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1. Introduction

The five-link planar manipulative system (MS), shown in Fig. 1, contains only rotational
joints. Some parts of them are passive, the remaining – active. All the bodies could
change their dimensions in some borders [4] during the design process and in that way
the features of the MS change. The body 1 (l1 )  is more particular as it stays immobile
(it represents the support). The bodies 2 and 5 are driving bodies. With the help of
appropriate rotation of the actuating bodies, the characteristic point B of the MS can
follow desired planar trajectory in the borders of the working zone.

Fig. 1. Structural scheme of the considered manipulative system
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The velocity V = [VB x
, VBy

]T of the characteristic point B is determined through the
angular velocities 

.
=  

.
2, 

.
5]T of the bodies 2 and 5 and depends on the transfer

function of the mechanism. Usually the transfer function is described by the Jacoby
matrix J :
(1)                     V = J

.
.

This expression is known as forward kinematics problem and for the considered MS
could be solved using different approaches [3]. The analytical symbolic solution could
be particularly useful for making several conclusions concerning the singular
configurations of the MS as well as the MS metric. The classical approach [2] for
solving such kind of problems requires the solution of the standard position task (forward
kinematics) f(i) = X, i = 2, 5; X = V = [Bx, By]T  or of the inverse kinematics. After that
the obtained results are differentiated with respect to the general coordinates


 = 


2, 


5]T. In that concrete example such a solution is complex and ambiguous (in the

general case).  The forward kinematics (standard position task) has two solutions, the
inverse – four. These arguments determine the necessity to search for other approaches
for the analytical solution of the forward kinematics (position task).

2. The Jacoby matrix for the closed loop manipulative system
Let’s assume that the MS is divided into two parts representing two open planar
kinematics chains with two links (Fig. 2).

Fig. 2. Representation of the MS from Fig. 1 as a system containing two open structures

The matrix of Jacoby J1,2 for each of them is known [3]. For the left (J1) МS we obtain

( 2) 






 


2221

1211
1 AA

AA
J ,

where:
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)sin(sin
3232211

  llA , )sin(
32312

  lA ,
)cos(cos

3232221
  llA , )cos(

32322
  lA .

Analogously we can obtain for the right system:

(3)       










 


2221

1211
2 BB

BB
J ,

where:
)sin(sin

4545511
  llB , )sin(

45412
  lB ,

)cos(cos
4545521

  llB , )cos(
45422

  lB .
If we admit that the distance between both systems is l1, and that they reach one

and the same point B, and also the velocity V of that point B reached by the first and
the second MS is the same, we obtain the system

(4)      

422521

412511

322221

312211

















BBV

BBV

AAV

AAV

y

x

y

x

B

B

B

B









or in a matrix form:
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


















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
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
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
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

J
J
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,

where 
.
2,3


= 

.
2, 

.
3]T and  

.
5,4


= 

.
5, 

.
4]T.

Eliminating the angular velocities 3  and 4  in the passive joints for the forward
kinematics problem we obtain

(5)                
522221

512211








CCV

CCV

y

x

B

B





or in a matrix form

                                  JV
C
 ,  











 


2221

1211

CC
CC

J ,

where:

)(

)(
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22112112
121111 ABBA
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)(

22122212

22112112
222121 ABBA

BAAB
AAC




 ,   

)(

)(

22122212

12212211
2222 ABBA

BBBB
AC




 .

The coefficients jiC ,  could be determined if 022212212  ABBA .

3. Spaces of the Jacoby matrix

It is known [1, 2], that every matrix defines four spaces which dimensions are
determined by the matrix rank and order. Further we will consider the physical and
geometric interpretation of these spaces related with the Jacoby matrix for manipulative
systems.

3.1. Column space (image) of the Jacoby matrix )(J

It transforms (1), the area of admissible values of the controlled velocity vectors of
the actuating bodies 

.
=  

.
2, 

.
5]T, in corresponding velocities of the end-effector

V = [VB x
, VBy

]T . This space dimension is equal to r – the rank of the Jacoby matrix (or
the number of the matrix independent columns). In this concrete case, the two-
dimensional space of the angular velocities generates a two-dimensional space of the
velocity of the end-effector. There exist some robot states or configurations (particular
or singular) for which the coefficients Cij corresponding to J are such that the two-
dimensional space of the generalized velocities generates one-dimensional space of
the absolute velocity of the point B (r =1).

3.2. Row space )( TJ

The row space of the matrix J coincides with the column space of JT. With the help of
this space we can determine the actuating moments  = [M2, M5]T, which must be
created in the actuating joints 2 and 5 to equilibrate the external forces F = [Fx, Fy]T,
applied to the end-effector:
(6)                  = JTF.
The friction forces and other losses are not considered.

3.3. Zero space of J (Ker(J))

It is defined by the system Jx = 0 and its dimension is n  r, where n is the number of
rows of the matrix  J. It describes this subspace of vectors of angular velocities ix  ,
which does not generate velocities V in the end-effector.

3.4. Zero space of JТ(Ker(JT))  left zeros of J

It is defined by the system JTy = 0 and its dimension is m r, where m is the number of
columns of J. It describes this set of vectors of external forces iFy , for which there
is no need of motors equilibrating torques  = [M2, M5]T,.
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The zero space is also known as a kernel of the matrix. It is obvious that the zero
vectors  x = [0, 0]T  belong to J and JТ. It is known that the defect  of the matrix
denotes the difference between the higher value of the rows or columns number of
the matrix J and its rank [1, 2]:  = max(m, n) – r. In our case the maximal possible
defect of J is  = 2 and it is obtained when the rank of the matrix is zero r = 0.

4. Singular configurations

It is very important to define the rank  r of J for the analysis of MS [2]. It is equal to
the number of independent rows (columns) of the matrix and can be determined by
calculating the matrix determinant (if it exists) and its minors (sub-matrices
determinants). We are searching for configurations where det(J) = 0 (the rank of J
decreases). These configurations are known as singular and the MS changes its
features in such configurations. The four spaces of the Jacoby matrix change their
dimensions.

Statement 1. The determinant of the matrix J (for the MS in Fig. 1) is equal to
zero only if the determinant of  J1(2) or the determinant of J2(3) is zero:

(7) ,0)det(
,0)det(

0)det(
2

1




 J
J

J

J1 and J2 are the corresponding Jacoby matrices for the left and right open chains
(Fig. 2) of the five-link closed MS (Fig. 1).

Statement 2. The determinant of the matrix J (for the MS – Fig. 1) tends to
infinity when

(8)        5432
  .

The demonstration of both statements 1 and 2 is accomplished as follows:
We obtain the determinant of J as:

(9)   12212211
)det( CCCCJ  .

After some transformations it can be written:

(10)
)(

))((
)det(

22122212

1221221112212211

BAAB

BBBBAAAA
J




 ,

or

         
)sin()cos()cos()sin(

)det()det(
)det(

323454323454

21

 


llll

JJ
J .

From the last we obtain

(11)
)sin(

)det()det(
)det(

324543

21

 


ll

JJ
J .

It is obvious the determinant becomes equal to zero when some of the multipliers
in the nominator of (11) take zero values. When the denominator tends to zero then
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the determinant of J tends to infinity. If l3 and l4 lengths are different from zero, the
last comes true only if:

(12)         k 0
3245 , k = 1, 2, …

Corollary 1. When the force transformation angle ABC(Fig.1) [4] between
the bodies 3 and 4 tends to zero (or 180о), then the determinant of J tends to infinity.
In that case we need extremely great actuating torques to equilibrate the external
forces acting on the end-effector. The demonstration of the corollary 1 could be easily
done, taking into account that the sum of the internal angles of the tetragon is equal to
360о (2 rad). It is obvious that when  = 0, the mechanism forms a tetragon. For the
sum of its internal angles we obtain: 2 + 3 –  +  – 4 +  – 5 = 2, and therefore
2 + 3 – 4 – 5 = . Condition (12) is satisfied.

5. Numeric examples
5.1. Example 1
General case: A manipulative system is considered which bodies lengths are (Fig. 3)
l1=0.1, l2=0.2, l3=0.25, l4=0.35, l5=0.1 (Fig. 3); 2=100.03o; 3= –52.9o; 4=79.08o;
5=20.53o. Then we obtain:











0.170.135
0.183–0.38–

1
J , 0.04)det(

1
J ;   










0.058–0.035
0.345–0.38–

2
J , 0.034)det(

2
J ;

                     









0.0840.034–
0.091–0.198–

J , –0.02)det( J .

Fig. 3. МS in arbitrary configuration – example 1
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Working configuration of МS. It is possible to realize some motion (and also
forces) in the plane in arbitrary direction. The coefficients of J are transfer values for
the concrete configuration of the mechanism.

5.2. Singular case with defect  = 1 for the matrix J – example 2
The bodies lengths are the same as in the example 1 and the generalized coordinates
are (Fig. 4): 2=57.38o; 3=0o; 4=63.27o; 5=18.86o. Then we obtain:

   









0.1350.243
0.211–0.379–

1
J , 0)det(

1
J ; 










0.0480.143
0.347–0.379–

2
J , 0.031)det(

2
J ,

0)det( J .
In this configuration if 0

5
  the realization of any velocities  does not generate

the end-effector velocity, i.e. the vectors T
2

]0,[    belongs to the zero space (Ker(J))

of J.  Forces acting in the direction 
T

115.0
18.01 



 kF  (where k is a real number)

cannot be equilibrated by the actuating torques. They belong to the zero space (Ker(JT))
of JТ and are absorbed by the links of the MS. The maximal force in that direction that
can be supported by the construction depends on the robustness of the elements. Such
kind of singularities could be observed in mechanisms with any metrics (arbitrary
proportion between body lengths, for which the mechanism is defined [4]). At least
one of the two open chain MS has configurations where its determinant J1 (or J2)
becomes zero. The forward kinematics problem has two solutions and at least one of
them is singular. The points from the working zone, where  = 1, are on its borders.
The inverse kinematics problem for them has two singular solutions.

Fig. 4. Singular case with defect   = 1 for the matrix J – example 2
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5.3. Singular case with defect  = 2 for the matrix J – example 3
The links lengths are the same as in the example 1 and the generalized coordinates are
(Fig. 5): 2=83.62o; 3=0o; 4=0o; 5=96.38o. Then we obtain:

      









0.0280.05
0.248–0.447–

1
J , 0)det(

1
J ;   










0.0390.05
0.348–0.447–

2
J , 0)det(

2
J ,

                                      









00
00

J , 0)det( J .

Fig. 5. Singular case with defect   = 2 for the matrix J – example 3

The forward and inverse kinematics problems have a unique solution. If l1  0 there
exist only one or two points, where  = 2. In such a configuration the MS is extremely
stable with respect to the forces applied on the end-effector. Their equilibration is
realized only by the links and the supports and is not transferred to the actuating
devices (Ker(JT)  T,

yx
FFF  ). It becomes difficult to control the velocity of the

point B. The zero space Ker(J) coincides with all the plane T
52
],[    .

5.4. Singular case, where det(J) tends to infinity – example 4
A manipulative system which links length are l1=0.2, l2=0.25, l3=0.2, l4=0.15, l5=0.2 is
considered (Fig. 6); 2=114.71o; 3= –119.96o; 4=97.47o; 5=77.28o.
Then it can be written:











0.1990.095
0.018–0.209–

1
J , –0.043)det(

1
J ; 










0.149–0.105–
0.014–0.209–

2
J , 0.03)det(

2
J ,
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 а) Five-link mechanism in singular configuration b) Reaching the same point without falling
     where det(J)         in a singular configuration

Fig. 6. Singular case, where det(J) tends to infinity – example 4













–
–

J , )det(J .

In Fig. 6а the corresponding graphical solution in generalized and Cartesian
coordinates is presented. In this configuration a part of the forces acting on the end-
effector (point B) cannot be equilibrated with the help of the actuating torques. Such
types of singular configurations are placed inside the working zone of the MS. During
the control of the MS such configurations must be avoided due to decreasing of functional
capabilities.  The end-effector can reach these points (denoted by o), passing by both
– singular or nonsingular – configurations (for instance Fig. 6b). The forward kinematics
problem for such a point has 4 solutions, but only for one of them (Fig. 6а))
det(J)  .

5.5. Singular case – indefiniteness of type 0/0 – example 5
The following MS will be considered, which links lengths are (Fig. 7): l1=0.25, l2=0.3,
l3=0.2, l4=0.15, l5=0.1; 2=109.47o; 3=-148.41o; 4=0 o; 5=141.06o. Then it could be
written:











0.1560.056
0.1260.157–

1
J , –0.031)det(

1
J ;  










0.117–0.194–
0.094–0.157–

2
J , 0)det(

2
J ,

                                     




















0
0
0
0

J , 
0
0)det( J .

det(J)   
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In similar situations the possibility for realization of motions and forces as well as
the control of the MS is extremely difficult.

6. Conclusion
The represented approach for the Jacoby matrix determination leads to the
demonstration of  statements 1 and 2. Consequently the singular configurations of the
MS can be easily detected and some conclusions concerning the mechanism behavior
in these configurations can be formulated. The corresponding singular configurations
are realizable for different proportions of the mechanism link lengths [4, 5]. The case
when the determinant of J tends to infinity is particular and in that sense the
configurations for which this condition is satisfied could be considered as singular. The
interpretation of the Jacoby matrix spaces is physically useful as well in the process of
synthesis and design of the manipulative system as for the control process. The extreme
values of the transfer function (the elements of J) are used to determine the maximal
loads of the actuating mechanisms of the MS.

The main disadvantages of the proposed method are:
We cannot determine the reactions in the passive joints as well as the reactions

generated by forces and torques, which cannot be stabilized by the actuating devices;
it does not take into account the friction losses.
The advantages are:
easy determination of the Jacoby matrix and its determinant;
simple physical interpretation of the singular configurations as a result of their

reduction as a combination of two already known and well studied MS;
the symbolic writing of the transfer function (5) and of the determinant of J

(10) allows to do analysis of the separate geometrical parameters influence on the MS
features.

Fig. 7. Singular case – indefiniteness of type 0/0 – example 5
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(Р е з ю м е)

В работе представлена пятизвенная равнинная манипуляционная система
закроенного типа. Используется матрица имени Якоби и аналитическое решение
двух задач кинематики. Приведены примеры для связи и зависимость сингуляр-
ных конфигураций манипуляционных роботов. Сделани выводы, касающие
пространства матрицы и их определители.


