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1. Introduction

The interactive algoritins are widely used for solving multicriteria linear progran-
ming problems [1, 9, 15, 17]. The quality of an interactive algorithm depends to a
large extent on the quality of the dialogue with the decision maker (DM). The
quality of the dialogue with the DM is connected with:

—the type of information required from the DM to improve the local preferred
nondominetted sollution;

—the time for solving the scalarizing prabllem;

—the type and the number of the new solutions compared with the local
preferred solution;

—the possibilities for change of the strategies searching for new solutions;

—the possibilities to help the DM leam about the multicriteria problem solved.

When solving multicriteria linear programing problems (MCLP), linear pro-
graming problems are used as scalarizing problems. These are easy to solve. That
is why in the interactive algorithms solving MCLP, the time needed to solve the
scalarizing prablens does not play a significant role. The interactive algorithns are
also often used [Z] to solve nulticriteria linear integer prograrming problems (VCIP) .
The most of them [3, 6, 12] are modifications of interactive approaches solving
MCLP that include the integrality constraints. Linear integer programing problems
are used as scalarizing problems in these interactive algoritims. These problens are
NP-difficult problems [4]. Moreover, finding a feasible integer solution can be as
difficult as finding an optimal solution. That is why in the interactive algorithms
solving MCIP the time to solve the scalarizing problem plays a significant role. For
this reason an effort is made to reduce the nurber of the integer problems solved:
approximate algorithms are used to solve the integer problems, or a possibility is
provided to interrupt the exact algorithms in solving these problems; continuous
problens (instead of integer problems) are solved and contiinuous (Weak) nondominated
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solutions obtained are presernted to the DM for evaluation (especially in the DM’s
learming phase). Some of the interactive algorithms work wirth the aspiration levels
of tre criteria, others use veight to denote tre relative significance of the criteriaor
trade-of f between the criteria. Many show one while others show several (weak)
nondominated solutions to the DM for evaluation at each iteration.

We propose a learming-oriented [5] interactive algoritim. The main features of
the algorithm proposed, are:

—They reduce the nurber of the integer problems solved because in most of the
iterations the solutions of singlle criterion linear problems with cotinuous variables
(which are easy to solve) are presented to the DV for evaluation. This is used under
the assunption [17] that the criteriavalues for the scalarizing problemns with continu-
ous variables differ relatively little fron the solutions with integer variables and
under the assunption that the DV prefers to work in the criteria rather than in the
variable gece. ;

—At every 1teration the DM provides his/her local preferences in terms of the
desired changes in the crirteria values of some of the crirteria, the desired directions
of change of the other criteria and directions of the eventual deterioration of the
remaining criteria, instead of aspiration levels of the criteria. The current preferred
solution and the local preferences of the DM define a reference neighborhood in
which the next preferred solution is searched for;

—At every Iteration in a reference neighbourhood a set of continuous (weak)
nondominated solutions or a set of integer near (Weak) nondomnated solutions or
integer (Wweak) nondominaited sollution is searched for solving continuous or integer

scalarizing problens .

The multicriteria linear integer programing (1) can be formulated as:
D “mexc"{f (), kek}
Sbject to:
(4] Z_ahiljxjsbi, i eM,

Je

(©)] OSXj < dj , JeN,
@ x — integer, j N,

where the symbol “max” means that all the objective functions are to be simulta-
neously maximized; K={1, 2, ..., p}, M=, 2, ..., m}, N={1, 2, ..., n}dencte
the Index sets of the dbjective functions (criteria), the linear constraints, and the
cecision varigbles, respectively: f (), keKare lirear criteria (cbjective functios);
T —Zd'}xJ and X= (X, X5 -- -5 X, - -, X' is the vector of the decision variables.
J e

The constraints (2)-(4) defire the feasible region X for the integer variables.

The problem (1)-(3) is a multicriteria linear programing problem (P). The
feasible region for the continuous variables is denoted by X,. Problem (P) is a
relaxation of (I).

For clarity of the exposition, we introduce a few definitions:

Definition 1. A near (weak) nondominated solution is a feasible solution in the
criteria space located canparatively close to the (weak) nondominated solutions.

Definition 2. A current preferred solution is a near (weak) nondominated solu-
tion or (weak) nondominaited solutiion chosen by the DV at the current iteration. The
most preferred solution is a preferred solution that satisfies the DV to the greatest
cegree.
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Definition 3. Desired changes of the criteria values are the amounts by which
the DM wishes 1o increase the criteria in comparison with their value in the current

preferred solution.

Definition 4. The desired directions of dhange of the criteria are the directions,
in which the DM wishes to improve the criteria in comparison with their values at
the aurrent preferred sollution.

Definition 5. Reference neighbourhood is defined by the current preferred solu-
tion; the desired danges In the values of sore of the criteria, the desired directions of
change of the ather criteria and directions of the everitual deterioration of the remain-
ing criteria as specified by the DV.

2. Scalarizing prablens

We formulate the scalarazing problems [1, 12] under the assumption that the set of
criteriaK can be divided into three subsets -K, K, and K,. The set K contains the
indices keK of the criteria for which the DM wants to improve their values con-
pared to the values in the current preferred solution. The set K, includes the indices
keK of the criteria for which the DV agrees to worsen their values not setting the
exact values of deterioration. The set K, contains the indices keK of the criteria whose
values the DVvants to preserve. The set K is divided into two subsets - K™ and K'™';
K " contains indices of the criteria keK that the DM wants to improve by desired
values A, and K" consists of indices of tre criteria, that the DVivants to inprove and
for which he/she is not able to set the exact values of Inproving.-

The following scalarizing problem, named E,, is proposed to obtain a (weak)
nondominated solution of the multicriteria integer problem (1) in the reference
neighbourhood of the current preferred solution.

Minimize
®  SC)=max [max Ko_“k - F.00)/ | £, mxCE, - 1,0/ | 711 +
+max (F - £CO)/ |17,
keK,"
Sbject to:
) £0) =T, keK UK,
(@) xeX|

where fk is the value of the criterion with an index keK in the current preferred
solution, f =f+A is the desired level of the criterion with an index keK *;
fk' — asaaling coefficiat,

fr=

k

{f iff -0,
k k
1, iFf=0.
Theorem 1. The optimal solution of the scalarizing problem E is aweak effi-
cient solution of the multicriteria integer programing problem (1).
For a proof, please see the Appendix.
Consequence. Theorem 1 is true for arbitrary values of T, keK.

ﬂeprocfofﬂﬂisoa”seqwnoefollomﬁmﬁefactmatﬁ'eprwfcfﬂmren
1 does not assume any constraints on the values of the criteriafk, keK.
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To obtain a (weak) nondominated solution for the problem (P) in the reference
neighbourhood of the current preferred solution, we may use the scalarizing problem
E,, which is dotaired from E; replacing constraint (7) by constraint:

() X eX, -

Theorem 2. The optimal solution of the scalarizing problemE, is a weak effi-
ciat solution of the nultiple criteria linear problen ).

The proof of Theorem 2 is analogous to the proof of Theorem 1 because nature
of the varicbles X%, 1=1, n, is notexplicitly used.

Because the abjective function of the scalarizing problem E, is nondifferentiable,
one may solve the fol loving equivalent mixed integer programing E °:

&) min (a+p)

aubject to:

10 ax(f - FCO) | £, keK’,
a oz (f, - 1,0/ | 7], kK,
(%) B>(F ~ £OOV/ | £, keK™,
@ OO 2F keK"UK;,
@ xeX ,

@ o, — arbitrary.

Problems E ad E; " have the same Teasible sets of the variables. The value of the
adbjective functions of problems E and E " are equal . This folloas from the following
assertdon:

The scalarizing problem E * has four properties, that help to improve the dia-
logue with the DM, as wirth respect to the required fran hinvher information and with
respect to the reducing of the waiting time for evaluation of new solutions also. The
Tirst property is comected wirth the required informattion fram the DV Insteed of the
agpiration leels of every criteria for the defining of the reference point [9, 12, 17], the
DV has 1o provide only changes in the criteria values of sone of the criteria and the
directions of change of the another criteria to specify the reference neighbourhood.
The secod property is that the current preferred solution is an initial fessible solution
of the next integer problem E " This fecilitates the single criterion algorithms, espe-
cially the heuristic algoritins. The third property is that the fessible solutios of prab-
lemE; " are near to the nondominated surface of the multicriteria integer problem (1).
The gpplication of heuristic algorithms to solve problem E " will lead to near (weak)
nondomiinatted solutiions quickly, thus reducing the waiting time for the dialogue with
the DM. The comparatively quick finding of more solutions for evaluation by the DV
is important during the leaming phase of the DV. The forth property of the problem
E" is thatwith it the DM can reallize the search strategy “1o great berefit - little loss”.
The solutions dotained in the reference neighbourhood are corparatively close, which
makes it easier for the DM to compare several solutions and choose the next pre-
ferred solution.

The scalarizing problem (E) is equivalent to the following linear programing
problemE,":

(@5)) min (a+B)
sbject to:
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an oz (£ -0/ | £, kek™,

B o= -F0/ |17, keK,
()] p=( -1 0/ | T, keK",
@) f0) 2T keK"UK,
@ xeX,,

@ a,p — arbitrary.

The pararetric extension of the scalarizing problem E," (denoted by E_Z') has the
folloving form (similar to the ore in [9])

(¢2)) min (a+B)

Sbject to:

(€)) 0O HFf a>f +(f_k -t keK",
) T H T o>f -, kekK,

) fOOHETB>T +t, keK",

@ f00 2F keK UK,

(€3)) xeX,,

¢2)) >0,

(€9)) o, — arbitrary.

Problems E," and E," have the same properties as problem E *, but they give
continuous solutions.

Let us assume that we have found a (weak) nondominated solution of problem
(P) with the help of the scalarizing problems E,” and E,” and wish to find a (weak)
nondominated solution of praoblem (1), which iAs near Athe (weak) nondominated
solution of problem (P). Let us denote by = (T,,..., fp)T a (weak) nondominated
solution of problem (P).

To find a (weak) noAndominated solution of problem (1), close to the (weak)
nondominated solution f,_ of problem (P), the following Chebychev’s problem E,

may be used [26]:
Minimize N N
@D SG) =mex (F - £C/| T,
kekK
sbject to:
(€2 xeX ,
where A A
A [T, iFE20,
Kk = A
11, if £=0.
This problem is equivalent to the folloving mixed integer prograrming problem
£
S min o
under the constraints: N N
(€7)) ax(f - TC/| 7,
(€9)) XeX,
(€9)) o— arbitrary.
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3. Gereral scheme of the algorithm

A leaming-oriented interactive algoritim solving nulticriteria linear integer problens
can be suggested on the basis of the scalarizing problems E *, E*, E"and E,". The
dialogue with the DM has been improved with respect to the information required
fram hinvher; to the time when he/she is expecting a new solution; to the possibility
for evaluation of more new solutions and to the leamiing possibi lities of the specifics
of the problem solved.

The basic steps of the algoritim are the folloving:

Step 1. An initial (weak) nondaminated solution of the multicriteria problem
(P) isdefined, setting fk =1, keK, T =2,keK , and solving problemE,".

Step 2. Ask the DM to specify the reference neighbourhood of the current
preferred solution defining desired changes in the values of sare criteria, desired
directions of change of other criteria and the directions of the everttual deterioration
of ramaining criteria.

Step 3. Ask the DM to define whether to search for a (weak) nondominated
solution of the multicriteria problem (P) or near (weak) nondominated solutions of
the nulticriteria prablem (). In the first case, Step 4 is exeauted, In the second case
0o to Step 6.

Step 4. Ask the DM to specify parameter s —the maximal number of (weak)
nondominated solutions of the multicriteria problem (P) which can be saved in the
set M. Solve the scalarizing problem E,” with the help of an algorithm of linear
parametric progranming. Present the set M, to the DV for evaluation and selection.
In case the DV wants 1o see a (weak) nondominated solution of the multicriteria
prablem (1), close to the current preferred solution of the multicriteria problem (P),
Step 5 is executed, otherwise—Step 2.

Step 5. Solve problem E;". Sow the (weak) nondominatted solution of nulticriteria
problem (1) dotained by the exact integer algorithm chasen for solving problem, or
a near (weak) nondominated solution of the multicriteria problem (1) obtained by
the heuristic integer algoritim. I the DM approves this solution as current pre-
Terred solution of the nulticrirteria prablem (1) go to Step 2. 1F this solution is the last
preferred solution —Stop.

Step 6. Ask the DM 1o choose the type of the algorithm — exact or heuristic. If
the DM selects an exact algoritim —go to Step 8.

Step7. Ask the DM to specify s —the maximal number of near (weak)
nondaminated solutions of the multicriteria problem (1), which can be stored in the
set M - Solve the scalarizing problem with the hellp of an heuristic integer algoritim
and present the set M, to the DV for evaluation and selection the current preferred
solution of the multicriteria prablem (1) 1T the current preferred solution is the last
preferred solution —Stop, other wise — go to Step 2.

Step 8. Solve problem. Show the (weak) nondominated solution or near (Wweak)
nondomiinaited sollution (i the computing process is interrupted) of the nulticriteria
problem (1) to the DV. In case the DM approves this solution as a current preferred
solution of the multicriteria problem (1) go to Step 2. IT the solution is the last
preferred solution —Stop.

The proposed algoritihm for solving multicriteria linear integer problems is a
leariing oriented [7] interactive algorithm and the DV controls the dialogue, the
conputations and the stopping conditions. B

Problems of linear pararetric progranming (scalarizing problers E,%) are solved
in the interactive algorititm. The linear parametric prograrmming problems are easily
solved problems and the DM must not wai't long for the obtaining and estimation of
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new solutions. Problems of mixed integer linear programming (scalarizing problems
E " ad E,") are also solved. The nurber of the integer problems solved can be very
small. They are solved only in the cases when the DV Teels unconfortable to operate
wirth continuous variables or when he is searching for an integer solution near to the
current preferred continuous solution. In the first case it s gppropriate (especially in
the leamiing process) to solve the integer problems with the hellp of approximate algo-
rithms. The use of approximate algoritins [7, 14, 16] operating efficiently ina “nar-
row feasible areg’” and a knonn initial feasible integer solution encbles the finding of
good and in many cases —optimal solutions of the problems E *. The evaluation of
more than one, even they be approximate (weak) nondominated solutions, enable the
DV to leam faster with respect 1o the problens being solved.

The DM aperates mainly in the criteria space, because in most of the cases the
criteria have physical or econamic interpretation and this enables the more realistic
estimation and choice. The information required from the DM refers only to the
defining of a reference neighbourhood of the current preferred solution and some-
times, If he/she wants, to the presenting of inter- and intra—criteria information.

4_ Conclusion

A leaming-oriented interactive algorithm is proposed based on the reference
neighbourhood approach to solve nulticriteria linear integer programing problems.
This algoritim provide the opportunity to improve the dialogue with the DM with
respect to several features:

— according to DM’s wish, he/she may set different type and different quantity
of information at each rteration;

— the time during which he/she is expecting solutions for evaluation and choice
IS reduced;

— his/her possibilities for leaming the specifics of the nultiple criteria integer
problems being solved can be increased.

These features of the proposed interactive algorithm characterise it as an ap-
propriate and user-friendly algoritim solving multicriteria linear integer program-
ming problems.

Appendix

Theorem 1. The gptimal solution of the scalarizing problem is aweak efficient
solution of the nulticriteria integer programing problem (1).

Proof. LetK" and K"#J.

Let x* be an gptimal solution of problem E . Then the folloving condition is
satishat:

3 SCM) < SKY, X €X,

and T () 2T keK UK,

Let us assume that x* is not a weak Pareto optimal solution of the initial
multiple criteria integer problem (). In this case there nust exist X* X, for which:

len) (™) >F () for k K and £ (¢ >F keK" UK, .

After transformation of the dbjective functiion S(X) of the scalarizing problemE,
using the inequalities (37), the folloving relation is dotained:
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S(™) =mex [ mex (F — £ | £, mex(E — £/ | £7]]+

keK, " kekK,
+max (F - £ | £7=
keK ™
= e [ mex (F — £.6¢) + (.6 — £/ £,
keK, "
@ M (F, — £ 0+ (F.6¢) — T/ | £77+
kekK,
e (F, — T+ (F. 6 — T/ | T
keK "
<max [ mex (F — F.(cD)/ | .7, max(F, - T.(¢9)/ | 1717 +
keK," kek,
+max (F, — F.OeN/ | £.7]=S0).
keK ®

It fol lows fram (38) that S(x*)< S(<*) and T () > T, keK"UK, ,
which contradicts to (37). Hence x* is a weak efficient solution of the multiple
criteria integer problem ().
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VIHTEPaKTUBHEM aJITOPUTM IJIS PEUEHMS MHOTOKPUTEPMAJIbHBIX
JIMHEMHEIX 1ISJIOWACIICHBIX Baladu

Maprana BacuieBa

UHCTUTY'T MHYOPMALIMOHHEIX TexHojormi, 1113 Coprsa

(PeswowMme)

[IpenjaraeTcsa OPUEHTUPOBAHHHM K OOYUeHUM MHTEPaKTUBHEM aJITOPUTM
OTIIPaBHOM OBJIACTU IJIS PelleHMS 3aldad MHOTOKPUTEPMAJIbLHOTO JIMHEMHOTO
LIEJIOUMCJIEHHOT'O NPOoTpaMMMPOBaHMA . JIMIIO, NpMHMMAalpolee pemeHue (JIIP),
3aJaeT CBOM JIOKAJIbHBEIE MIPEANOUMTAHUS KakK XeJIaHHBIE [IePeMeHEl CTOMMOCTEMN
HEKOTOPEIX KOUTEPUEB, XeJIaHHEIE HallpaBJIEHUS B [I€peMeHe CTOMMOCTEV IPYIMX
KPUTEPUEB U HAIPaBJIEHVS €BEHTYaJIbHOT'O YXYIIIeH/S CTOMMOCTEN YaCTU MM BCEX
OCTaJIbHEIX KpUTepMeB. Ha Mx OCHOBe GOPMMPYIOTCS OBa TUIIA CKAJIAPU3UPYIOIMX
GyHKUMM, OPM IOMOUIM KOTOPBIX Ha KaXIOV UTepalyy ONPelelisioTCsa OOHO WU
Bosiblle LeJIOUMCIIEHHEE MM HellpeprBHEE (CJ1abo) HeIOMMHMPOBAHHBIE PEIICHMS .

[IpenJIOXEHHEM aJITOPUTM INaeT BO3MOXHOCTL JIIIP M3MeHAThH CBOU
cTpaTeImy IOMUCKa, MCIOJIbE30BATh M HEIIPEPLBHEE HEIOMVHMPOBAHHBIE PElIeHMS
(IJ19 cokpalleHMs BPeMeHU IIoMcKa) , oBydaTbCcs CEICTpee B CrieLmdUKe peliaeMor
MHOT'OKPUTEPMAJIEHONM 3a0aul.
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