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1. Introduction

Rotameters are devices for direct measuring of the flow of moving fluid. An accounting
element of the value measured is an efflux rotational float, moving vertically in a conic
transparent pipe as a result of the action of the fluid running through the pipe. The
value of the quantity measured is defined by the height of float going up. The rotameters
have found wide application in practice due to their simple construction, distinct
indications along a linear scale, possibility to measure small flows of fluids and gases,
including aggressive ones, sufficiently wide range of measuring, etc.

The principal diagram of a classic rotameter is shown in Fig. 1. The main elements
of its construction are a transparent conic pipe 1 and a float, made of a conic tip 2, a
cylindrical body 3 and a board 4. There are some screw-shaped channels cut along
the periphery of the board and due to them the float is constantly rotating around its
axis, positioning in the middle of the fluid flow, not rubbing the pipe walls.  The float is
an efflux body, which takes on the dynamic pressure of the fluid flow and supports
constant drop of the static pressure in front of and behind it. The fluid flow ascending
in the conic pipe of the device lifts the float at height H, at that the annular orifice S
between the float board and the inner surface of the conic pipe reaches a value, at
which the forces acting on the float are balanced. The height at which the float is
raised corresponds to a definite value of the flow rate of the passing fluid.

* The investigation are realized in accordance with Project No 010057 “Fluid systems for technological
processes control” – IIT BAS, and Project No 100402 “Investigations in the optimization of the control
of the processes of costing and cooling of metal melts”, Institute of Metal Science – BAS.
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2. Defining of a fluid flow by a rotameter

The formula for volumetric flow Q (m3/s) of the fluid running through the conic pipe of
the rotameter, based on the equation for continuity of the fluid medium and on Bernoulli’s
equation, applied for sections a–a and b–b, has the form given in Fig. 1a,

(1)                     ,2
f 
 gLSQ

H
  m3/s

where:  is a discharge coefficient of the fluid flow through the conic pipe;
SH  – the least surface of the annular orifice of the fluid flow, corresponding to

the height of the float H with respect to the initial section of the conic pipe, m2;
g – acceleration of the float mass, m/s2;
Lf  – float length, m;

(2)                               1f 






,

f, is float thickness, kg/m3; g – fluid thickness, kg/m3.
The discharge coefficient  in (1) is analogical to the discharge coefficient of a

fluid flow with a narrowing. It depends on the float shape and on the resistance the
fluid flow meets against the float:

(3)                                
H


  ,

where   is a coefficient of the float shape, determined by the relation

Fig. 1

a b
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(4)                                                  ,

where Vf is the float volume, m3;
Sf = D2/4  – surface area, (m2) of the cross section of the board of a float with

a diameter  D (Fig.1), equal to the inner diameter of the conic pipe at the starting
position of the float at  H=0;

H – drag coefficient of the float, depending on the float shape and on Reynolds
criterion:

(5)                ,

where   is the rate of the fluid flow.
Replacing (4) in (5) and expressing the speed of the fluid flow by  = Q/SH, and

the formula is obtained of the basic functional relation of the parameters in a rotameter
with free movement of a float and a pipe of an arbitrary profile (m2):

(6)                                                  .

This formula indicates that at established equilibrium position of the float, the surface
area of the smallest annular orifice between it and the pipe wall is directly proportional
to the volumetric flow of the passing fluid.

The geometric dependence of the surface area of the throttling section SH on the
height of float lifting H is defined according to the scheme in Fig. 1 (m2),

(7)                SH = (DtgH + tg2H2),

where   is the angle of the cone-forming line with relation to the pipe axis.
A generalized static characteristic is obtained from equations (1) and (7) for

determination of the volumetric flow with the help of a rotameter with a conic pipe
and a float is (m3/s)

(8)               2bHaHKQ   ,

where:

(9)                         f
2gLK  ,

(10)                            a = Dtg,
(11)                            b = tg2.

As seen from equation (8), the value of the flow rate of a given fluid running
through a rotameter with known parameters of the pipe and the float, is a function of
the discharge coefficient , the thickness of the fluid and of the float and the height of
float lifting H. The discharge coefficient  in this equation is analogical to the discharge
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coefficient for throttling devices measuring the flow rate in a vertical pipeline. It depends
on the float shape and on the critical Reynolds number Re. For the float, shown in Fig.
1, that is most frequently used in practice, at Re = 8000 up to Re =120000,  is
approximately equal to 0.99.

The relation of the float rate Q and the float travel H, as seen in equation (8), is
not proportional.  The rotameter scale division accomplished according to this relation,
is non-linear. The measuring of the flow rate in this case will be difficult and imprecise
due to the possibility for coarse errors in its reading. For pipes with small conicity
(from the order of 1:100) and not long float travel, the expression (bH2) in equation (8)
gets insignificant values and it can be ignored, at that the error will be within the limits
of the admissible in practice values – up to 2%. Then the generalized characteristic of
the rotameter for measuring a volumetric flow, will obtain the form (m3/s):

(12)                        HKaQ . .

Multiplying the two sides of this equality by the thickness of the fluid  (kg/m3),
we will get the generalized characteristic of the rotameter for measuring the mass
flow G (kg/s):

(13)                    HKaG )(
f

  .
For the purpose of comparison Fig. 2 shows in a graphic form the relations  (8)

and (12) of a rotameter often used in practice for measuring the volumetric flow of
air. The measuring range is from 2 up to 20 m3/h, at temperature 20 оС and nominal
operating pressure of 101.3215 kРа. The rotameter pipe is with conicity of 1:100, and
the float is made of X10CrNi18.9 alloy with thickness f=7.8103 kg/m3. The shape
and the size of the float are given in Fig. 1b. As seen in the diagram, at scale division
of the rotameter with respect to linear equation (12), the ma ximal error of the measuring
range is 0.6%, which is considerably smaller than the admissible error in flow rate
measuring. This gives reason for the practical use of this equation in the scale division
of rotameters of the type discussed in measuring flow rates of different fluids.

Fig. 2. Relations of the rotameter gauge according to equations (8) and (12)
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3. Gauge transformation of a rotameter for flow rate of different fluids

The rotameters offered by the companies are scaled only for measuring the flow rate
of water or air. Their direct application for other fluids, without any corrections, leads
to measuring errors. Hence, the problem of gauge transformation of the rotameters
proposed for measuring flow rates of other fluids, has got great practical significance.

The gauge transformation of a given rotameter from the type discussed for another
fluid (the flow rate of which is to be measured) may be realized according to equation
(12) or equation (13). Fig. 3 shows the characteristics of equation (12) for measuring
the volumetric flow of several different fluids with the help of the rotameter considered.
The calculations are made for nominal pressure and temperature of the fluids. Using
these characteristics, the scale of a rotameter for air can be transformed into a scale
measuring the volumetric flow of another fluid. The maximum relative error in
measuring the flow rate of other fluids can be directly determined from the diagram, if
this is accomplished without gauge transformation of the rotameter for air. It can be
seen, that even for oxygen, which is with thickness close to that of air, the error would
be greater than 5 %. In measuring gases, the greater the difference is between the
thickness of the gas measured and the air thickness, the greater the inaccuracy is.

The gauge transformation of a rotameter for another fluid may be realized also
directly [7], multiplying the flow rate values according to the existing scale, adjusted
for a given fluid (air or water), by a correction coefficient C. This coefficient may be
defined using equation (12) or (13). The correction coefficient CQ of a scale for
volumetric flow is obtained from (12):

Fig. 3. Characteristics of the rotameter for different fluids
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(14)                                                             ,

where:

(15)                              
'
''C

Q 





is a correction coefficient of fluids viscosities;

(16)                  


















'

''

''
'C

Q 







f

f

is a correction coefficient  of fluids thickness;
''' and ', '' are the coefficients of the flow rate and thickness respectively of

the fluid, for which the scale is divided and the fluid, for which gauge transformation is
to be made.

For most cases in practice, the coefficients for fluids flow rates – the one for
which the rotameter is designed for and the one subject to gauge transformation, are
of very close values and in these cases the coefficient CQ  may be accepted as 1 and
then C = CQ. For gases, due to their smaller thickness compared to that of the float,
formula (16) is simplified, the expression in the brackets receiving also the value 1 and
then for the correction coefficient CQ it is obtained:

(17) ''
'C

Q 


 .

The correction coefficient CG  of a scale for mass flow is obtained from (13):

(18)           )(

)(

f

f

''

''''

'
''CCC

GGG 






 


 ,

where:

(19)                          
'
''C

G 



 ,

(20)                  )'(

)(

f

f




 




'

''''
C

G .

Accepting the same assumptions, as for the scale for volumetric flow above
mentioned, the simplified expression for the correction coefficient CG  of the scale for
mass flow will take the form:

(21)                      '
''C

G 


 .




















'

''

''
'

α'
α''CCC

QQQ 







f

f



7 7

0

2

4

6

8

10

12

14

16

18

20

0 40 80 120 160 200

H , mm

Q
, m

3 /h

Air: 1bar, 15 C Argon: 2 bar, 20 C

T'
T''

P''
P'

''
'C

Q 




T''
T'

P'
P''

'
''C

G 




If the absolute pressure P'' and the absolute temperature T'' of the fluid, which
flow rate will be measured, differ from the nominal values P' and T', for which the
rotameter scale is divided, the correction coefficients CQ and CG will be respectively:

(22)                                                       ,

(23)                                                        .

Fig. 4 is an illustration of the graphic relation of the gauge transformation by the
correction coefficient (22) of the rotameter scale for air into a scale measuring the
volumetric flow of Argon at parameters different than the nominal ones – pressure of
2 bar and temperature of 20 oС.

Fig. 4. An example of the gauge transformation of a rotameter for air  into a scale for measuring Argon
flow with the help of a correction coefficient.

4. Determination of the error in flow measuring by a rotameter

The general mean square relative error in measuring the volumetric flow by a rotameter,
derived for equation (1), has the form

(24) 




 


 22
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where: 


 ,,,,
ff

lS
H

 are the mean square relative errors of the flow coefficient,

of the annular orifice, of the float length, of the material thickness, and of the thickness
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of the fluid being measured. The formula determining the general mean square relative
error in measuring mass flow by a rotameter, is analogical.

In rotameter scale division, if the values of the float length and its thickness are
carefully determined, the errors from these values can be avoided. The error 

HS  is
obtained from inaccurate positioning of the float in its rising due to its friction with the
pipe walls. For the type of rotameters considered, with a free moving float in a conic
pipe, there is not any considerable friction practically and this error is also ignored.

The error  is a result of the alteration of the turbulence degree of the fluid flow
in the rotameter. In many references  [1, 3, 9] the value of 0.25% is accepted for this
error. The error  is a result of the alteration in the fluid thickness due to alteration in
its pressure and temperature. The value of this error is accepted to be 0.5% for fluids
and 0.75% for gases. Taking into consideration the measuring error, it can be accepted
that in measuring a flow by a rotameter of the type discussed, the general relative
error will be smaller than 1.5%.
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Определение дебита любых флюидов ротаметром

Богдан Стоянов*, Йордан Беязов**
* Институт  металловедения “Акад. А. Балевски”, 1574 София
E-mail: bogsto@abv.bg
**Институт  информационных технологий, 1113 София
E-mail: yorbe@abv.bg

(Р е з ю м е)

Выведены теоретические зависимости для определения объемного и массового
дебита любых флюидов, измеряемых ротаметром из конусной трубки и поплавка.
Предложен метод преградуирования скалы ротаметра, используя упрощенные
зависимости дебита от поднимания поплавка в трубе и метод прямого
перечисления скалы ротаметра посредством коррекционного коэффициента.
Анализированны относительные ошибки при измерении дебита ротаметром.


