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1. Introduction

1.1. Why do the artificial neural networks borrow means from other domains of the
artificial intelligence? AI domains related to the design and tuning of the artificial
neural networks

A key shortcoming of the current state of neural network technology is the lack of
any effective design methodology. Neural network technology is becoming widely
accepted in various industries and numerous operating applications have demon-
strated significant performance improvements over prior methods. But current ap-
proaches to developing neural network applications are a critical barrier to realizing
the full potential of this technology. Optimizing neural network applications is a
formidable design task requiring myriad choices in the number of neurons and
layers, their interconnections and the training algorithm to be employed as well as all
its parameters.

The rest of this chapter introduces the following aspects: the relations between
the artificial neural networks (ANN) and the AI as the greatest domain of the
information technologies; the relations between the ANN and the evolutionary com-
puting (EC) as the domain directly responsible for the design, the optimization and
the training of the ANN. (Section 1.2 presents an abstract of the ways for system
modeling which are directly related to the ANN domain).

Chapter 2 introduces the ANN properties thus proving the necessity to borrow
approaches and techniques from other AI domains and chapter 3 views the modern
achievements of applying the EC (including the genetic synthesis) for the design, the
optimization and the training of the ANN.

1.2. Approaches to system modeling

Fig. 1 views the basic aspects of the approaches to system modeling ([1]; the figures
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and the tables are placed in the Appendix).
Section 1.3 presents a comparative analysis of the similarities and of the differ-

ences between the AI and the ANN as two different domains of the information
technologies.

1.3. AI and ANN

According to [2] the AI systems possess the following general properties: knowledge
representation, reasoning and training.

According to [3] the ANN possess the following main characteristics: level of
explanation, processing modes and structure of the information presentation. Table
1 shows a comparison between the AI as the environment of the ANN and the ANN
themselves.

Section 1.4 summarizes the role and the place of the EC in the cycle of the
design, the optimization and the tuning of the ANN.

1.4. The evolutionary computing and the ANN

The speculation that the ANN could be optimized using simulated evolution goes
back at least to [4]. Chapter 2 introduces an information about the efforts dedicated
to the application of the EC for the design, the optimization and the training of the
ANN. Fig. 2 summarizes the aspects of the cooperation between the EC and the
ANN with remarks of the correspondent references:

2. ANN

2.1. ANN and the time scale (substantial ideas)

The history of the fundamental hypotheses and models concerning the ANN ([13])
show that some ideas have originated independently from more than a single scien-
tist, but not all the scientists enjoy merited popularity.

2.2. Properties and applications of the ANN pointing to the necessity to borrow
methods and techniques from other AI domains

Figs. 3 and 4 illustrate the principle properties and applications of the ANN (they
follow [14]).

It is evident that the set of properties including the wide range of the applica-
tions is a source of principal troubles during the processes of the design, the choice
of parameters, the mathematical description, the optimization and the initialization
of the ANN. Therefore there is a necessity to borrow means from other AI domains
including the EC approaches (also see section 1.1).

The next chapter is an introduction to the concrete projects with ANN based on
EC approaches which include the design, the optimization and the learning of the
ANN.

3. Evolutionary computing and the ANN

3.1. The POE model

The POE model is introduced in [15]. It is aimed at the most significant features of
the living creatures; also it is possible to make a comparison with the goals during
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the process of constructing an ANN (Table 2).
[1619] comprise a review of the modern ANN applications which are accessible

for the POE-model (Fig. 5).
Table 2 and Fig. 5 naturally fix the connections between the ANN and the EC.

The latter is an object of section 3.2.

3.2. Modern solutions with ANN based on approaches with EC

The most common network involved in this studies has been the multilayer perceptron.
If the network architecture is predefined, the problem becomes one of trying to find
optimal settings for the weight and bias terms. A natural representation for this is a
real-valued vector where each component corresponds to a weight or bias. For such
continuous-valued representations the common method of mutation is to add a
multivariate zero mean Gaussian random variable to all components, thereby in this
case changing all of the weights and biases simultaneously. The behavior of each
offspring network is strongly related to its parent and there is a continuous range of
possible new behaviors.

The variability between each parent and its offspring can be controlled directly
by specifying the individual variances for each Gaussian perturbation (or covari-
ances). One common method for accomplishing this is to set the step size (standard
deviation) to be proportional to the mean squared error of the parent network. In
this manner, as better solutions are discovered, the step size is reduced and the
search effort is concentrated around the parent and conversely, a larger variance is
used for parents with relatively poor performance.

Some of the first efforts at applying EC to optimizing ANN can be found in
[2021]. More recent research has involved simultaneously evolving both the struc-
ture and weights of feed forward and recurrent ANN ([22, 23, 24]). Some attention
has also being given to evolving fuzzy ANN in which classification of input patterns
are made with respect to their fuzzy membership in evolved clusters ([25]).

3.3. Genetic synthesis and optimization of the ANN

EPRI has been sponsoring research by Tariq Samad and Steven A. Harp at Honeywell
Technology Center in the use of genetic algorithms to synthesize and optimize the
design of the ANN. Initial investigation was directed at validating the approach by
optimizing an already trained neural network developed manually in a realistic
application of heat rate modeling performed for EPRI by Robert Uhrig at the
University of Tenessee. The same data sets from TVA’s Sequoyah nuclear power
plant were used for the ANN training and testing. Appropriate criteria for optimiza-
tion were determined to include accuracy (e.g. low error prediction of plant gross
heat rate), learning speed and the ANN simplicity (e.g. low number and density of
connections). The ANN design experiments and evaluations began with a review of
various ANN designs appropriate for the thermodynamic modeling application. Ex-
periments were conducted that showed the genetically optimized ANN had a signifi-
cant pеrformance improvement over manually developed ANN. This research also
demonstrated that the choice of input variables is critical in the ANN applications.
The genetic algorithm’s ability to simultaneously optimize input selections along with
the ANN structures and learning parameters was vital to the accurate modeling.
Another result was that genetic optimization need not be limited to evolving indi-
vidual trained ANN. The ANN architectures can be designed for classes of applica-
tions and then later trained on specific data for different applications within a given
class ([11, 12]).
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Experiments on two additional applications have been completed: engine NOx
emissions and ozone levels in New York City. Both resulted in the automatic
production of models competitive with the best conventional non-linear statistical
models developed for these problems by the exercise of considerable statistical
expertise and manual adjustment.

Demonstration software has been developed that runs under Microsoft Win-
dows 3.x on a PC. The software features an easy-to-use graphical interface and
incorporates tutorial material on ANN, genetic algorithms and the neurogenetic
design technique. Two problems are included  heat rate modeling and engine NOx
emissions predictionalong with optimized ANN models for them. The software
also contains an ANN specification and training facility, allowing users to test and
compare their own hand-crafted designs with the genetically optimized ones and to
have the GA optimize their design within the constraints they establish for it.

Research is continuing with the objective of demonstrating conclusively the
power of genetic synthesis of the ANN for modeling and analysis applications
throughout the electric power industry. An in-depth assessment of this design tech-
nique requires applying it to a variety of additional problems relevant to EPRI
members. The first of these is the real time pricing (RTP) of electric power in a
competitive market. A GA is being used to design and optimize an ANN model
using data from the Marriot Marquis Hotel in New York City. The data includes two
yearrs of hourly loads, rates, weather information, etc. obtained in a joint EPRI and
Consolidated Edison RTP experiment. Accurately forecasting the loads and the rates
would be of value to any electricity customer who had energy storage facilities or co-
generation capability.

The investigations are also exploring ways to extend the state of the art for this
general approach by exploring extensions to both the genetic and neural components
of the system.

A P P E N D I X

System Math + : Simplicity of the description
modeling equations Vectors of big dimensions

Difficult rewriting the system of the equations (if possible)
Difficult re-set up of the system (following its description)
Limited computing resources for multivariable systems
alongthe time axis

A N N + Convenient for ill-defined tasks or for implicit algorithm formula
tions

Convenient for iterative modeling (structural and algorithmic iterativity)

Complicated design with respect to the fuzzy systems
Unpredictable behavior
Asymptotic convergence
Small input changes lead to a similar, but new training

Linguistic Non-mathematical (logical) formalism
rules + Easy system re-set up

Languages with ill-defined grammars admitting contradictory conclu
sions from  facts

Fig. 1. Approaches to system modeling
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Presentation AI A N N

Knowledge Symbolic, digital, successive processing Structurally-coded knowledge;
its expansion   depends on the
neurons

Manner of Depends on the successive nature of the Parallel, distributed, strong in
processing languages and on the approaches to reasoning biological prototypes

Structure Quasi-linguistic of symbolic expressions Decisive, dependent on the
concrete task, the solution is
difficult to expand, the ANN
model must be generalized

EC & ANN design ([5][8])
A N N ANN training ([9], [5][8], [10])

Genetic synthesis and ANN optimization ([11]12])

Fig. 2. EC, its role and its place in the cycle of the design, the optimization and the tuning of
the ANN

 ANN Advantages Adaptivity
(properties) Stability (of a fuzzy and noisy input)

Robustness
Disadvantages Curse of dimensionality

Design problems
Energy function (choice)
Convergence (classification problems)
Time for learning

Classification Feedforward One-layer perceptron
A N N Multilayer perceptron

ANN with RBF
Recurrent ANN Competitive learning

Kohonen’s SOM
Hopfield’s ANN
ART networks

Learning Paradigm
Rule Error correction
Architecture Competitive learning

Combination (error correction
& competitive learning)

According to physical prin
ciples

Algorithm Supervised
Unsupervised Associative memo

    ries
Categorization

Popular Perceptrons
algorithms Competitive learning

Fig. 3. ANN description

Table 1. Comparison between the AI and the ANN
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A N N Basic Function approximation
(tasks) Coding & decoding with ANN

Data compression
Image compression
Modeling

Dynamic Identification Time Generating
systems Modeling series Prediciton

Optimization
Control

Recognition Images Principal applications
Typical applications
Concrete solutions

Speech Basic General scheme
concepts Difficulties

Recognition with ANN

Fig. 4. ANN applications

Table 2. Goals for the ANN design and their counterparts in the POE model

Goal A N N Analogy with the POE model

Model New ANN models / evolution of popular A N NPhylogeny (new species / evo
models lution of living creatures)

Design Specifying the ANN model for practical Ontogeny (growth of living crea
applications tures)

 Learning Supervised / unsupervised Epigenesis (basically unsupervised)

A N N Language learning Inborn abilities (phylogeny)
(modern (Steels, 1995) Acquired abilties (epigenesis)
 applica-
tions) ANN populations Evolution on the global level (“phylogeny”)

(Yao 1993, Learning on an individual (“epigenesis”)
Nolfi et al. 1994,
Liu & Yao, 1996)

Fig. 5. Modern POE-analogical ANN applications
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4. Conclusion

This paper is a review of the interrelations between the ANN and the state of the art in
the field of the EC. The analysis starts with the place of the ANN in the approaches to
system modeling followed by a comparative analysis of the ANN as a private case of
the AI which then is restricted to the field of the EC. The second part of the paper
presents the realized approaches to animating the chosen ANN models (including the
design-, the optimization- and the learning- phases) starting from an EC background,
including genetic synthesis. The material is illustrated with schemes, tables and a
representative bibliography list.
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(Р е з ю м е)

Представлен обзор искуственных нейронных сетей в контексте современных
направлений в эволюционном вычислении. Указана родственная связь между
искуственным интеллектом и этими сетями, а также рассмотрена
определяющая роль эволюционного вычисления улесняющая проэктирование,
оптимизацию и настройку искуственных нейронных сетей. Материал
иллюстрирован примерами взаимодействия искуственных нейронных сетей
и эволюционного вычисления.


