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1. Introduction

Redundant robot-manipulators are considered in the paper. Their orientation capabilities
are analyzed, following two approaches.

The first one is based on the sensibility theory and the orientation factor-group.
In the most arbitrary case the position and orientation states are realized by a subset
of six active drives. The approach treats the question how any of these subsets have
to be chosen to maintain the needed state of the robot in the sense of accuracy according
to the sensibility criterion (realization of needed orientation for instance). The criterion
itself shows what kind of sensibility characteristics the system must reveal following a
task of execution.

The second approach for evaluation of robot orientation capabilities is based on
Riemann measure. A manifold which is hyper-surface in R9 is considered. It contains
all 33 transformation matrices between the two bases fixed on the robot origin and
end-effector, i.e. it describes all possible orientations of end-effector with respect to
the support. Considering all the tangent vectors of this hyper-surface, we determine
the Riemann measure and its surface. And we can make comparison between the
orientation capabilities of different manipulative structures, taking into account the
calculated area realized by the considered structure on this surface. The larger the
calculated area, the better the orientation capabilities. Two examples are given in the
paper.

The aim of the first approach is to find out what subset of drives has to be chosen
to realise the vectors of the kernel of the homomorphism for orientation. This subset
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does not affect the position state and the orientation could be changed without changing
the reached position. This is useful for errors correction and control laws developing
for accurate control.

The aim of the second approach evaluating the orientation capabilities by Riemann
measure is to choose that one between different structures, which realizes better the
corresponding motion of solid body with fixed point.

2. Theoretical background

The purpose of the work is: Description of orientation capability of redundant robots
and evaluation of redundancy influence.

Let us consider a robot-manipulator with n degrees of freedom. Every specific
state can be realised by a set of n parameters (q1, ..., qn), i.e., a vector qnRn, which
usually belongs to some set Q, called configurational robot space. In part, when we
have a tree-like manipulative structure with five class kinematics joints, then joint
parameters could be chosen as generalised coordinates. Every change of qn reflects
to some specific robot state in Z  R3  –  its working zone. The last can be described
as a homomorphism between linear spaces Rn and R3  because the elements of Q and
Z are vectors. That homomorphism by definition is called kinematics sensibility
[4, 7, 9]. More precisely, it transforms the vectors from the configurational space into
a field in the working zone called sensibility ellipsoid. It is also shown [7, 8] that the
ellipsoid’s semi-axes’ lengths are the sensibility coefficients. In that sensibility field
(ellipsoid) robot errors are distributed in random way [2, 8].

Due to different reasons – inexactness in drives, errors in generalised coordinates
execution, compliance, errors in calculations, errors in the sensor system etc., some
deviations from the theoretical position and orientation appear which are described by
the vectors R and   [8, 9]. This motion deviation of the real object is expressed by
some small deviations of the generalised coordinates with respect to the coordinates
of a free-way chosen characteristic point on the last structure body. The deviations
from the needed orientation are described by the expression:
(1)   = L(q)q.

For each configuration q the matrix L(q) from (1) defines a homomorphism r
between the configuration space Q and the working zone Z. The image of r is the
sensibility ellipsoid in the case of orientation and the kernel is its orthogonal completing.
As the dimension of Q depends on qs, i.e. – the generalised coordinates number, the
redundancy in the system leads to kernel dimension increasing (the image dimension
is not greater than 3 where the robot moves).

3. Factor-group description and mechanical interpretation

Each kinematics chain generates specific homomorphism by the operator L(q) from
(1). It is natural that the opposite question arises – if the homomorphism is given then
how to construct corresponding chain and how to choose the configuration vectors
realising that homomorphism. But for that reason it is necessary to know the possible
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homomorphism number in dependence of the generalised coordinates number. To
answer this question some elements of the group theory are introduced below.

It is known [1] that a set of elements forms a group if an associative operation is
defined inside between the elements, and its result belongs also to that set. There the
neutral element exists, which means the inverse operation is defined as well. Moreover,
if the operation is commutative one, the group is Abelian group. An example for infinite
Abelian groups is a linear space considered over an arbitrary field. Under some
conditions the homomorphisms between two linear spaces could be interpreted as
transformations between groups.

On the other hand, when the considerations are related with real robot-
manipulators (in the sense of comparing them with the theoretical models), several
restrictions have to be taken into account. For instance, it is clear the real robot-
manipulator can not realise completely all the linear space as configurational one but
only some part of it. The same can be said about its working zone. But a limited subset
of the given linear space, taken under consideration, could change its features as a
group concerning the vector addition operation, which is defined in all the linear space.
It is enough to mention just one example – if a non-zero vector belonging to a limited
subset of vectors (the restriction concerns only the vector length) is added to itself n
times, then exists some number n0, so that the result will exceed the preliminarily
considered length. The last means this vector will not belong to the set having vectors
whose length is smaller than the fixed value.

Let us consider an n-dimensional linear space Rn over the field of real numbers.
Its elements are the vectors q, and for them the standard operation addition is defined,
and the neutral element here is the zero vector. Let by qp a fixed vector is denoted,

and by pQ


  a set of vectors 
s

q , which difference from qp is not greater by length
than a preliminarily given number , i. е.

(2)   



pss

p qqqQ : .

This set is an n-dimensional sphere with a radius . If we introduce the notation

pss
qqq   , then we can write pQ


 in the form

(3)        



ss

p qqQ : .

In the set np RQ 


 the following operation is defined, called an -addition, in the

following manner. For each two vectors 


 q  and 


 q :

(4)   













.if
2
1)(

2
1

,if


































 qqqq

qqqq
qq

Then the set pQ


 is a group with respect to the introduced operation, i.е. in the first
case it can be seen easily that the result 


 q  belongs to pQ


, but in the second one

using the triangle inequality it can be written
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(5)    















2
1

2
1

2
1

2
1

2
1

2
1 qqqqq ,

i.е. the obtained result is also an element from pQ


. The role of a neutral element in
pQ


 is played by the zero vector, i. е. a neutral element in Rn, and every non-zero
vector 


q  has an inverse element, the vector 


q , for which it is shown it belongs

to pQ


, i.е.

(6)         .1  








 qqq

Taking into account the definition about a group operation in pQ


, it is not difficult

to see it is commutative, i. е. pQ


 is Abelian group. Analogously the group kH RE 


 is
defined, where the dimension of the k-dimensional linear space is not greater than

three (everywhere k < n). But the elements of HE


 and pQ


 are vectors, i. е. they are
elements from the corresponding linear spaces, so for that reason there exists orthogonal
bases inside these sets which dimension is equal of that of the linear space. Then the

following homomorphism could be considered between pQ


 and HE


, which makes

correspondence between k basic vectors from pQ


 and  k basic vectors from HE


,

and the remaining n – k vectors from pQ


  correspond to the zero vector in HE


.
According to the definition of a transformation kernel, in that case the kernel Ker
has a dimension n – k. As k < n , the kernel elements could be chosen in

!)!(
!

kkn
n

kn
n

C kn
n 











  different manners, equal to the combinations between  "n"

elements of class  n – k. Telling in another way, there exist k
n

C  homomorphisms

between  pQ


 and HE


 having the above-described features. Besides, it is interesting
to point out that if we calculate the different ways of correspondence of k basic

vectors from pQ


 to k basic vectors from HE


 respectively, i. e. calculating the

combinations 
)!(!

!
knk

n
k
n

C k
n 









 , we obtain the well known equality k

n
kn

n
CC  ,

reached here as a result of mechanical interpretation.
Next, it is known [1], that the kernel of each homomorphism, in part the kernel of

Hp EQ


 : , is a normal divisor (invariant sub-group) of the group pQ


, i. е. the left

and right neighbour classes in the prime factorisation of pQ


 with respect to Ker
coincide. Then the following theorem about homomorphisms holds [1]:
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Theorem. Let a homomorphism of the group
G above the group G'  be given and let  A be the
kernel of that homomorphism. Then the group G'  is
an isomorphic one to the factor-group G/A, and in
the same time there exist such an isomorphic image
 of the first group in the second, that the result of
the composition of transformations  and   (i. е.
the composition  ) coincides with the natural
homomorphism of the group G to the factor-group
G/A.

Let denote by the natural homomorphism of

the group pQ


 to the factor-group 


Ker/pQ . Then
from the theorem it follows that there exists a homomorphism  between the factor-
group and HE


,  which is illustrated by the following scheme

(Fig. 1).
The conclusion can be made that the pre-image of  the sensibility ellipsoid is just

the factor-group of the homomorphism, describing the system sensibility in the generating
element qp. Moreover all the evaluations of the sensibility in the working zone
(considering the ellipsoid form – three-axed, rotational, sphere or their dimensions –
three-, two-dimensional (ellipse) or one-dimensional) can be done only in the
configurational space with the help of the factor-group 


Ker/pQ . We can mention

here that there always exists a single-valued homothetic transformation [1], which
maps every ellipsoid in a sphere with the same dimension as the ellipsoid, i.e. such a
transformation exists between every two ellipsoids. The reason for transforming an
-sphere in an ellipsoid is caused by the linear transformations characteristics where
the multiplication with scalars is defined; in the case of the considered homomorphisms
until now no restriction was put on the length keeping.

Another important conclusion is that here the role of redundancy and its influence
on the system sensibility is clarified. When the number of the generalised coordinates
increase, (the number n) and taking into account the physical restrictions on the number

k, the number of the combinations k
n

C  increases and all the possible homomorphisms
S that can be realised in the generating element qp are given by the expression:

(7)  


3

0k

k
n

CS ,

when n is fixed. Or we can talk about “manifold” and enrich of the sensibility substance
as a quality characteristic in presence of redundancy. The last expression allows making
another evaluation concerning the “degrees” of system sensibility in the point qp in
dependence of the generalised coordinates number. It could be considered as a
sensibility criterion.

Fig. 1. Isomorphism between the
factor-group and the sensibility
ellipsoid

Q
p/Ker 

Q
p E

H 

  

 
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4. Evaluation of orientation possibilities
4.1. Description of the orientation homomorphism and its kernel

Let now a concrete homomorphism be considered. It is derived generally by the matrix
L from (1), i.e. from the Jacoby matrix that depends on each kinematics chain. It is
well known [6] that the matrix L can be written in the form as a block matrix, which
last n – r columns are zeros:

(8) 11

1

111
1

1

111 ~

00......
..................
00......

............
..................

............
 


































 PPP
pp

pp
LPP

ll

ll
L

mrm

r

mnm

n
.

Here n is the generalised coordinates number and r – the rank of considered
homomorphism. Later we can write the following:

(9) qPqPPqLPPLq ~~~ 11   .

The substitution q~  itself consists of linear combinations of generalised coordinates,
i. e. of drives in the kinematics chain. From (8) it is obvious if the first r elements of q~

are zeros then the homomorphism transforms such vectors in zero vector. In other
words it belongs to the homomorphism kernel. Here the question is what subset of
drives has to be chosen to realise the vectors of the kernel. The answer is found in the
linear non-determined homogeneous system
(10) ,...,,1,0~ rsq

s


which fundamental solutions are based on n – r vectors, i.e. on  n – r parameters
[1, 6]. In our case these parameters are system drives. In dependence of the numbers

n and r here can be counted !)!(
!

rrn
n

rn
n

C rn
n 











   combinations of drive subsets

whose do not affect the system orientation. These subsets could be used for another
purposes, for instance to correct position deviations etc. The remaining subsets could
be chosen as active drives for orientation settings. An interesting question arises when
some part of the active drives for position coincide with some “passive” drives for
orientation or vice versa, i.e. the joint coordinates corresponding to active drives for
position belong to the kernel of orientation homomorphism or vice versa [7].

4.2. Description of end-effector orientation by a three-dimensional hypersurface and
evaluation by Riemann measure

The set M(3, R) of all matrices of order 3 forms a linear space R9 with dimension 9,
the coordinates of which are the elements of the matrices. All the matrices of order  3
with determinant 1 belong to a group SL(3, R), O(3) is used for the group of all the
orthogonal matrices of order 3 and SO(3) is the group of all the orthogonal matrices
with order 3 and determinant 1 [11]. The group SO(3) forms a region in R9 which
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could be considered as a hypersurface described by 6 scalar equations
,6...,,2,1,0)...,,,(

921
 ixxxf

i
 where the coordinates in R9 are denoted by xk,

k = 1, 2, ..., 9. Thus, the surface SO(3) has dimension 3 and three local coordinates u,
v and w can be involved around every point for its parametrical description:
xi = xi(u, v, w), i = 1, 2, ..., 9.

The Riemann measure in some region of Rn is defined by the positive quadratic
form given on the tangent vectors at every point in the region. The Riemann measure
in  SO(3) can be written as

(11)  
j

k

k
i

k
ij y

x

y

x
wvug












9

1
),,( ,  i, j = 1, 2, 3,

where (yi, yj) means every combination of pairs of u, v and w. If U is a region of
SO(3) in R9 where the independent parameters u, v and w are changed, the area of U
can be calculated by [2, 11]:

(12) 
U

dwdvdugU)( ,    g = det(gij).

5. Illustration
5.1. Orientation evaluation by Riemann measure for two manipulative structures.
Let us apply the orientation evaluation by Riemann measure to two types of tree-like
kinematic chain. The first one is presented in Fig. 2. It has 6 DOF, which are the
following  T  R  R  R  R  R. The second one is a subset of the first one and
consists of its last three joints R  R  R. Fig. 3 shows correspondence between
joints parameters, spherical coordinates and Euler angles for the structure T  R  R
 R  R  R after passage to the limit of all local coordinate systems origins distance.

Fig.2. Kinematic structure and coordinate              Fig.3. Spherical coordinates and Euler
          systems for 6 DOF tree-like chain                        angles after passage to the limit
       T  R  R  R  R  R

All simple chain  movements are described by orthogonal matrices as well as the
matrix 06A  (the product of transformation matrices) is also orthogonal. This matrix
could be rewritten in the terms of independent parameters  ,  ,  ,  , where

2q , 43 qq  , 5q , 6q . Therefore, the matrix of Riemann metric
tensor 3

1,)(  jiijgg  is obtained as

z6         

z1     

 y1    x1   
z0     

z2      
z3     

z4       z5         

x0        

x2       

x3     

x4    

x5      
x6     

y0   

y2    

y3      

y4    

y5      
y6       

O6       

C6         

q1  
 

(k = 0, 1, …) 

x6        

Tcy6         z6    

C6          

Ok      

z0        

y0        

x0       

q2 =    

q3 =      
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(13)  






















202
02)(42)(2
2)(22

)( 2






c
css

css
gg ij .

Now, the needed area of our surface could be calculated as

  







 







dd

d
dcsddddgU

U 0 ,
122)(

   = 



0

])1[(22 dssc .

Since the angles in the above equation are functions of 1q , i.e.  1q  ,

 1q  ,  1q  , it gives the area at every fixed q1. Thus, the integration over

it can be executed as a final result 
)2(

1

)1(
1

1
)(

q

q
dqUV   using experimental data for these

functions [10].
Next, for the structure R  R  R the corresponding results are [2]

(14)

















20cos2
020

cos202
)(





ij
gg ,  2sin8)det( 

ij
g .

The area of that surface could be calculated as

(15)    ).cos1(22sin22)(
1110 0 0

1 1 1

vwudwdvduvdwdvdugU
u v w

U
  

In the last expression u, v and w are corresponding independent parameters
which in that case interpret mechanically Euler angles, usually used for orientation
description [2].

5.2. Description of orientation homomorphism and its factor-group for 5 DOF robot.

The kinematic structure RTRTR is considered which has five joints coinciding
with the generalized coordinates in this case. The matrix  L from (8) takes the form:

(16)



















)cos(0)cos(0)cos(
00000
00000

531531531
qqqqqqqqq

L .

The matrix P~  from the expression (8) has the explicit form
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(17)



















0000)cos(
00000
00000

~

531
qqq

P

and the vector  T
51

~,...,~~ qqq   is

(18)       T
5432531

~ qqqqqqqq  .

The system (10) becomes:

(19)    0)cos()cos()cos(
531553135311
 qqqqqqqqqqqq .

It consists of one equation with three variables, so that its solution is based on
two independent parameters. In the case of linearization, in our example, there exist

32
3
C  ways of choosing independent parameters. For instance, if the independent

parameters are (q1, q3), then the fundamental solution of (19) after linearization looks
like:

(20)            


















































 1
1
0

1
0
1

55
qq

.

Coming back to our example, from 3 available drive subsets some would reveal
minimal system sensibility, which could be seen calculating corresponding sensibility
coefficients. For optimal in that sense subset the system motion close to desired
orientation will be realized with maximal accuracy. Generally speaking, the whole
motion can be considered as a set of such partial motions where every one of them
has been executed with optimal drives subset. The drives subsets are activated
consecutively during the whole motion.

But actually, (19) can be rewritten in the form
(21) 0)cos()(

531531
 qqqqqq .

The first multiplier expresses just the linear case, which has already been discussed
above. The second one shows the existence of another solution also based on two
independent parameters, but here the connection between dependent and independent
parameters is

(22)            )(
2 315

qqkq 


,

where k takes the values available according to the system construction.
Analogously, for the last linear system (22) corresponding fundamental solution

is based on two vectors:
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(23)


















































 57.0
1
0

57.0
0
1

55
qq

.

Finally, for our example the factor group G / A, where the homomorphism kernel
is formed by (q1, q3), consists of two elements, i.e. two neighbour classes. The neutral
element is a linear combination of  (q1, q3), and the remaining one – the sum of q5 with
the above mentioned combination.

6. Summary

Sensibility is a system quality characteristic mathematically defined as a homomorphism
between robot configuration space and working zone. It is well known that redundancy
brings more inexactness in the system as a whole but, on the other hand, it can increase
the accuracy in some specific system states.

A natural question is how redundant joints influence the sensibility parameters
and which joints we can use to realise some precise motion following some criteria.
Here such criteria are developed in the case of orientation of manipulative structures
and an approach for the choice of active drives in kinematics chain is presented.

In the paper an illustrative example is presented where the explicit combinations
of active drives are given. These subchains realize specific system sensibility.

The orientation capabilities of manipulative structures are analysed using an
approach based on Riemann measure. Two examples are given here and considering
the part of the hyper-surface in R9 they realize one could judge about their end-effector
orientation capabilities. This hyper-surface contains all possible transformation matrices
between two bases. Each concrete manipulative structure end-effector goes round a
part of it.

Finally the following conclusions could be formulated. The approach described
here enable the robot to realize specific sensibility characteristics appropriate for
different working tasks. The approach also treats the question of choosing different
drive sub-systems to realize the same (desired) sensibility. Such different drive sub-
systems choice comes as an answer towards changes of generating element qp , i.e.
the system state. The considered approach points out the advantages of using redundant
systems where the number of combinations of drives realizing needed system state
(sensibility) increase, i.e. including the case of active drive subsets changing. This
approach is related to the question of simple kinematics chains synthesis which realizes
specific sensibility, and later could be used in some more complex chains. Applying
this method we can improve the robot accuracy in local points, fields and regimes.
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(Р е з ю м е)

В статье рассматриваются избыточние роботы-манипуляторы. Их ориен-
тационные возможности анализируются, используя два подхода. Первый основан
на теории чувствительности и на фактор-группу ориентации. Он относится к
вопросу как следовало бы выбирать разные подмножества кинематической
вериги манипуляционных систем для реализации желанных параметров
чувствительности, в частности, параметров ориентации. Второй подход
использует Римановую метрику для оценки площади гиперповерхности,
реализуемой разными структурами. В работе описываются ориентационние
возможности роботов с избыточными степенями свободы  и оценивается влияние
дополнительных приводов на этих возможностей.


