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1. Introduction

In comparison with usual mechanisms and machines, robots work and solve more
complex problems. That influences not only their construction, but also the character-
istics needed to be known for successful description, control and practical application
at all. Generally, the complexity of robot-manipulators design involves more fields of
mathematical knowledge. But some other possibilities are not paid enough attention
concerning the inner resources, the additional storage of the manipulative structures
already designed. The last traces the way of new constructions and considerations
resulting in very interesting characteristics and parameters improving theoretical
understanding as well as helpful for optimizing the practical applications as a whole.

For instance, to solve some practical tasks with high precision it is necessary to
improve their accuracy. The sensibility theory could be used to solve that problem. It is
a very important quality characteristic [5] of robot-manipulators, which is expressed by
the sensibility coefficients and directions [1, 2, 3] in the working zone. The sensibility
depends on the robot-manipulator system state. In the case of contact tasks the notion of
dynamics sensibility [15] is introduced taking into account the different forces not only
between the robot and the environment but also between the robot-manipulator parts.

The presence of redundant joints [7, 10] has important influence on such quality
characteristics as accuracy and sensibility, especially on sensibility parameters —
coefficients and directions of kinematics [1, 2] and dynamics sensibility.

The dynamics sensibility parameters are determined on the basis of the kinematics
ones and on the basis of the dynamic model of the manipulator. To describe robot-
manipulators motion itis necessary to create their dynamic models. Different approaches
exist for that. One of them is the method based on the graph theory and the Orthogonality
principle [13, 14, 15], which is very convenient for hybrid systems analysis. Such is the
method used in that work for dynamic modeling and computer analysis.
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To do successful analysis of kinematics and dynamics sensibility parameters,
allowing their visualization and calculation also for structures with more d.o.f., more
than six, it is necessary to create some programs using existing software. In that work
MATLAB package is used to create an appropriate program for sensibility parameters
visualization and investigation. This developed software makes easy the theoretical
understanding and makes possible the sensibility analysis of robot-manipulators with
more degrees of freedom.

The subject of the paper is computer analysis and visualization of kinematics and
dynamics sensibility parameters variation in dependence on the system state as well as
visualization of the kinematics and dynamics sensibility ellipsoids interaction. The
kinematics and dynamics sensibility parameters will be studied in order to achieve new
quality characteristics — higher accuracy and energy optimization.

2. Theoretical background

2.1. Kinematics sensibility

The kinematics sensibility is a system quality characteristic having as quantity param-
eters the corresponding sensibility coefficients and directions. It can be described
mathematically by transformation t mapping the configuration robot space QeR" into
its working one R3. The transformation t, isa homomorphism, consisting of two different
ones 7 and t,. They map the neighbourhood AQ around the point (configuration) qeQ
into the sensibility position and orientation ellipsoids. The center of each one of them
coincides with the point g and their semi-axes, following the sensibility directions, are
equal to the sensibility coefficients by absolute values. The coefficients and directions
are obtained as solutions of the general task of eigenvectors for both homomorphisms.
Obviously, the rank of _ and t does not exceed the dimension of R®. The presence of
redundancy reflects the dimension of Q, i.e. it becomes bigger.

2.1.1. Positioning. Tree-like manipulative structures are considered with n degrees of
freedom, where contiguous bodies are connected by translation and rotational joints. The
joint parameters g, (i = 1, ..., n) are chosen as generalized coordinates. The vectors
q=(q,, ..., q,)" belong to the configuration space. An arbitrary point H is fixed in the
last structure body. Two coordinate systems are fixed in the support and in the last
structure body. Usually in practice the needed state realizes some deviations 6R, and 66
having probability behaviour. This is due to various reasons — errors in geometry, errors
in calculations, compliance, sensing, calculations, etc.

In the case of position the deviations are described by the following expression:
1) OR = A(Q)dq .

Let us consider an & — neighbourhood around a configuration q and assume that
the vectors 6g belong there. It is proved [8, 12] that the transformation (1) maps
n-dimensoinal ball € in k-dimensional sensibility ellipsoid EpeR3, where k = rankA. It is
also shown [4] that the ellipsoid’s semi-axes’ lengths are upper borders of 6R on k
orthogonal directionsand they are obtained as eigenvalues of general task of eigenvectors:
(Bp — AC)X = 0. For every state q the matrix A(q) from (1) defines a homomorphism
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T, between configuration space Q and working zone Z. The image of T, is the sensibility
ellipsoid for positioning [5] and the kernel is its orthogonal completing.

2.1.2. Orientation. In the case of orientation the deviations are described by the
following expression, which is equivalent to (1):

2 30 = L(g)dq.

For every state g € Q, the matrix L(q) from (2) defines a homomorphism <,
between the configuration space Q and the working zone Z. Its image is called
kinematics sensibility ellipsoid for orientation and the kernel is its orthogonal compleating.

2.2. Dynamics sensibility

If a force F is supposed to act at the characteristic point when a moment M is applied
to the last structure link, the dynamics sensibility coefficients and directions can be
defined for position and orientation respectively:

(3) o, = F.OR; o = M.80; B =F3R; B = M.30.

They are related to the additional energy, forces and moments have to be
compensated to assure optimal energy environment interaction.

Let at first the position dynamics sensibility coefficients be considered [2, 10]. The
first one — o = F.6R, is a scalar and has a dimension of energy. Here the question of
maximal anor minimal values of o_is important for practice. It is clear that when force
directionis perpendicular to some of the ellipsoid axes then the corresponding component
of 6R disappears and o._takes lower value. Generally the following cases are possible.

The kinematics sensibility ellipsoid is three-dimensional. In relation to force
direction one or two components of R could be eliminated, but o  is always positive. Its
minimum value is obtained when the force is collinear to the minimal ellipsoid axis, i.e.
the direction with minimal length.

When the kinematics sensibility ellipsoid is one- or two-dimensional it is possible
to minimize the coefficient oo up to zero. Here the role of redundancy is important
because it is related to the problem concerning the realization of sensibility directions,
following preliminarily given orientations.

The upper border of o, i.e. its maximal value is equal to the product of the upper
border of F and the maximal sensibility coefficient for position.

The coefficient B, expresses the additional moment caused by force F in the
presence of SR. Inthe same way the kinematics sensibility ellipsoid is modified, i.e. any
of its axis changes its direction in perpendicular plane. All the moments belong to that
ellipsoid which will be called dynamics sensibility ellipsoid for position. Generally the
following cases are possible.

The dynamics sensibility ellipsoid is three-dimensional when the force direction is
non-collinear to its three axes.

If the force direction is collinear to some axes, the dimension of the dynamics
sensibility ellipsoid decreases by 1 in comparison with the kinematics sensibility
ellipsoid. The most interesting case is when the kinematics ellipsoid is a segment,
collinear to the force — then the dynamics ellipsoid disappears, i.e. B takes its minimal
value — zero.
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The maximal value of B_ is obtained when the force direction is perpendicular to
the biggest kinematics sensibility ellipsoid axis.

In the same way the dynamics sensibility ellipsoid for orientation can be defined and
some analogous cases could be considered.

3. Computer analysis

To make complete investigation of the sensibility parameters it is necessary not only to
obtain their analytical expressions, but also to visualize their variation in dependence of
the system state or of the applied external force, or changing the geometrical parameters
to analyze the sensibility parameters variation. Sometimes even it is not possible to
calculate them without using some appropriate software, because for mechanical
structures with more degrees of freedom, more than six for instance the calculations are
long and hard. In order to achieve better and more precise results from our analysis, we
have developed some software, using MATLAB package, to visualize the kinematics
and dynamics sensibility parameters, their variation in dependence of the configuration
of robot-manipulator. With the help of this software it is also possible to visualize the
kinematics and dynamics sensibility ellipsoids mutual disposition in the working zone.

At first some software has been developed allowing the kinematics sensibility
coefficients analysis. Through this software the variation of each kinematics sensibility
coefficient could be visualized in dependence of the system configuration. This way these
configurations where the kinematics coefficients take lower values, close to zero could
be easily detected. For these configurations the orientation and position errors distribu-
tion is limited in smaller region. The system accuracy is higher. As a result of this
computer analysis the final result is two-dimensional graphics. The configuration vector
is represented asa scalar, along the x axis. Along the y axis is the investigated coefficient.
Its variation as a function of the configuration vector Q is shown.

The kinematics sensibility coefficients represent the sensibility ellipsoid axes
lengths. Another software has been developed which is helpful for kinematics sensibility
ellipsoids’ visualization in the case of position and orientation respectively. Their mutual
disposition in the working zone is investigated and visualized, as well as their dimension
variation in dependence of the system state. As a result we have obtained three-
dimensional graphics where the kinematics sensibility ellipsoids for orientation and
position are shown. With the help of this software their variation in the whole working
zone could be visualized, or in some parts of it.

In the same time a very interesting question is related with the dynamics sensibility
ellipsoid variation in comparison with the kinematics sensibility ellipsoid. Its dimension
could decrease in dependence of the external force direction with respect to the
kinematics sensibility ellipsoid axes. When the applied external force is parallel to some
of the axes of the kinematics sensibility ellipsoid, then the dynamics sensibility ellipsoid
dimension decrease by one in comparison with the kinematics sensibility ellipsoid
dimension. Also its axes directions are the kinematics sensibility ellipsoid axes rotated
to 90°. The last software investigation is exactly related with the above-enumerated
problems’ solution. Varying the external force direction and also changing the generalized
coordinates values, we could visualized the kinematics and dynamics sensibility ellipsoid
variation in the working zone of the robot-manipulator. That is helpful to view their
mutual disposition, dimension and orientation. Of course all these computer analyses are
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convenient to be applied in the case of orientation as well as in the case of position. They
could be done in the whole working zone, or in some part of it, for all the kinematics
parameters. The most precious thing is that this computer analysis is appropriate also
for structures with many d.o.f., when it is not simple and even possible to obtain the
sensibility parameters analytical expressions. Using this software it is easy to choose
these configurations where the error distribution is in smaller regions or in preliminary
given directions. It is simple to investigate the redundant joint influence on the sensibility
ellipsoid dimensions. Itis proved [6, 10] the redundancy is helpful to control the sensibility
parameters. And not in the last place, this way of analysis makes the theoretical
understanding easier and is useful for better quality characteristic achievement.

4. Application

The software developed for investigating and visualizing the kinematics and dynamics
sensibility parameters finds its concrete application during the conception of amechatronic
system, which will be used in medicine for drilling operations. The kinematics scheme
and the obtained results are presented bellow.

Xo X1 A X A X3
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Fig. 1. Kinematics scheme of the manipulative structure RLT||R

4.1. Kinematics sensibility parameters investigation for the manipulative
structure RLT|R

First the kinematics sensibility parameters are investigated. Their analytical expressions
are obtained and presented.

The homomorphism T, is described by matrix A and matrix B, having the form
respectively:

(p,+q,)cosq sing 0 (p,+0,)* 0 0
@) A= (p3+q2)sinq1 —c0sq, 0 , Bp= 0 10
0 0 0 0 00
The Ker B, = Ker A is described by one basic eigenvector:
() Xo=[ o 1J

Here Ker A is one-dimensional. And Im A is two-dimensional derived by the eigenvectors

x(z)=[1 0 o]Tand x(3)=[0 1 O]Tcorresponding to the positive eigenvalues

A, = (p, + 0,)% A, = 1 respectively. Therefore we have two-dimensional kinematics
sensibility ellipsoid in the case of position.

In the case of orientation the homomorphism < is described by matrix L and the
matrix B, having the following form respectively:
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€q,sq, 0 sq.cq,
(6) L= > cq, @+ cq3) 0 -—sqsq, ,
—-sqsq, 0 cq (1+cq)

1+c%q +2cq, 0 -sqsq, ‘:q1(1+ cq,)+cq,,
@) B = 0 0 0
—s0sq, éql (d+cq,) + cq3) 0 1+c%q, +2cq,

The Ker B, = Ker L is described by one basic eigenvector:
(8) Xx0=p 1 of.
Here Ker L is one-dimensional. And Im L is two-dimensional described by the

eigenvectors x(2)=[1 0 o]Tandx(a)z[o 0 1]Tcorresponding to the positive

eigenvalues A, = A, = 1 (in first approximation). Here the sensibility ellipsoid for
orientation is also two-dimensional.

Here it is interesting to know which are the configurations where the kinematics
sensibility coefficients take lower values, close to zero. One way to detect easily these
configurations is to develop some software giving the possibility to visualize them. Such
software is developed allowing the visualization of the kinematics sensibility coefficients
variation in dependence of the system state (configuration). The n-dimensional zone Q
is interpreted as one-dimensional numerical axis and the sensibility coefficients can be
graphically presented as a function of one argument. The concrete results for the
considered manipulative structure could be seen on the next Fig. 2.
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Fig. 2. Maximal kinematics sensibility coefficient variation for the manipulative structure RLT||R with
respect to the normalized configurational vector Q, in the case of position

Here the maximal kinematics sensibility coefficient is visualized, in the case of
positioning, as a function of Q (configuration vector). With “*” the coefficients
calculated values are marked (without normalizing them).

42



The kinematics sensibility coefficients represent the sensibility ellipsoids axes
lengths. When they decrease or become zero, the sensibility ellipsoid dimension
decrease therefore the orientation and position errors are distributed in smaller regions.
In the case of the concrete structure RLT//R we have two-dimensional kinematics
sensibility ellipsoids in the case of position and orientation respectively. It is interesting
toknow their mutual disposition in the working zone of the robot-manipulator. It is useful
also to investigate the sensibility ellipsoid dimension variation in dependence of the
system state. For these configurations where the sensibility ellipsoid axes lengths
decrease or one of them is close to zero, one could say that the errors are distributed in
smaller region and the system accuracy increase. For some practical tasks it is useful
to choose some configurations where the kinematics sensibility directions are oriented
ina preliminary given direction. For instance for drilling operations the most useful case
is when the sensibility ellipsoid is one-dimensional and its axis follows the drilling
direction. That is the reason why it is important to investigate the sensibility ellipsoid
dimension variation in dependence of the vector Q, as well as its orientation in the
working zone. Software is developed visualizing the sensibility ellipsoids variation in the
case of position and orientation simultaneously. The results for the considered structure
RLT/IR are presented below for two arbitrary chosen configurations. We could see that
in the first case the sensibility ellipsoid for orientation (with gray color) is nearly a
segment, and its remaining axes lengths are close to zero. Its minimal axis length is
shorter than the minimal axis length for the sensibility ellipsoid in the case of position. The
last (with black color) is also two-dimensional and there are some configurations where
its axes lengths decrease visible.

M A 400

Fig. 3. Kinematics sensibility ellipses interaction in Fig. 4. Kinematics sensibilityellipses interac-
the case of position and orientation, for some arbi- tioninthe case of position and orientation, for
trary chosen configurations. Grey — kinematics another configuration (g, = 0.5585 rad;
sensibility ellipsoid for orientation which is ap- - - ! ’

y ellip P~ q,=5mm; q, = 0.8727 rad). In the case of

roximately a segment. The eigenvalues are: A, = 0; . . . .
P Y aseg 9 1 orientation the eigenvalues corresponding

A, = 0.4132; A, = 0.8214. With black color the hi fi . R i
kinematics sensibility ellipse for position is marked. to this configuration are: A, = 0; 4, = 0.2959;

Its axis lengths (eigenvalues) are: &, = 0; 4, = 1, 21,=0.7590. In the case of position they are:
A, = 225. The configuration for which these ellip- A, =0;4,=1; 4,=25

soids are visualized is g, = 0 rad, g, =15 mm,

g, = 0.8727 rad
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4.2. Dynamics sensibility parameters investigation for the manipulative structure
RLT|R.

Another element of this investigation is the dynamics sensibility parameters analysis.
They are investigated when we have contact task. Let the following notations are made:
F, T—main vector and main moment of external action on the last body; 2 , ., — the non-
zero (positive) eigenvalues for position and orientation. Following the definitions for
dynamics sensibility coefficients, it can be written for the maximal coefficient values

o, = 1//1[, |F|; o= \/Z |T| . For the considered structure the main vector of external

forces consists of gravity force, resistant force (due the contact with the bones). The
last is on the translation direction and the first depends on the concrete drilling position.
Both coefficients express the additional power, i.e. energy for unit time the structure
needs to compensate the system error, so that it can be minimized in the case when the
gravity is perpendicular to the drilling direction. Finally, the maximal values of o and o,
are obtained by evaluation of upper borders of F and T, which could be taken from real
experimental results. In the same way the coefficients B, and B3, can be analyzed for the
considered structure. As general, they are related to the additional moments, the system
needs to compensate due to corresponding errors. In our case B is different from zero
only for the gravity force component F', i.e. the additional moment appears when F' is
collinear to drilling direction. There is dependence between o and 8 due to mutual
. ey . p. p

vectors disposition. When o increases, B, decreases at the same time by absolute value.
By analogy, the minimal value (zero) of B_is obtained when the main moment is collinear
to the orientation error vector. The maximal values for B and B, also depend on the
appropriate evaluations of main force and moment absolute values. In our case only o,
and B, can be minimized for the sake of A, (especially the geometric parameter). But
the remaining coefficients depend entirely on the force and moment evaluation.

Two cases are vizualized in the case of orientation The first one is when the
external force (Fig. 5) is perpendicular to the drilling direction. In that case the dynamics
sensibility ellipsoid dimension decrease by one with respect to the kinematics sensibility
ellipsoid dimension. In the second case the external force is parallel to the drilling
direction (Fig. 6). In that case the dynamics sensibility ellipsoid dimension do not
decrease with respect to the kinematics sensibility ellipsoid dimensions. Both ellipsoids
are two-dimentional here. In the figures bellow the kinematics and dynamics sensibility
ellipsoids are visualized for two arbitrary chosen configurations. Their mutual disposi-
tion and variation in the working zone in dependence of the configuration vector could
be visualized with the help of the developed software. The last makes the theoretical
understanding easier and traces new ways of investigation and accuracy and energy
optimization.
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Fig. 5. Manipulative structure RLT||R. Case of orien-
tation. With grey — kinematics sensibility ellipse,
with black — dynamics sensibility ellipse (in that case
—segment). When the external force F is perpendicu-
lar to the drilling direction. In that case the dynamics
sensibility ellipsoid dimension decrease by one in

Fig. 6. Manipulative structure RLT|R. Case of
orientation. With grey — kinematics sensibility el-
lipse, with black — dynamics sensibility ellipse.
When the external force F is parallel to the drilling
direction. In that case the dynamics sensibility
ellipsoid dimension do not decrease

comparison with the kinematics sensibility ellipsoid

5. Conclusion

Sensibility parameters investigation is very important for achievement of better accuracy
and for energy optimization. In that sense it is important the obtained results to be very
clear and precise. But during the investigation of manipulative structures with many
degrees of freedom, in most of the cases, it is impossible to obtain explicit analytical
expressions for the sensibility parameters. In that case it is convenient to use some
software, able to calculate the sensibility parameters values in the whole working zone,
or round some chosen configurations. Such software has been developed in that work
and the obtained results are visualized. The last makes the obtained results clearer and
offers a faster way to detect the most appropriate configurations for better execution
of the concrete robot task. These are the configurations for which the kinematics
sensibility coefficients take lower values, close to zero, or the sensibility ellipsoids axes
are oriented along preliminary given directions. As well as these configurations, where
the position and orientation errors are distributed in smaller regions and the additional
moments and energy which have to be compensated due to corresponding errors are
minimal. To control the sensibility parameters values and the sensibility directions state
as well as the sensibility ellipsoids dimensions an important role have the additional
degrees of freedom. Using the developed software there is no problem to add as many
additional d.o.f. as we want. The geometric parameters also have influence on the
sensibility parameters. As future work it will be useful to investigate their influence and
that could be used for mechanical structure optimization.
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KommprorepHblli aHanu3 ¥ BU3YyaJIbHOE MNPEICTABICHUE MAPAMETPOB
KHHEMaTHYECKON U JMTHAMUYECKON YyBCTBUTEIBHOCTH

Hanuena Bacunesa

Huemumym mexanuxu, 1113 Cous

(Pe3wmMme)

PaccmatpuBarotcst mpo0ieMbl, CBSI3aHHBIE C aHAIM30M MTapaMeTPOB KHHEMATHUECKOH
1 JUHAMUYECKON UyBCTBUTEILHOCTH MAHUITYJISIIUOHHBIX pOOOTOB. UyBCTBUTENHEHOCTD
SIBJISIETCS KAUECTBEHHOM XapaKTEepUCTHKOM CUCTEMBI, ONBICUBAIOILEH €€ “BHYTPEHHBIX
CBOWCTB B KaXXJ0H KOH(QHTypanuu. MaTemMaTH4YeCKH OHa MpEICTaBISIETCS
roMoMOp(U3MOM, H300pakaroluii OKPECTHOCTh MPOM3BOJILHONW KOH(PUTYpalluud B
paboueii 30He MaHUMysATOpa. KONMMuecTBeHHbIE MapaMeTphl 3TOH XapaKTePUCTHKH
Ha3bIBAIOTCS Koe GUIIEHTaMHU 1 HATTPABJICHUSIMU KWHEMATHYECKOM 1 IMHAMHYECKON
YyBCTBHTEIFHOCTH, a 00pa3bl TOMOMOp(}H3Ma — 3JUIMTICOMIBI YYBCTBHTEIBLHOCTH.
HUccnenoBanue mapaMeTpoB 4yBCTBUTENBHOCTH CBSI3aHHO C MOBBILIIEHHEM TOYHOCTH
W ONTHUMHU3AIMU DHEPTHH, HEOOXOAMMOW [JIsi BBIMIOJHEHHH pabouedl 3amadn
MaHHUNYJIATOpa. AHAIMTHYECKOE pelleHHe, 0COOCHHO Al MaHHMIYJIATOPOB C
M30BITOUHBIMH CTEIICHSIMH MOJBIXKHOCTH (0OJiee YeM IecTH), TpeOyeT rpOMO3IIKUE
BBIYMCIICHUS W B PE3yJbTaTe MOJMY4alOTCs CIUIIKOM CJIOXKHBIE MaTeMaTHYecKue
BeIpakeHus. [lostomy Ha ocHoBe MATLAB co3nana mporpamMMHasi cuctema, C
MTOMOIIIBI0 KOTOPOH HCCIENyIOTCs MapaMeTpbl YyBCTBUTEIBHOCTH M TMOJTydaeTcs UX
BH3YyallbHOE TIpelicTaBlieHne. B paboTe mprBeneHHBI IPUMEPBI aHaIM3a CTPYKTYD,
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MOKa3bIBaIOINE COOTBETCTBUE C TEOPETHUYECKMMHU pPE3yJbTaTaMH, a TaKkKe M
HCCIIEAOBAHNE CHCTEMBI C OOJBIIMM YHCIOM CTeneHell moaBrkHoCcTH. ITokasaHo
TAKXK€ BU3yaJIbHOE [IPEICTAaBICHUE B3AaMMOIECTBHU S DJIUIICOMI0B YYBCTBUTEIIBHOCTH.
3HaveHue 3TOM pabOThl CBSA3aHHO C BO3MOXKHOCTSMH HAaXOXKICHUU ONTHUMAaJIbHBIX
COCTOSTHUN MaHUIYJISTOpPa JJIsl BHIMOJIHEHUU COOTBETCTBYIOIICH paboyeli 3aaun B
CMBICJIE TOBBILIEHUS €70 TOYHOCTh I MUHUMM3a1IMM KOMIIEHCUPYIOLLIEH SHEPTUH U3-32
BEPOSATHBIX OTKJIOHEHUM. Y Ka3bIBAETCS TAK)KE BO3MOXKHOCTh TPUMEHEHHUSI CO3/1aHHOM
MPOrPaMHOM CUCTEMBI JUTs Oy TYIIIErO UCCIICAOBAHUS [TaPaMETPOB UyBCTBUTEIBHOCTH
B PE3YyJIbTaTE BAPUPOBAHUS F€OMETPUUECKUX MApaMETPOB UCCIENYEMOU CHUCTEMBI.
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