
 87

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ. BULGARIAN ACADEMY OF SCIENCES

ПРОБЛЕМИ НА ТЕХНИЧЕСКАТА КИБЕРНЕТИКА И РОБОТИКАТА, 53
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 53

София . 2002 . Sofia

Software for Making Commands in Unitary Code

Rumiana Bozhkova

Central Laboratory of Mechatronics and Instrumentation, 1113 Sofia

1. Preface
The computerized system for remote control generally consists of encoding-
transmitting and receiving hardware, controlling software, and mechatronical
device Fig 1, where 1 is controlling software; 2  transmitting hardware;
3 receiving hardware; 4  mechatronical device.

Fig. 1. Block diagram of the computerized system for remote control

During the past years the operating system Linux gained great
popularity and wide spreading. Its characteristics like safety, stability,
reliability, as well as the fact that it is practically free of charge makes it very
attractive.

2. Description of the parallel port
A parallel port links software to the peripheral devices. To software, the
parallel port is three 8-bit registers occupying three consecutive addresses in
the I/O space. To hardware, the port is a female 25-pin D-sub connector,

1

2

3

4

 88

carrying twelve latched outputs from the computer, accepting five inputs into
the computer, with eight ground lines (pins 18-25). Table 1 shows the pinout.

Table 1

Pin Signal Description
1 STROBE input/output
2 D0 output
3 D1 output
4 D2 output
5 D3 output
6 D4 output
7 D5 output
8 D6 output
9 D7 output
10 ACK input
11 BUSY input
12 NOPAPER input
13 SELECTED input
14 AUTOFEED input/output
15 ERROR input
16 INITIALIZE input/output
17 SELECT input/output
18 ground
...
25 ground

A parallel port is identified by its I/O base address, and also by its LPT
port number. The BIOS power-on self-test checks specific I/O addresses for
the presence of a parallel port, and builds a table of I/O addresses in the low
memory BIOS data area, starting at address 0040:0008 (or 0000:0408).

The parallel port I/O address table contains up to three 16-bit words
(four on some BIOSes). Each entry gives the I/O base address of a parallel
port. The first word is the I/O base address of LPT1, the second is LPT2, etc.
If less than three ports were found, the remaining entries in the table are zero.
DOS, and the BIOS printer functions (accessed via int 17 h), use this table to
translate an LPT port number to a port address, to access the appropriate
physical port.

The power-on self-test checks these addresses in a specific order, and
addresses are put into the table as they are found, so the table will never have
gaps. A particular I/O address does not necessarily always equate to the same
specific LPT port number, although there are conventions.

The video cards parallel port is normally at 3BCh. This address is the
first to be checked by the BIOS, so if a port exists there, it will become
LPT1. The BIOS then checks at 378 h, then at 278 h. I know of no standard
address for a fourth port.

 89

A parallel port consists of three 8-bit registers at adjacent addresses in
the processor's I/O space. The registers are defined relative to the I/O base
address, and are at IOBase+0, IOBase+1 and IOBase+2 (for example if
IOBase is 3BCh, then the registers are at 3BCh, 3BDh and 3BEh).

The data register is at IOBase+0. It may be read and written (using the
IN and OUT instructions, or inportb() and outportb() or inp() and outp()).
Writing a byte to this register causes the byte value to appear on the data
signals, on pins 2 to 9 inclusive of the D-sub connector (unless the port is
bidirectional and is set to input mode). The value will remain latched and
stable until a different value is written to the data register. Reading this
register yields the state of the data signal lines at the time of the read access.

Data register: LPTBase+0, read/write, driven by software (driven by
hardware in input mode) (Table 2).

Table 2

The status register is at IOBase+1. It is read-only (writes will be ignored).
Reading the port yields the state of the five status input pins on the parallel
port connector at the time of the read access (Table 3).

Status register: LPTBase+1, read-only, driven by hardware.

Table 3

The control register is at IOBase+2. It can be read and written. Bits 7

and 6 are unimplemented (when read, they yield undefined values, often 1,1,
and when written, they are ignored). Bit 5 is also unimplemented on the
standard parallel port, but is a normal read/write bit on the PS/2 port. Bit 4 is

7 6 5 4 3 2 1 0 Name Pin
* BUSY 11
 * -ACK 10
 * NOPAPER 12
 * SELECTED 13
 * –ERROR 15
 * * * undefined

7 6 5 4 3 2 1 0 Name Pin
* D7 9
 * D6 8
 * D5 7
 * D4 3
 * D3 5
 * D2 4
 * D1 3
 * D0 2

 90

a normal read/write bit. Bits 3, 2, 1 and 0 are special  see the following
section.

Control register: LPTBase+2, read/write (see Table 4), driven by
software and hardware.

 Table 4

3. How the software works
Normally the port sends information to the peripheral device through the
eight data lines D0-D7  the pins from 2 to 9. Other pins are used for
controlling data flow and indication of various events. To be able to control
our system, we need to make the port working in a different way. We need to
control individual pins on the parallel port. So we need to program directly
the parallel port registers. From the above information it is clear, that from all
the 25 pins, 8 are grounds, 5 are only input pins  the pins 10, 11, 12, 13 and
15. There remain 12 pins, usable for sending data to the mechatronical
device.

Because the transmitting and receiving hardware works with 9-bit word,
we need 9 pins for control. So we use the eight data-pins the pins from 2nd
to 9th pin, and the first pin- “STROBE”  in other words the software
controls the data register IOBase+0, and the control register IOBase+2. We
have to remark, that the data-pins 2–9 are gathered. That is, their directions
are not individually controllable; they must be either all inputs or all outputs
[2].

Note: There are old parallel ports, which do not support switching
between inputs and outputs on pins 2–9 at all, so pins 2–9 are always
outputs.

As an interface between the program and the user we used the
TurboVision libraries.

We made two variants of the program  the first one, working on the
PC with installed Linux, the other one  mobile installed on 3 bootable
floppy disks. The second one allows the program to be run on every PC,
independent on the operating system, installed on it. Because of the lack of
space on the floppy disks, we used in this variant of the program the
lightened shell ash, instead of the standard for the Linux, Bourne-Again
shell-bash.

7 6 5 4 3 2 1 0 Name Pin
* * Undefined -
 * Inp mod -
 * IRQ enable -
 * -SELECT 17
 * INITIALIZE 16
 * AUTOFEED 14
 * STROBE 1

 91

4. The interface
The program has two menus which can be used by the mouse, or by the
keyboard  the button F10 activates the menus, and the arrows Left and
Right may be selected in the proper menu. The first one - for changing the
directory, output to the shell without closing the program and end of the
program. The other menu opens a window with buttons, related to the control
functions (Table 5).

 Table 5

Button Unitary code
STOP 100000000
Speed 1 010000000
Speed 2 001000000
Reverse 1 000100000
Speed 3 000010000
Speed 4 000001000
Speed 5 000000100
Reverse 2 000000010
Trajectory 000000001

The control buttons may be selected by the mouse, or by the keys

“Tab” and “Enter”.
In Fig. 2 the graphical interface of the control software is shown

schematically.

Fig. 2. Graphical interface

F i l e E n g i n e

Shell
Ch Dir

Control

Exit

Exit

 92

R e f e r e n c e s
1. Kris Heidenstrom's PC Parallel Port Mini-FAQ 
 http://home.clear.net.nz/pages/kheidens/

2. IBM Parallel Port FAQ/Tutorial Version 0.96 9/1/94 by Zhahai Stewart.

hftp://ftp.rmii.com/pub2/hisys/parport/

Софтвер для генерирования команд в унитарном коде
Румяна Божкова
Центральная лаборатория мехатроники и приборостроения, 1113 София

(Р е з ю м е)
Описывается софтвер для генерирования команд в унитарном коде,
используемый в модуле компьютерной системы для дистанционного
управления мехатронных устройств. Команды представляют 9-битовые
слова, которые передаются в PC в двоичном коде. Связь с
передатчиком осуществляется при помощи паралельного порта PC, так
как необходимо передавать 9 битов в одном и тоже времени.
Закодирование команд осуществляется программой в языке C++,
работающей в операционной среде Linux. Програма высилает числа в
унитарном коде на определенных выводах паралельного порта. Выводы
поставлены на каждых 10 ms – время, необходимо для хардуера.

