BBIITAPCKA AKAJEMMA HA HAYKUTE . BULGARIAN ACADEMY OF SCIENCES

[IPOBJIEMM  HA TEXHMUECKATA  KMBEPHETMKA U  POBOTUKATA, 50
PROBLEMS OF ENGINEERING  CYBERNETICS AND ROBOTICS, 50

Codms . 2000 . Sofia

Evolution Convergence to Equilibrium
in the Repeated Prisoner’s Dilemma

Vassil Vassilev, Penka Alexandrova

Institute of Information Techrologies, 1113 Sofia

1. Introduction

The paper continues the line of research initiated by Rub instein [10] and
AbreuadRubinstein[1] using finite automata to represent strategies in
infinitely repeated games and particularly the Repeated Prisoner’s Dilemma. (RPD).

We study the convergence to equilibrium in a 2-player RPD when the players”
strategies ewlve ina genetic algoritm.

Contrary to the assumption in the classical approach ([9]) we assure that the
opponent”s strategy is not known to the player. During the course of play he explores
it and tries to achieve the equillibriun payoff. The gotimization is inpeded by the fact
that the player can not distinguish between non-equilibrium and equilibrium play of
the opponent and thus induce his gptimal strategy.

Miller[8] studied the genetic algorithms for coavolution of strategies and evwolv-
ing cogperation during leaming. In the present paper is used a different genetic algo-
rithm, based on the necessary conditions for equillibrium. The finite autonaton repre-
sertation is sinplified ad asynchronous leamiing is assumed. This mekes the analysis
close to the reasoning of a player, who in search of the maximum payoff updates his
strategy, which leads to change of his opponents” automaton etc.

The evolution of automata in the RPD isanalyzed by Ki rchkamp [7]- A
spatial model of evolution is studied where the players evolve their strategies by copy-
ing their neighborhoods” . Altematively we assure that the players do not know the
opponents strategies and optimize using a genetic algoritm.

We will present the model in section 2. In section 3 is studied the genetic algo-
rithm methodology used with the Finite automata in the 2-player 2-strategy game.
Section 4 presents the experimental design used for the sinulation. Insection 5 are
given the results and section 6 concludes.
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2. The theory

2.1. Repeated prisoner’s dilema

The stage game used for the analysis is the Prisoner’s Dilema. The payoffs associ-
ated with the gane are shown in Table 1. It is a two-player symetric gare, where the
only Nash Equilibriun (D,D) is Pareto inferior to the cooperative outcome (C,C).-
The game has Important inplications in social sciences, politics and biology and has
been extensively studied. In the finitely repeated version of the gare badward induc-
tion proves that the onlly equil libriun strategy supports the non-cooperative outoone
(©.D). Infinite repetition of the game, honever, leads to nultiple equilibriun strate-
gies. Bvery individually rational payoff is aNash Equilibrium of the game, which is
stated in the well-knomn Follk Theorem (for example [9]) -

C . D
3 0
¢ 3 5
1
5 1
D 0 1
Table 1

2.2. Finite automata

Strategies in the infinitely repeated games can be conveniently described by using
automata with finite nurber of states (Moore automata) . An automaton of player 1 in
a 2-player gare consists of:

o stofstatesQ;

o initial state g°<Q ;

e anoutput function),: Q—A, (associates an action with every state, where A is
the set of stage gare actions),

e transition function pi:(QixAﬁ)—>Qi (defines the next state depending on the
actions of the other player).

The modeling of a gare strategies by finite automata allows 1o be included com-
plexity considerations in the repeated game analysis. The underlying assurption is
that the player is not only concermed with the payoff of the strategy but also tries to
reduce its corplexity. This issue, which is comected to the minimization of the gper-
ating aost, s a special aspect of “bounded rational ity’”. This term describes the need to
make the models closer to human decision making-

The carplexity of an automaton can be defined in a nurber of ways. Most often
it is assured o coincide with the nunber of the states of the automaton, which wve will
alsouse.

Bxamples of some autorata are given below using transition diagrams. The Ini-
tial state is tre circle an tre left. The letter within the circle indicates the actian inthe
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state, The letters along the arcs indicate the condirtions on the other player’s action in
order to nove to another state(s) - the transition function.

c C,D
D @

Fig. 1. “Grin” strategy

Fig. 1 illustrates the “grin strategy: play Cwhile the other player plays Cad
switch to D forever incase of aD.

C D
. @
D
C
Fig. 2. “Tit for Tat” strateqy

The automaton on Fig- 2 plays C while the other plays C, moves to play D when
D is played ad retums to the initial state in case of C.

2.3. The Structure of Equilibria in the Automata Game

We will cite below sare results concerning the equillibriun conditions in the infinitely
repeated gares when the strategy space is the set of finite automata. In the repeated
gare the leading criterion is the payofT of the strategy, which can be calcullated using
different goproaches (See [1] )- We will apply the discounted payofT, which is defined
as follons:
p, =2 3 U(,

where 5 is the discounting paraneter and u,(sY) is the payoff for player i from the stage
gare t. The equilibrium conocept, based on Nash equilibrium is defined as follows:

The automata pair (M, M,) is an equilibrium of the machine game if for any
fixed M, there does not exist another automaton M, for the player 2, which has higher
payoff with the same nurber of states or provides the same payoff with fener states.
The same must hold for the M, automaton with M, fixed.

Lemma 1. In equilibriun all the states of the automaton are used.

Lemma 2. 1T (M, M,) is an automata equilibrium:

o the states of the machines are eqal,

o the sequence of states of the automata game consists of an  introductory and
a cycling phase and the states of the two phases are disjoint. Each state is used only
once in the introductory phase, and in each cycle each state is used onlly once.

Proofs: e [9].
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3. Genetic algorithms and finite automata

Genetic algorithms were developed by Holland[6] for optimization in complex do-
mains and have been extensively used to dharacterize social leaming.

In order to apply the methodology of genetic algoritins the system of output and
transition functions have 1o be transllated o birary strings.

Amodel used in [8] ves o code sequential ly the nurber of initial state, then the
output and the transirtion function of the states. Let the states are N and O indicates
“C’, 1 indicates “D” action. Bvery state representation includes output (0,1), a num-
ber of state (1.N) to move if played O by the other player, a nurber of state (1-N) to
move if played 1. So the total number of automata is N(2.N_N)'=2'\P¥1.

Here we will use a modified representation based on the assumption that the
player is concermed with Finding of an equilibrium strategy. As implied by Lemma 2
the autonata states are distinct and all of them are reached during the play. So it is
possible to parmute the states so that 1T the equillibrium strategy is played by the oppo-
nent the next state is the nuber of the current pllus 1, and if the last is reached the
move is 1o the first state of the gycle. This alloas us 1o reduce the autarata nurber .
The representation of a state includes output (0,1), a nurber (0,1) of the equillibrium
strategy of the opponent, a nunber of state (1-N) to mowve if not played an equilibriun.
The total number of automata is N(2.2_.N)" = N@N)"= 4"N¥, which is easy to show
that for N>2 increases much sloner than the quantity mertioned above.

So, for example the state 0111 indicate: play C, move to the next state it the
opponent plays D else move to state 4 (the nurbering of the states starts fran 00).

The number of bits can be changed acocording to the carplexity of the automata.

An example of an automaton is the following (N4):

00 0101 010 1010 1010
ocle state 1 state 2 state 3 state 4

This automaton plays C in states 1 and 2, and D in 3and 4. The equilibrium
strategy of the opponent is the inverse — play D instates 1, 2 ad C in states 3, 4. After
reaching state 4 in equilibrium the automatton willl move to the zero state (00). (This
automaton is diagramed below).

Fig- 3. ‘Gifts” strategy

The “GiIfts” strategy achieves the highest payoff when the opporent plays the
opposite symetrically. In this kind of cooperative play the opponents make each
other “gifts” — they exchange the high payoft (5) in half of the states in the ocle o the
low (O) in the other.

Based on the Nash equilibrium goal we use an asynchronous genetic algoritim.
The equilibrium state requires that no other strategy exists which can give a better
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payoff when the goponent strategy is Fixed. Therefore in searching for the equilibrium
we need to Tix one strategy and optimize the other and proceed analogously thereaf-
ter. Inthe course of analysis ve willl study the relative frtress of equillibriun strategies
against the other.

The genetic algoritim used in the analysis of the RPD is based on a two au-
tomata population and is defined as follons (the integer g represents the nurber of
iterations for asynchronous update):

Step 1. Inttialize the two automata randomly.

Step 2. Confront the automata against each other.

Step 3. Select randamly with replacement two of the two automata of the popu-
lation, with a probability proportional to their round payoff, crossover 1-point and
mutate with constant mutation rate.

Step 4. Update the first of the automata

Step 5. Repeat steps 2 - 4 until the value g is readhed.

Step 6. Confront the automata against each other.

Step 7. Select randomly two of the two automata of the population, with a prob-
ability proportional to their roud payoff, crossover 1-poirnt and mutate wirth constant
mutation rate.

Step 8. Update the second automaton.

Step 9. Goto step 6 until g is reached else move to Step 2.

The algoritim describes asynchronous leamiing through evollution. The particu-
lar type is chasen because as clarified below the solution set contains nultiple peaks
of different size. The nutation rate prevents the system from converging to the nearest
equilibrium and moves among the optimal payofT strategies.

In steps 3 and 7 the random choice may involve choosing twice the more success-
ful automaton. In the course of play the opponents explore their opponent strategies.
Therefore it is natural to assure that each player will use only one automaton and
update it in course of play. This assunption differs from the agpproach used in [8]
where the population size is 30.

4. BExperimental design

The maiin goal of the research is the amalysis of the convergence to the equilibrium
strategy when the players asynchronously evolve their strategies using a genetic algo-
rittm. The reasoning on the latter is that the equilibriun strategy provides the best
payoff. So the players need not to check all the other strategies. The maximum size of
autanaton is fixed in the course of play.

While in the theory the players are gptimizing their strategies in perfect knovl-
edge of the opponents” automata we here propose an innovative approach based on
ewolution of the automata assuming that the players explore their ogponents” strate-
oies.

Ancther way to optimize the behavior for a player is to identify the opponent’s
strategy and after apply the knowledge of repeated games and achieve the highest
payoff. The type of finite automata, hovever, is camplex and the nurber of avai lable
conbinations grows exponentially with the nunber of states. This procedure is addi-
tional ly complicated by the fact that the player can not distinguish the equilibrium ad
non—equil libriun strategies played by the opponent.
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IT a geretic algoritim procedure reaches the equilibrium (@nd thus highest) pay-
of T a check the possible reduction of the complexity (nurber of states) of the au-
tomata. I anautomaton pesses this test it is inferred that it is gptinal to the player. It
must be noted that this s not enough in order to conclude that the pair is equilibrium.
For this we need to check I fixing the new automata the opponent’s is optimal . 1T not,
another pair of automata may emerge and convergence in the process is not guaran-
te.

Optimization of the autamata proves to be of specific interest. As noted above
the automaton’s representation consists of output function, indication of the required
equi librium strategy, transition state 1T case of non-equi librium play and state begin-
ning the cycle. When the equillibrium is reached, honever, the third part of the au-
tomaton is not defining. A player cannot obsenve In equilibrium what is the transition
function in the other case. Therefore a class of N' prove 1o be equivalertly optimal
against Tixed strategy. Depending on the structure of automata other equivalence classes
can ererge. The transition function, honever, is useful in the course of pre-equilib-
riun play. It provides punishment for the player deviating from the eguilibriun strat-
ay.

An additional complication of the analysis is the existence of multiple peaks in
the solution set. In the course of play different equillibria pairs can ererge. With a
Tixed strategy of the one player the other has sore class of equivalent strategies that
achieve the highest payoff. Sare small perturbation, honever, will cause the equillib-
rium to break, and cause the player to move to another equillibrium.

5. Rllits

In the simulation the genetic algorithm is tested using varying mutation rates and
complexity of automata. Discounting parameter is set to 0,9, y =5. For each param-
eter couple (nutation rate, canplexity) 8000 rounds are conducted.

As predicted, play fails to converge to a steady state due to the nultiple peaks
existence. Equilibrium pairs can differ up t 600 %, which makes the equilibrium
fragile to small perturbations. After an payoff optimal pair is reached, depending on
its stability, mutationwill disrupt it ad the systemwill move to another equilibrium
[air.

The results give a clear indication on the predominance of symmetric equilib-
riun play. Fig. 5 illustrates the results with mutation rate set t 0.2 and 4 states. The
Tirst pesk on the graph indicate the constant non—-cooperative play (D, D) with payoff
10 (1+0.9 +H0.9+...=10). The second shows the emergence of cooperative outcome
(C, O with payoff 30 (B + 3x0.9+3x0.9). It is possible that the machines used by the
player fail to be gotimal in terms of carplexity minimization. After reaching the equi-
librium the players may drop some states.

Fig- 5 shows the freguencies of the payoffs when the mutattion rate is incressed to
0.8. This has a pronounced effect on the emerging of marginal strategies — (0, 50)
(80, 0), when one of the players is certainly disadvantaged. It is intuitive that the
increasing of the perturbation will widen the difference between players” payoffs.

The rise in the variation rate strengthens the vital ity of cooperative outcome
compared to the non-cooperative. The mutation causes the players to change faster
their strategies and thus increase the Tirtness of the higher value equilibrium.
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The only stable solution of the gotiimization is reached with tuming of f nutation.
There the system converges in few steps to the best crossover between the two indi-
vidals.

With the increasing in the nurber of the states of the autorata the 2 high peaks
— 2 low pesks picture is retained (see Fig- 6 and Fig. 7). The distribution of the other
payoffs approaches to the normal . The relative fitness of the cooperative outcone
grons wirth the complexity.

6. Conclusion

In the paper is studied the convergence to an gotimal strategy in the Repeated Prisoner’s
Dilemma modeled by finite automata. A modified genetic algorithm is used 1o test the
aevolution of the system, provided the nultiplicity of equilibria and equivalent strate-
gies. The algoritim alloas the player to update their strategies asynchronously, based
on the payoff equilibrium goal . The results strongly indicate the predominant use of
two sinple strategies by the players. The increasing of corplexity and mutation rate
augrents the noise of the system but the two optimal pairs remain predominant. Many
of the ewlving strategies may not tum out to be equilibrium. The type of finite au-
tomata used provides only a necessary equilibrium condition. The analysis of the
carplexity minimization is, honever beyond the scope of the presert paper .
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CXOIMMOCTE K PABHOBECUMM B IIOBTOPSEMON MMJIEMME 3aKJIOUEHHOT'O

Bacwn BacwieB, [leHKa ATIEKCAHIOPOBA

UHCTUTYT MHOOPMALIMOHHEIX TeXHOJIorMit, 1113 Cogusa

(PesoMme)

PaccMaTprupaeTca NPUMEHEHMEe I'eHeTUYECKUX aJITOPUTMOB B MCCJIEIOBAHUM
CXOOVMMOCTM K PaBHOBECMM B IIOBTOPSEMOM IMJIeMMe 3akjiodeHHoTo (III3) .
CrpaTerum OByxX Yy4YacTHUKOB B I[IJI3 ONMCEBAKTCA NPM IOMOLM KOHEUHHIX
aBTOMATOB. JICCIenoBaH aCCHMHXPOHHBD IPOLIeCC OOydeHMs aBTOMaTOB, KOTOPBIA
ONTUMM3MPYET UTPY Npu OeckoHeuHoM III3. B paboTe nokaszsaHO, YTO CaMble
PacCCHpOCTPaHeHHbe TUIEL CTpaTeruy NPpY CUMYJIALUUM CHUMMETPpUYeCKUe U
ONTMMAJIbHEIE NPYT K OPYyTy. JEeMOHCTPMPYIOTCS Pes3yJibTaThl aHAIM3a [IPM Pa3HBIX
KO2OOMIIMEHTOR MyTaLMM M CJIOKHOCTM aBTOMaTORB.
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