is doing some work before passing on the token. The
work is simulated as the summing up of an array of a specified size. The summing is
an unrolled loop of about 2.7 thousand instructions.

3.5. File system
File Create Delete creates a number of small files in the current working directory
and then removes the files. Both the creation and removal of files is timed.

Mmap latency benchmark maps in and unmaps the first size bytes of the file
repeatedly and reports the average time for one mapping/unmapping.

Prot Fault measures the time to catch a protection fault.
Page fault measures the cost of page-faulting pages from a file. The output is

the average cost of page – faulting a page.
100 fd selct measures the time to do a selection on n file descriptors. In the

summary, the result of 100 file descriptors is shown.
Table 7. File & VM system latencies in s  the smaller is better

3.6. Memory latencies
Measures memory read latency for varying memory sizes and strides.

The entire memory hierarchy is measured, including onboard cache latency and
size, external cache latency and size, main memory latency, and TLB miss latency.

Only data accesses are measured; the instruction cache is not measured.
The size of the array varies from 512 bytes to (typically) eight megabytes. For

the small sizes, the cache will have an effect, and the loads will be much faster. This
becomes much more apparent when the data is plotted.

Table 8. Memory latencies in ns  the smaller is better

4. Measuring network performance

Network performance test was done between two directly connected nodes. As
MPICH is the standard communication library used by clusters, we measured throughput
and latency of each package using MPPTEST tool included in MPICH distribution.
MPPTEST performs point to point communications that is basically the classic ping-
pong test of messages with different size, repeated several times. Network latency
was evaluated by repeating 4 times a sequence of round trip messages from 0 up to 64
bytes with increment of 4 bytes (mpirun –np 2 mpptest –reps 4 –size 0 64 4) and
throughput by messages from 0 up to 16000 bytes with increment of 4 bytes (mpirun
–np 2 mpptest –reps 4 –size 0 16 000 1000).

0K File 10K File OS Create Delete Create Delete
Mmap
Latency

Prot
Fault

Page
Fault

100fd
selct

GCC 7.4734 3.5432 39.2 189.7 2582.0 0.684 1.69660 3.068
ICC 4.7612 3.2211 34.6 162.4 2582.0 0.770 1.68510 2.475

OS L1 $ L2 $ Main
mem

Rand
mem

GCC 0.7150 6.5490 94.0 152.7
ICC 0.7150 6.5480 93.8 164.1

8 4

Table 9. MPI Network latencies (time in s)

Table 10. MPI Network Bandwidth in s (Mbps)

5. Conclusion

Compiling the 2.4.21-27.EL kernel with Intel C/C++ Compiler provides improvement in
some, but not all system characteristics. Basic numerical operations are not effected.
In context switching benchmark the kernel compiled with GCC supersedes the one
compiled with ICC in many tests with less than 24 processes. Program calls, signal
handling and process creation (except sh) are unaffected or improved. There is slight
improvement in local communication latencies and slight deterioration in local
communication bandwidths. The file system shows the most noticeable performance
boost. The network performance improvement in network communication trough MPI
is also sustainable and shows improvement in both latency and bandwidth. We mustkeep
in mind that benchmark programs are giving only a general picture and for some
specific applications there still might be some noticeable changes in performance.

Bytes GCC ICC

0 36.390 36.210
4 36.830 36.610
8 37.140 36.910
12 37.550 37.360
16 37.900 37.740
20 38.260 38.050
24 38.570 38.400
28 38.990 38.790
32 39.360 39.210
36 39.710 39.550
40 40.050 39.840
44 40.480 40.350
48 40.970 40.830
52 41.420 41.210
56 41.700 41.500
60 42.190 42.020
64 42.630 42.500

Bytes GCC ICC
0 0.000 0.000

1000 7.862 7.872
2000 9.128 9.128
3000 9.982 9.986
4000 10.447 10.447
5000 10.512 10.515
6000 10.900 10.900
7000 10.943 10.943
8000 10.919 10.921
9000 11.161 11.165
10000 11.152 11.152
11000 11.113 11.115
12000 11.271 11.274
13000 11.181 11.186
14000 11.232 11.236
15000 11.351 11.351
16000 11.315 11.315

8 5

R e f e r e n c e s

1. O o k u b o, K a t u h i k o. The Linux Kernel Build and Performance Evaluation with the Intel C++

Compiler. – In: 49th Linux Seminar (2003/08/01), Linux Network Japan.
http://www.linet.gr.jp/lswg/contents/index.html
http://www.suri.co.jp/~ohkubo-k/linux/icclinux.pdf

2. White Paper: Kubbilun Ingo A. Compiling the LINUX Kernel 2.6 Using INTEL® C/C++ COMPILER
for LINUX 8.0. Version 0.2, 06/18/2004.
http://www.pyrillion.org/downloads/icckernpatch.pdf

3. K u b b i l u n, I n g o, A. Compiling the LINUX Kernel with the Intel Compiler. – LINUX Magazine,
Issue 45, August 2004.
http://www.linux-magazine.com/issue/45/Intel_C_Compiler.pdf

4. White Paper. John O’Neill, Software Products Division Intel Corporation “Intel® Compilers for
Linux. Compatibility with GNU Compilers”.

5. D i d e m, U n a t. Performance Analysis of Supercomputers in NCSA with LMbench.
http://netfiles.uiuc.edu/dunat2/www

Влияние компиляции ядра LINUX при помощи INTEL C/C++ компилятора
на компьютерные кластеры, применяемые в науке

Калин Лиловски 1, Николай Докев1,2

1 Институт информационных технологий, 1113 София
2 Нов Болгарский университет, София
E-mails: kalin@cc.bas.bg , n.dokev@nbu.bg

(Р е з ю м е)

Компилятор Intel C/C++ для LINUX (ICC) производит высокоэффективный код,
который оптимизиран для процессорной фамилии Intel. Во многих случаях
улучшение поведения применений, компилированных при помощи ICC,
значительно. Возможно модифицировать LINUX ядро так, что компилировать
его при помощи ICC. Если такое ядро может заменить построенное при помощи
GNU Compiler Collection (GCC), это будет важно для компьютерных систем,
которые испитывают значительную вычислительную и сетевую нагрузку при
использовании компьютерных кластеров, выполняющих научные вычисления.
Работа сравнивает поведение RedHat Enterprise LINUX ядра, используемого в
Scientific LINUX распределении, компилированного при помощи GCC и ICC тоже,
учитывая поведение системы и сети в кластерной среде.

