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1. Introduction

The five-link planar manipulative system (MS), shown in Fig. 1, contains only rotational
joints. Some parts of them are passive, the remaining — active. All the bodies could
change their dimensions in some borders [4] during the design process and in that way
the features of the MS change. The body 1 (I, ) is more particular as it stays immobile
(it represents the support). The bodies 2 and 5 are driving bodies. With the help of
appropriate rotation of the actuating bodies, the characteristic point B of the MS can
follow desired planar trajectory in the borders of the working zone.

Fig. 1. Structural scheme of the considered manipulative system
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The velocity V = [VBX, VB'V]T of the characteristic point B is determined through the
angular velocities 6 = [ 6,, 6_]" of the bodies 2 and 5 and depends on the transfer
function of the mechanism. Usually the transfer function is described by the Jacoby
matrix J :

1) Vv =J6.

This expression is known as forward kinematics problem and for the considered MS
could be solved using different approaches [3]. The analytical symbolic solution could
be particularly useful for making several conclusions concerning the singular

configurations of the MS as well as the MS metric. The classical approach [2] for
solving such kind of problems requires the solution of the standard position task (forward

kinematics) f(6) = X, 1=2,5; X =V =[B,, B ]" or of the inverse kinematics. After that
the obtained results are differentiated with respect to the general coordinates

0=1[0,, 6.]". Inthat concrete example such a solution is complex and ambiguous (in the
general case). The forward kinematics (standard position task) has two solutions, the
inverse — four. These arguments determine the necessity to search for other approaches
for the analytical solution of the forward kinematics (position task).

2. The Jacoby matrix for the closed loop manipulative system

Let’s assume that the MS is divided into two parts representing two open planar
kinematics chains with two links (Fig. 2).

1

Fig. 2. Representation of the MS from Fig. 1 as a system containing two open structures

The matrix of Jacoby J, , for each of them is known [3]. For the left (J,) MS we obtain

(2) le{_An _A12:|
Ay Ay |

where:
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A =l sin@ +1sin(@ +60), A =1sin(6 +6),
11 2 2 3 2 3 12 3 2 3

A =1 cos6 +1 cos(d +6 ) A =1l cos(@ +6).
21 2 2 3 2 3 22 3 2 3
Analogously we can obtain for the right system:

_Bll _B12
3) JZ{B B }

21 22
where:
B =I1sing +1sin(@ +6 ), B _=1sin(@ +6 ),
11 5 5 4 5 4 12 4 5 4
B. =1 cos@ +I cos(@ +6) B _=I cos(6 +6 ).
21 5 5 4 5 4 22 4 5 4
If we admit that the distance between both systems is |, and that they reach one

and the same point B, and also the velocity V of that point B reached by the first and
the second MS is the same, we obtain the system

V =—A6O —-A0

BX 1 2 12 3
V. =A6 +A 0
By 21 2 22 3

(4) VBX = _81105 - B1204
V. =B 6O +B 60
B 21 5 22 4

¥

V — Jl 0.2,3
ARENICAE
54
where 6,,=[6,, 6] and 6,,=[6,,6,]".

Eliminating the angular velocities 93 and 94 in the passive joints for the forward
kinematics problem we obtain

or in a matrix form:

=-C6 -C0
BX 11 2 12 5
(5) V =C 6 +C 6

B 21 2 22 5

¥

V _ 9 J: _Cll _C12
C_J ] C C ]

21 22

or in a matrix form

where:

(BA -AB) (BB -B B)
C _ + 12 21 11 22 C A 11 22 21 12

11 11 12(AB_BA)| 12 12(AB—BA)'

12 22 12 22 12 22 12 22
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(B A -AB) (BB -B B)
21 21 ZZ(AB _B A )' 22 ZZ(AB _B A

C — 122 21 1 2 — 1 2 21 127
12 22 122 22 12 22 12 22)
The coefficients C, ; could be determined if A ,B,, —B, A,, #0.

3. Spaces of the Jacoby matrix

It is known [1, 2], that every matrix defines four spaces which dimensions are
determined by the matrix rank and order. Further we will consider the physical and
geometric interpretation of these spaces related with the Jacoby matrix for manipulative
systems.

3.1. Column space (image) of the Jacoby matrix R(J)

It transforms (1), the area of admissible values of the controlled velocity vectors of
the actuating bodies 6 = [ 6,, 6.]", in corresponding velocities of the end-effector
V=1[V,, V,]". This space dimension is equal to r — the rank of the Jacoby matrix (or
the number’ of the matrix independent columns). In this concrete case, the two-

dimensional space of the angular velocities generates a two-dimensional space of the
velocity of the end-effector. There exist some robot states or configurations (particular

or singular) for which the coefficients o corresponding to J are such that the two-

dimensional space of the generalized velocities generates one-dimensional space of
the absolute velocity of the point B (r =1).

3.2. Row space R(JT)

The row space of the matrix J coincides with the column space of J™. With the help of
this space we can determine the actuating moments z = [M,, M,]", which must be
created in the actuating joints 2 and 5 to equilibrate the external forces F = [F Fy]T,
applied to the end-effector:

(6) r=JF

The friction forces and other losses are not considered.

3.3. Zero space of J (Ker(J))

It is defined by the system Jx = 0 and its dimension is n —r, where n is the number of
rows of the matrix J. It describes this subspace of vectors of angular velocities X € 6, ,
which does not generate velocities V in the end-effector.

3.4. Zero space of J'(Ker(J")) — left zeros of J

It is defined by the system J'y = 0 and its dimension is m —r, where m is the number of
columns of J. It describes this set of vectors of external forces y € F,, for which there
is no need of motors equilibrating torques == [M,, M,]",.
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The zero space is also known as a kernel of the matrix. It is obvious that the zero
vectors x = [0, 0]" belong to J and J". It is known that the defect y of the matrix
denotes the difference between the higher value of the rows or columns number of
the matrix J and its rank [1, 2]: ¥ = max(m, n) — r. In our case the maximal possible
defect of J is ¥ =2 and it is obtained when the rank of the matrix is zero r = 0.

4. Singular configurations

It is very important to define the rank r of J for the analysis of MS [2]. It is equal to
the number of independent rows (columns) of the matrix and can be determined by
calculating the matrix determinant (if it exists) and its minors (sub-matrices
determinants). We are searching for configurations where det(J) = 0 (the rank of J
decreases). These configurations are known as singular and the MS changes its
features in such configurations. The four spaces of the Jacoby matrix change their
dimensions.

Statement 1. The determinant of the matrix J (for the MS in Fig. 1) is equal to
zero only if the determinant of J.(2) or the determinant of J,(3) is zero:

det(J ) =0,

=0 l4era ) =0,

()
J, and J, are the corresponding Jacoby matrices for the left and right open chains
(Fig. 2) of the five-link closed MS (Fig. 1).

Statement 2. The determinant of the matrix J (for the MS — Fig. 1) tends to
infinity when
(8) 92+93=94+95,

The demonstration of both statements 1 and 2 is accomplished as follows:

We obtain the determinant of J as:

(9) det(J):—C C +C C .
1 22 21 12
After some transformations it can be written:
(AA -AA)BB -BB)
(10) det(J)= 1 2 21 12 11 22 2 12’
(BA-AB)
12 22 12 22
or
det(J )det(J )
det(J): 1 2

I4 sin(@5 + 94)I3 cos(92 + 93) - I4 cos(95 + 94)I3 sin(@2 + 93)
From the last we obtain
det(Jl)det(Jz)
Ll sin@ +6 -0 -0)
34 5 4 2 3

It is obvious the determinant becomes equal to zero when some of the multipliers
in the nominator of (11) take zero values. When the denominator tends to zero then

(11) det(J) =

57



the determinant of J tends to infinity. If I, and I, lengths are different from zero, the
last comes true only if:
(12) 0.+60 -6 -0 =0xkr k=12, ..

Corollary 1. When the force transformation angle v < ABC(Fig.1) [4] between
the bodies 3 and 4 tends to zero (or 180°), then the determinant of J tends to infinity.
In that case we need extremely great actuating torques to equilibrate the external
forces acting on the end-effector. The demonstration of the corollary 1 could be easily
done, taking into account that the sum of the internal angles of the tetragon is equal to
360° (2 rad). It is obvious that when y = 0, the mechanism forms a tetragon. For the

sum of its internal angles we obtain: 6, + 6,— 7+ - 6, + 7— 6, = 2, and therefore
0, + 0, - 0, — 6, = =. Condition (12) is satisfied.

5. Numeric examples

5.1. Example 1

General case: A manipulative system is considered which bodies lengths are (Fig. 3)

1,=0.1, 1,=0.2, 1,=0.25, 1,=0.35, 1.=0.1 (Fig. 3); 6,=100.03°; 6,= -52.9°; 6,=79.08°,

6,=20.53°. Then we obtain:

3 {—0.38 -0.183 -0.38 —0.345}
=

0.135 0.17]det(J1) 0.04; , {0_035 o058/ dEt(3,)=0034;

[-0.198 -0.091
“1_0.034 0.084 | det(d)=-0.02.

Fig. 3. MS in arbitrary configuration — example 1
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Working configuration of MS. It is possible to realize some motion (and also
forces) in the plane in arbitrary direction. The coefficients of J are transfer values for
the concrete configuration of the mechanism.

5.2. Singular case with defect y = 1 for the matrix J — example 2

The bodies lengths are the same as in the example 1 and the generalized coordinates
are (Fig. 4): 6,=57.38°; 6,=0° 6,=63.27°, §,=18.86°. Then we obtain:

) [-osre oy o [-0s79 -0ma7) oo
17| 0243 0435 | ¥II=059,5 5 as g oag |- 9€HI,) =003,

det(J)=0.
In this configuration if 95 =0 the realization of any velocities does not generate
the end-effector velocity, i.e. the vectors 0= [92, 0]" belongs to the zero space (Ker(J))

0.18

.
of J. Forces acting in the direction F = k{l m} (where k is a real number)

cannot be equilibrated by the actuating torques. They belong to the zero space (Ker(J")
of JT and are absorbed by the links of the MS. The maximal force in that direction that
can be supported by the construction depends on the robustness of the elements. Such
kind of singularities could be observed in mechanisms with any metrics (arbitrary
proportion between body lengths, for which the mechanism is defined [4]). At least
one of the two open chain MS has configurations where its determinant J, (or J,)
becomes zero. The forward kinematics problem has two solutions and at least one of
them is singular. The points from the working zone, where y = 1, are on its borders.
The inverse kinematics problem for them has two singular solutions.

§
JT3
H

Row space

Zero space of J (Ker(J) P ¢
2 nax

Fig. 4. Singular case with defect y = 1 for the matrix J — example 2



5.3. Singular case with defect y = 2 for the matrix J — example 3

The links lengths are the same as in the example 1 and the generalized coordinates are
(Fig. 5): 6,=83.62°; 6,=0° 6,=0°; 6,=96.38°. Then we obtain:

| =0.447 -0.248 det(11=0- J = —-0.447 -0.348 dett] Y=
| 005 o028 | %=1 Y= g0 gogo | MU0,

1

,[00
=g ol det(3)=0.

FEKerdJT)

Fig. 5. Singular case with defect y= 2 for the matrix J — example 3

The forward and inverse kinematics problems have a unique solution. If |, # O there
exist only one or two points, where ¥ = 2. In such a configuration the MS is extremely
stable with respect to the forces applied on the end-effector. Their equilibration is
realized only by the links and the supports and is not transferred to the actuating

devices (Ker(J)eF =F . Fy_T). It becomes difficult to control the velocity of the
point B. The zero space Ker(J) coincides with all the plane6 =[6 ,6]".

5.4. Singular case, where det(J) tends to infinity — example 4

A manipulative system which links lengthare 1. =0.2, 1,=0.25, 1,=0.2, 1,=0.15, 1 .=0.2 is

considered (Fig. 6); 6,=114.71°; 6,=-119.96°; 6,=97.47°; 6,=77.28°.

Then it can be written:

j < -0.209 -0.018 j - -0.209 -0.014
17| 0095 0.199 | W) =-0.043: % 7| 4105 _0.149)0 9e1J,) =003,
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a) Five-link mechanism in singular configuration b) Reaching the same point without falling
where det(J) — o in a singular configuration

Fig. 6. Singular case, where det(J) tends to infinity — example 4

o —00
J{ } det(J) > 0.

o —00

In Fig. 6a the corresponding graphical solution in generalized and Cartesian
coordinates is presented. In this configuration a part of the forces acting on the end-
effector (point B) cannot be equilibrated with the help of the actuating torques. Such
types of singular configurations are placed inside the working zone of the MS. During
the control of the MS such configurations must be avoided due to decreasing of functional
capabilities. The end-effector can reach these points (denoted by 0), passing by both
—singular or nonsingular — configurations (for instance Fig. 6b). The forward kinematics
problem for such a point has 4 solutions, but only for one of them (Fig. 6a))
det(J) — oo.

5.5. Singular case — indefiniteness of type 0/0 — example 5

The following MS will be considered, which links lengths are (Fig. 7): 1,=0.25, 1.=0.3,
1,=0.2,1,=0.15,1,=0.1; 6,=109.47°; 6,=-148.41°; 6,=0°; 6,=141.06°. Then it could be
written:

) _[-os7 ox2e] o [-0157 —0004] o
1= 0.0s6 0.156| I)=-008L I, =) 4104 _g1q7] 9€1I,)=0,
0
0
=l ol det)=2.
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Fig. 7. Singular case — indefiniteness of type 0/0 — example 5

In similar situations the possibility for realization of motions and forces as well as
the control of the MS is extremely difficult.

6. Conclusion

The represented approach for the Jacoby matrix determination leads to the
demonstration of statements 1 and 2. Consequently the singular configurations of the
MS can be easily detected and some conclusions concerning the mechanism behavior
in these configurations can be formulated. The corresponding singular configurations
are realizable for different proportions of the mechanism link lengths [4, 5]. The case
when the determinant of J tends to infinity is particular and in that sense the
configurations for which this condition is satisfied could be considered as singular. The
interpretation of the Jacoby matrix spaces is physically useful as well in the process of
synthesis and design of the manipulative system as for the control process. The extreme
values of the transfer function (the elements of J) are used to determine the maximal
loads of the actuating mechanisms of the MS.

The main disadvantages of the proposed method are:

¢ \We cannot determine the reactions in the passive joints as well as the reactions
generated by forces and torques, which cannot be stabilized by the actuating devices;

o it does not take into account the friction losses.

The advantages are:

o easy determination of the Jacoby matrix and its determinant;

o simple physical interpretation of the singular configurations as a result of their
reduction as a combination of two already known and well studied MS;

e the symbolic writing of the transfer function (5) and of the determinant of J
(10) allows to do analysis of the separate geometrical parameters influence on the MS
features.
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Kunemarnuecknii 1 CUI0BOM aHAIU3 MATU3BEHHOW MAaHUMYJISILIMOHHOM
CHCTEMBI [TPH MIOMOIIIH YETHIPEX MPOCTPAHCTB MATPHIIhI k00U
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(Pe3tomMme)

B pabore mpeacraBieHa nmATH3BEHHAss paBHUHHAS MaHUNYISIIIUOHHAS CHCTEMa
3aKpoeHHOro THMa. Mcronb3yercs MaTpuila IMEHH SIKoOU U aHATUTHYECKOE pellieHre
JIBYX 3a/1a4 KUHeMaTuku. [IpuBenensl npuMepsl AJIs CBSA3H U 3aBUCUMOCTb CUHTYIISIP-
HBIX KOH(HTypaluii MaHUMYISIUOHHBIX po00oTOB. ChaenaHu BBIBOJBI, Kacarollue
IIPOCTPAHCTBA MATPULIBI U KX ONPEACITUTEIH.
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