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1. Introduction

1.1. Why do the artificial neural networks borrow means from other domains of the
artificial intelligence? Al domains related to the design and tuning of the artificial
neural networks

A key shortcoming of the current state of neural network technology is the lack of
any effective design methodology. Neural network technology is becoming widely
accepted in various industries and nunerous operating applications have demon-
strated significant performance improvements over prior methods. But current ap-
proaches to developing neural network applications are a critical barrier to realizing
the full potential of this technology- Optimizing neural network gpplications is a
formidable design task requiring myriad choices in the number of neurons and
layers, their interoconnections and the training algoritim to be employed as well as all
its .

The rest of this chapter introduces the following aspects: the relations between
the artificial neural networks (ANN) and the Al as the greatest domain of the
informattion technologies; the relations between the AN and the evollutionary com-
puting (EC) as the domain directly responsible for the design, the optimization and
the training of the ANN. (Section 1.2 presents an abstract of the ways for system
modeling which are directly related to the ANN domain).

Chapter 2 introduces the ANN properties thus proving the necessity to borrow
approaches and techniques fram other Al domains and chapter 3 views the modemn
achievements of gpplying the EC (including the genetiic synthesis) for the design, the
optimization and the training of the ANN.

1.2. Approaches to system modeling
Fig- 1 views the basic aspects of the approaches to system modeling ([1]; the figures
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and the tables are placed in the Agpendix).

Section 1.3 presents a conparative analysis of the similarities and of the differ-
ences between the Al and the ANN as two different domains of the information
tedrologies.

1.3. Al and ANN

According to [2] the Al systems possess the following gereral properties: knovledge
represantation, reasoning and training.

According to [3] the A\N possess the followving main characteristics: level of
explanation, processing modes and structure of the information presentation. Table
1 shows a comparison between the Al as the environment of the ANN and the ANN
themselves.

Section 1.4 summarizes the role and the place of the EC in the cycle of the
design, the optimization and the tuning of the ANN.

1.4. The evolutionary computing and the ANN

The speculation that the ANN could be optimized using simulated evolution goes
back at least to [4]. Chapter 2 introduces an information about the efforts dedicated
1o the gpplication of the EC for the design, the optimization and the training of the
ANN. Fig. 2 summarizes the aspects of the cooperation between the EC and the
ANN with remarks of the correspondent references:

2. ANN

2.1. A\N and the time scale (substantial ideas)

The history of the fundamental hypotheses and models concerming the ANN ([13])
show that some ideas have originated independerntly from more than a single scien-
tist, but not all the scientiists enjoy merited popullarity.

2.2. Properties and applications of the ANN pointing to the necessity to borrow
methods and techniques fram other Al domains

Figs. 3 and 4 illustrate the principle properties and goplications of the AN (they
follow [14]).

It is evident that the set of properties including the wide range of the applica-
tions is a source of principal troubles during the processes of the design, the doice
of parareters, the mathematical description, the gotimization and the initialization
of the A\N. Therefore there is a necessity to borrow means from other Al domains
including the EC approaches (also see section 1.1).

The next chapter is an introduction to the concrete projects with ANN based on
EC approaches which include the design, the optimization and the learming of the
ANN .

3. Evolutionary computing and the ANN

3.1. The POE model

The POE model is introduced in [15]. It is aimed at the most significant features of
the living creatures; also it is possible 1o make a conparison with the goals during
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the process of constructing an ANN (Table 2).

[16-19] comprise a review of the modern ANN appl ications which are accessible
for the POE-model (Fig- 5).

Table 2 and Fig. 5 naturally fix the connections between the ANN and the EC.
The latter is an object of section 3.2.

3.2. Modern solutions with ANN based on approaches with EC

The most common network involved iin this studies has been the multilayer perceptron.
IT the network architecture is predefined, the problem becanes one of trying to find
optimal settings for the weight and bias terms. A natural representation for this isa
real-valued vector where each component corresponds to a weight or bias. For such
continuous-valued representations the common method of mutation is to add a
multivariate zero mean Gaussian random variable to all comporernts, thereby in this
case changing all of the weights and biases simultaneously. The behavior of each
offspring network is strongly related to its parent and there is a cortinuous range of
passible new behaviors.

The variabil ity between each parent and i1ts offspring can be cortrolled directly
by specifying the individual variances for each Gaussian perturbation (or covari-
ances) - One cammon method for accomplishing this is to set the step size (standard
deviation) to be proportional to the mean squared error of the parent network. In
this manner, as better solutions are discovered, the step size is reduced and the
search effort is concentrated around the parent and coversely, a larger variance is
used for parerts with relatively poor performance.

Some of the first efforts at applying EC to optimizing ANN can be found in
[20-21] . More recent research has involved sinultaneously evolving both the struc-
ture and weights of feed forward and recurrent ANN (22, 23, 24]). Some attention
has also being given to evolving fuzzy ANN in which classification of input patterms
are made with respect to their fuzzy menbership in ewlved clusters ([25])-

3.3. Genetic synthesis and optimization of the ANN

EPRI has been sponsoring research by Tariq Samad and Steven A. Harp at Honeywell
Technology Center in the use of genetic algorithms to synthesize and ogptimize the
design of the ANN. Initial investigationwas directed at validating the approach by
optimizing an already trained neural network developed manual ly in a realistic
application of heat rate modeling performed for EPRI by Robert Uhrig at the
University of Tenessee. The same data sets from TVA”s Sequoyah nuclear power
plant were used for the A\N training and testing. Appropriate criteria for optimiza—
tion vere determined to include accuracy (e.g- low error prediction of plant gross
heat rate), leaming speed and the ANN simplicity (e.g- low nunber and density of
connections) . The ANN design experiments and evaluations began with a review of
various A\N designs appropriate for the thermodynamic model ing application. Ex-
periments were conducted that showed the genetical ly optimized ANN had a signifi-
cant performance improvement over manually developed ANN. This research also
demonstrated that the choice of Input variables is critical inthe AN gpplications.
The genetic algoritim’s abil ity to sinultaneously gotimize input selections alag with
the AN structures and learning parameters was vital to the accurate modeling.
Ancther result was that genetic optimization need not be limited to evolving indi-
vidual trained ANN. The ANN architectures can be designed for classes of applica-
tions and then later trained an specific data for different appl ications within a given
class (11, 12)).
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Experiments on two additional applications have been completed: engine NOx
emissions and ozone levels in New York City. Both resulted in the automatic
production of models caompetitive with the best conventional non-linear statistical
models developed for these problems by the exercise of considerable statistical
expertise and manual adjustment.

Demonstration software has been developed that runs under Microsoft Win-
dows 3.x on a PC. The software features an easy-to-use graphical interface and
incorporates tutorial material on ANN, genetic algorithms and the neurogenetic
design technique. Two probllems are included — heat rate modeling and engine NOx
emissions prediction-along with optimized ANN models for them. The software
also contains an A\N specification and training facility, allowving users to test ad
compare their omn hand-crafted designs with the genetical ly optimized ones and to
have the GA gotiimize their design within the constraints they establish for it.

Research is continuing with the objective of demonstrating conclusively the
power of genetic synthesis of the ANN for modeling and analysis applications
throughout the electric poser industry. An in-depth assessment of this design tech-
nique requires applying it to a variety of additional problems relevant to EPRI
members. The First of these is the real time pricing (RTP) of electric power ina
competitive market. A GA is being used to design and optimize an ANN model
using data from the Marriot Marquis Hotel in New York City. The data includes two
yearrs of hourly loads, rates, weather information, etc. dotained in a joint BPRI and
Consolidated Edison RTP experiment. Accurately forecasting the loads and the rates
would be of value to any electricity customer who had energy storage facilities or co-
gereration capebility.

The Investigations are also exloring ways to extend the state of the art for this
gereral approach by exploring extensions to both the genetiic and neural components
of the system.

APPENDIX

System Math + : Sinplicity of the description

modeling equations Vectors of big dimensions
Difficult remiting the system of the equations (if pos sible)
Difficult re-sst p of the system (folloning its descriptiay)
Limited computing resources for nultivariable systems

along the tine axis
ANN + Convenient for 1ll-defined tasks or for inplicit algorithm formula
tas

Conveniatt for iterative modeling (structural ad allgoritimic iterativity)

Camplicated design with respect 1o the fuzzy systems
Unpredictable behavior

Asymptotic convergence

Small input changes lead to a similar, but new training

Lirguistic Non-mathematical (logical) formalism

rules + Easy system re-set up
Languages with ill1-defined grammars adnitting contradictory conclu
sions from fadts

Fig. 1. Approaches to system modeling
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Table 1. Comparison between the Al and the ANN

Presentation Al ANN

Knowledge Synbolic, digital, sucoessive processirng Structural ly-coded knowledge;
itsexpansion depends on the)
neurons

Manner of Depends on the successive nature of the Parallel, distributed, strog in

processing languages and on the approaches to reasoning| biological prototypes

Stucture Quasi-linguistic of symolic exressions Decisive, dependent on the
ooncrete task, the solution is
difficult to expand, the AN
model nust be gereralized

EC & ANN design ([51-[8D)

ANN AW training ([91, G1HE]. [19D

Geretic synthesis and AN optimization ([11]-12])

Fig. 2. EC, its role ad its place in the cycle of the design, the gotimization and the tuning of

the ANN
ANN Advantages Adgptivity
(properties) Stability (of a fuzzy and noisy input)
Robustness
Disadvantages Qurse of dimensional ity

Design problems

Energy function (choice)

Convergence (classification problems)

Time for leaming

Classificatin Feedforward One-layer perceptron

ANN Multilayer perceptiron
ANN with RBF

Recurrent ANN  Corpetitive leaming
Kohonen”s SOM
Hopfield’s ANN
ART networks

Leaming Paradigm

Rule Error correctiion

Architecture Conpetitive leaming
Carbination (error correction

Algorithm  Supervised
Unsupervised Associative memo

ries

Categorization
Popular Perceptrons
algorithms Carpetitive leaming

& carpetitive leaming)
According to physical prin
ciples

Fig. 3. A\N description
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ANN
(o)

Besic Function approximation
Coding & decoding with ANN
Data compression
Image compression

Model ing
Dynamic Idntficatian Time Cererating
systems Model ing s Prediciton
Optimization
Control
Recognition Images Principal gplications
Typical goplications
Corcrete solutions
Speech Basic General scheme
concepts Difficulties
Recognition with ANN

Fig. 4. AN applications

Table 2. Goals for the AN design and their countterparts in the POE model

Goal ANN Analogy with the POE model
Model New ANN models / evolution of popular A N NPhylogeny (new species / evo
models ludonof livirg creatures)
Design Specifying the AN model for practical Ortogeny (growth of living crea
gplictias wres)
Learmning Supervised / unsupervised Epigenesis (basical ly unsuypervised)
ANN Language learming Inbom abilities (phylogeny)
(modern (Steels, 19%) Acopiired abi Hiies (epigeresis)
Jplica—
tas) ANN populations Bvolution on the glabal level (“phylogeny’)

(Yao 1993,
Nolfi etal. 194,
Liu & Yao, 1996)

Learning on an individual (“‘epigenesis™)

4 8
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4_ Conclusion

This paper is a review of the interrelations between the AN and the state of the art in
the field of the EC. The analysis starts with the place of the AN in the gpproaches to
system modeling folloned by a comparative analysis of the AN as a private case of
the Al which then is restricted to the field of the EC. The second part of the paper
presents the real ized approaches to animating the chosen ANN models (including the
design-, the gptimization- and the leaming- phases) starting from an EC badkground,
including geretic synthesis. The material is illustrated with schemes, tablesand a
represertative bibliography list.
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VICKyCTBEHHEIE HeﬁpOHHbIe CeTrM B KOHTEKCTE COBPEMEHHEIX
HaﬂpaBHeHIAﬁ B SBOJIOLVOHHOM BBHUMCJIICHVIM

Cregan KorHom, YaBnap Kopcemor, XpwmcTo ToueB

UHCTUTY'T MHYOPMALIMOHHEIX TexHoJsormi, 1113 Copus

(Pes3wowMe)

[IpencTaBiieH 0030P MCKYCTBEHHEIX HEMPOHHEIX CEeTeM B KOHTEKCTE COBPEMEHHBIX
HallpaBJIEHVI B DBOJIOLIMOHHOM BBMUMCIJIEHMM . YKaszaHa POINCTBEHHAS CBSA3b MEXIY
VUCKYCTBEHHEIM MHTEJIJIEKTOM U D3TUMM CeTaIMM, a TakxXe pacCMOTpeHa
onpernesnsnlas PoJlb DBOJIOLMOHHOT'O BEMMCIIEHMS YJIECHAKIAS IPOSKTHPOBaHKE,
ONTUMM3ALIMIO ¥ HACTPOMKY MCKYCTBEHHBIX HEMPOHHEIX ceTel. MaTepual
WJUTIIOCTPUPOBAH MIPMMEpPaMU B3aVMOIEVMCTBMA UCKYCTBEHHEIX HEVPOHHEIX CeTel
¥ ©BOJIOLIMOHHOT'O BBIUMCJIIEHMS .
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