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1. Introduction

The paper continues the line of research initiated by R u b i n s t e i n [10] and
A b r e u and R u b i n s t e i n [1] using finite automata to represent strategies in
infinitely repeated games and particularly the Repeated Prisoner’s Dilemma  (RPD).

We study the convergence to equilibrium in a 2-player RPD when the players’
strategies evolve in a genetic algorithm.

Contrary to the assumption in the classical approach ([9]) we assume that the
opponent’s strategy is not known to the player. During the course of play he explores
it and tries to achieve the equilibrium payoff. The optimization is impeded by the fact
that the player can not distinguish between non-equilibrium and equilibrium play of
the opponent and thus induce his optimal strategy.

Miller[8] studied the genetic algorithms for coevolution of strategies and evolv-
ing cooperation during learning. In the present paper is used a different genetic algo-
rithm, based on the necessary conditions for equilibrium. The finite automaton repre-
sentation is simplified and asynchronous learning is assumed. This makes the analysis
close to the reasoning of a player, who in search of the maximum payoff updates his
strategy, which leads to change of his opponents’ automaton etc.

The evolution of automata in the RPD is analyzed by K i r c h k a m p [7]. A
spatial model of evolution is studied where the players evolve their strategies by copy-
ing their neighborhoods’. Alternatively we assume that the players do not know the
opponents strategies and optimize using a genetic algorithm.

We will present the model in section 2. In section 3 is studied the genetic algo-
rithm methodology used with the finite automata in the 2-player 2-strategy game.
Section 4 presents the experimental design used for the simulation. In section 5 are
given the results and section 6 concludes.
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2. The theory

2.1. Repeated prisoner’s dilemma

The stage game used for the analysis is the Prisoner’s Dilemma. The payoffs associ-
ated with the game are shown in Table 1. It is a two-player symmetric game, where the
only Nash Equilibrium (D,D) is Pareto inferior to the cooperative outcome (C,C).
The game has important implications in social sciences, politics and biology and has
been extensively studied. In the finitely repeated version of the game backward induc-
tion proves that the only equilibrium strategy supports the non-cooperative outcome
(D,D). Infinite repetition of the game, however, leads to multiple equilibrium strate-
gies. Every individually rational payoff is a Nash Equilibrium of the game, which is
stated in the well-known Folk Theorem (for example [9]).

                         C        2     D

Table 1

2.2. Finite automata

Strategies in the infinitely repeated games can be conveniently described by using
automata with finite number of states (Moore automata). An automaton of player i in
a 2-player game consists of:

 set of states Qi;
 initial state qi

0Qi;
 an output functioni: QiAi (associates an action with every state, where Ai is

the set of stage game actions),
 transition function i:(QixAj)Qi (defines the next state depending on the

actions of the other player).
The modeling of a game strategies by finite automata allows to be included com-

plexity considerations in the repeated game analysis. The underlying assumption is
that the player is not only concerned with the payoff of the strategy but also tries to
reduce its complexity. This issue, which is connected to the minimization of the oper-
ating cost, is a special aspect of “bounded rationality”. This term describes the need to
make the models closer to human decision making.

The complexity of an automaton can be defined in a number of ways. Most often
it is assumed to coincide with the number of the states of the automaton, which we will
also use.

Examples of some automata are given below using transition diagrams. The ini-
tial state is the circle on the left. The letter within the circle indicates the action in the
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state, The letters along the arcs indicate the conditions on the other player’s action in
order to move to another state(s) – the transition function.

Fig. 1. “Grim” strategy

Fig. 1 illustrates the “grim” strategy: play C while the other player plays C and
switch to D forever in case of a D.

Fig. 2. “Tit for Tat” strategy

The automaton on Fig. 2 plays C while the other plays C, moves to play D when
D is played and returns to the initial state in case of C.

2.3. The Structure of Equilibria in the Automata Game

We will cite below some results concerning the equilibrium conditions in the infinitely
repeated games when the strategy space is the set of finite automata. In the repeated
game the leading criterion is the payoff of the strategy, which can be calculated using
different approaches (See [1] ). We will apply the discounted payoff, which is defined
as follows:

pi = t=1

 t1ui(s

t),
where  is the discounting parameter and ui(s

t) is the payoff for player i from the stage
game t. The equilibrium concept, based on Nash equilibrium is defined as follows:

The automata pair (M1, M2) is an equilibrium of the machine game if for any
fixed M1 there does not exist another automaton M2 for the player 2, which has higher
payoff with the same number of states or provides the same payoff with fewer states.
The same must hold for the M1 automaton with M2 fixed.

Lemma 1. In equilibrium all the states of the automaton are used.
Lemma 2. If (M1, M2) is an automata equilibrium:
 the states of the machines are equal,
 the sequence of states of the automata game consists of an  introductory and

a cycling phase and the states of the two phases are disjoint. Each state is used only
once in the introductory phase, and in each cycle each state is used only once.

P r o o f s: See [9].
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3. Genetic algorithms and finite automata

Genetic algorithms were developed by Holland[6] for optimization in complex do-
mains and have been extensively used to characterize social learning.

In order to apply the methodology of genetic algorithms the system of output and
transition functions have to be translated to binary strings.

A model used in [8] was to code sequentially the number of initial state, then the
output and the transition function of the states. Let the states are N and 0 indicates
“C”, 1 indicates “D” action. Every state representation includes output (0,1), a num-
ber of state (1.N) to move if played 0 by the other player, a number of state (1.N) to
move if played 1. So the total number of automata is  N(2.N.N)N=2NN2N+1.

Here we will use a modified representation based on the assumption that the
player is concerned with finding of an equilibrium strategy. As implied by Lemma 2
the automata states are distinct and all of them are reached during the play. So it is
possible to permute the states so that if the equilibrium strategy is played by the oppo-
nent the next state is the number of the current plus 1, and if the last is reached the
move is to the first state of the cycle. This allows us to reduce the automata number.
The representation of a state includes output (0,1), a number (0,1) of the equilibrium
strategy of the opponent, a number of state (1.N) to move if not played an equilibrium.
The total number of automata is N(2.2.N)N = N(4N)N= 4NNN+1, which is easy to show
that for N>2 increases much slower than the quantity mentioned above.

So, for example the state 0111 indicate: play C, move to the next state if the
opponent plays D else move to state 4 (the numbering of the states starts from 00).

The number of bits can be changed according to the complexity of the automata.
An example of an automaton is the following (N=4):

00     0101    0110   1010     1010
cycle   state 1 state 2 state 3  state 4

This automaton plays C in states 1 and 2, and D in 3and 4. The equilibrium
strategy of the opponent is the inverse  play D in states 1, 2 and C in states 3, 4. After
reaching state 4 in equilibrium the automaton will move to the zero state (00). (This
automaton is diagramed below).

Fig.  3. “Gifts”  strategy

The “Gifts” strategy achieves the highest payoff when the opponent plays the
opposite symmetrically. In this kind of cooperative play the opponents make each
other “gifts”  they exchange the high payoff (5) in half of the states in the cycle to the
low (0) in the other.

Based on the Nash equilibrium goal we use an asynchronous genetic algorithm.
The equilibrium state requires that no other strategy exists which can give a better
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payoff when the opponent strategy is fixed. Therefore in searching for the equilibrium
we need to fix one strategy and optimize the other and proceed analogously thereaf-
ter. In the course of analysis we will study the relative fitness of equilibrium strategies
against the other.

The genetic algorithm used in the analysis of the RPD is based on a two au-
tomata population and is defined as follows (the integer g represents the number of
iterations for asynchronous update):

Step 1. Initialize the two automata randomly.
Step 2. Confront the automata against each other.
Step 3. Select randomly with replacement two of the two automata of the popu-

lation, with a probability proportional to their round payoff, crossover 1-point and
mutate with constant mutation rate.

Step 4. Update the first of the automata
Step 5. Repeat steps 2 - 4 until the value g is reached.
Step 6. Confront the automata against each other.
Step 7. Select randomly two of the two automata of the population, with a prob-

ability proportional to their round payoff, crossover 1-point and mutate with constant
mutation rate.

Step 8. Update the second automaton.
Step 9. Go to step 6 until g is reached else move to Step 2.
The algorithm describes asynchronous learning through evolution. The particu-

lar type is chosen because as clarified below the solution set contains multiple peaks
of different size. The mutation rate prevents the system from converging to the nearest
equilibrium and moves among the optimal payoff strategies.

In steps 3 and 7 the random choice may involve choosing twice the more success-
ful automaton. In the course of play the opponents explore their opponent strategies.
Therefore it is natural to assume that each player will use only one automaton and
update it in course of play. This assumption differs from the approach used in [8]
where the population size is 30.

4. Experimental design

The main goal of the research is the analysis of the convergence to the equilibrium
strategy when the players asynchronously evolve their strategies using a genetic algo-
rithm. The reasoning on the latter is that the equilibrium strategy provides the best
payoff. So the players need not to check all the other strategies. The maximum size of
automaton is fixed in the course of play.

While in the theory the players are optimizing their strategies in perfect knowl-
edge of the opponents’ automata we here propose an innovative approach based on
evolution of the automata assuming that the players explore their opponents’ strate-
gies.

Another way to optimize the behavior for a player is to identify the opponent’s
strategy and after apply the knowledge of repeated games and achieve the highest
payoff. The type of finite automata, however, is complex and the number of available
combinations grows exponentially with the number of states. This procedure is addi-
tionally complicated by the fact that the player can not distinguish the equilibrium and
non-equilibrium strategies played by the opponent.
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Fig. 4. Mutation rate 0.2; Complexity – 4

Fig. 5. Mutation rate 0.8; Complexity – 4

Fig. 6. Mutation rate 0.2; Complexity – 6

Fig. 7. Mutation rate 0.2; Complexity – 14
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If a genetic algorithm procedure reaches the equilibrium (and thus highest) pay-
off a check the possible reduction of the complexity (number of states) of the au-
tomata. If an automaton passes this test it is inferred that it is optimal to the player. It
must be noted that this is not enough in order to conclude that the pair is equilibrium.
For this we need to check if fixing the new automata the opponent’s is optimal. If not,
another pair of automata may emerge and convergence in the process is not guaran-
teed.

Optimization of the automata proves to be of specific interest. As noted above
the automaton’s representation consists of output function, indication of the required
equilibrium strategy, transition state if case of non-equilibrium play and state begin-
ning the cycle. When the equilibrium is reached, however, the third part of the au-
tomaton is not defining. A player cannot observe in equilibrium what is the transition
function in the other case. Therefore a class of NN prove to be equivalently optimal
against fixed strategy. Depending on the structure of automata other equivalence classes
can emerge. The transition function, however, is useful in the course of pre-equilib-
rium play. It provides punishment for the player deviating from the equilibrium strat-
egy.

An additional complication of the analysis is the existence of multiple peaks in
the solution set. In the course of play different equilibria pairs can emerge. With a
fixed strategy of the one player the other has some class of equivalent strategies that
achieve the highest payoff. Some small perturbation, however, will cause the equilib-
rium to break, and cause the player to move to another equilibrium.

5. Results

In the simulation the genetic algorithm is tested using varying mutation rates and
complexity of automata. Discounting parameter is set to 0,9,  =5. For each param-
eter couple (mutation rate, complexity) 8000 rounds are conducted.

As predicted, play fails to converge to a steady state due to the multiple peaks
existence. Equilibrium pairs can differ up to 600 %, which makes the equilibrium
fragile to small perturbations. After an payoff optimal pair is reached, depending on
its stability, mutation will disrupt it and the system will move to another equilibrium
pair.

The results give a clear indication on the predominance of symmetric equilib-
rium play. Fig. 5 illustrates the results with mutation rate set to 0.2 and 4 states. The
first peak on the graph indicate the constant non-cooperative play (D, D)  with payoff
10 (1+0.9 +0.92+...=10). The second shows the emergence of cooperative outcome
(C, C) with payoff 30 (3 + 30.9+30.92). It is possible that the machines used by the
player fail to be optimal in terms of complexity minimization. After reaching the equi-
librium the players may drop some states.

Fig. 5 shows the frequencies of the payoffs when the mutation rate is increased to
0.8. This has a pronounced effect on the emerging of marginal strategies (0, 50)
(50, 0), when one of the players is certainly disadvantaged. It is intuitive that the
increasing of the perturbation will widen the difference between players’ payoffs.

The rise in the variation rate strengthens the vitality of cooperative outcome
compared to the non-cooperative. The mutation causes the players to change faster
their strategies and thus increase the fitness of the higher value equilibrium.
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The only stable solution of the optimization is reached with turning off mutation.
There the system converges in few steps to the best crossover between the two indi-
viduals.

With the increasing in the number of the states of the automata the 2 high peaks
 2 low peaks picture is retained (see Fig. 6 and Fig. 7). The distribution of the other
payoffs approaches to the normal. The relative fitness of the cooperative outcome
grows with the complexity.

6. Conclusion

In the paper is studied the convergence to an optimal strategy in the Repeated Prisoner’s
Dilemma modeled by finite automata. A modified genetic algorithm is used to test the
evolution of the system, provided the multiplicity of equilibria and equivalent strate-
gies. The algorithm allows the player to update their strategies asynchronously, based
on the payoff equilibrium goal. The results strongly indicate the predominant use of
two simple strategies by the players. The increasing of complexity and mutation rate
augments the noise of the system but the two optimal pairs remain predominant. Many
of the evolving strategies may not turn out to be equilibrium. The type of finite au-
tomata used provides only a necessary equilibrium condition. The analysis of the
complexity minimization is, however beyond the scope of the present paper.
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Сходимость к равновесии в повторяемой дилемме заключенного

Васил Василев, Пенка Александрова

Институт информационных технологий, 1113 София

(Р е з ю м е)

Рассматривается применение генетических алгоритмов в исследовании
сходимости к равновесии в повторяемой дилемме заключенного (ПДЗ).
Стратегии двух участников в ПДЗ описываются при помощи конечных
автоматов. Исследован ассинхронный процесс обучения автоматов, который
оптимизирует игру при бесконечной ПДЗ. В работе показано, что самые
расспространенные типы стратегии при симуляции симметрические и
оптимальные друг к другу. Демонстрируются результаты анализа при разных
коэффициентов мутации и сложности автоматов.
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