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1. Introduction

The interactive algorithms are the mostwidely spread algorithms solving problems of
multiobjective linear and nonlinear programming .. Each iterationof suchanalgoritim
consists of two phases: a computing one and a dialogue one. During the computing
phase one or more (weak) nondominated solutions are generated with the helpofa
scalarizing problem. Inthe dialogue phase these (weak) nondominated solutionsare
represented for evaluation to the decisionmaker (DM). In case the DM does not
approveany of these solutionsas afinal solution (themostpreferred solution), thehe
gives informattion, concerming his local preferences, that improve thesesolutions. This
information isused to formulatea newscalarizing problem, which is solved at the next

Thequal ity of each interactive algorithm isdefined toagreatextent by thequal ity
of thedialogue with the DV.. On its side the qual ity of the dialogue with the DMdepends
a:

—the type of information, required fromthe DM in order to improve the local
nondominated solutionpreferred. The clearer the desired information is forhim, the
more realistically he can express his preferences. The abi lities to improve the
information required fromthe DMare connected with the possibil ities toformulate the
respective scalarizingproblens, the parareters ofwhichexpressthis information;

— the time for solution of the scalarizing problem. The smal ler the time for
evaluation of local (weak) nondominated solutionsby theDV is, thegreater hisdesire
is tosolve thenultidbjectiveproblem;

—the possibi T ties to train the DMwith respect to the mul tiobjective problem
solved. When the freedom of movement in the feasible (weak) nondominated set of the
DM is greater on one hand and when more (weak) nondominated solutions can be
evaluated at one 1teration on the other hand, the DM can choose faster the most
preferredsolution;

—the type and the number of the new (weak) nondominated solutions compared
wi'th the local preferred solution. Themore distant the new (weak) nondominated
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solutions are fromthe local preferred solution, the fewer (weak) nondominated
solutions the DM canevaluate atone iteration.

When solving problems of multiobjective linear programmingas scalarizing
problems, linear programing problemsare used. These problems belong to the class
of P-problems (Garey andJohnson [2])- Theyare easily solved problems. That
iswhy inthe interactive algoritims for solving multiobjective linear prablemsthe tine
for solution of the scallarizing problems does not play a significantrole. Particular
attention inthe development of these algorithms ispaid tothe type of information,
which is required from the DM to improve the local ly preferred (weak) nondominated
solution. UptonowWi erzbi cki [10]) minly theaspiration levelsof thecriteria,
that the DMwants toachieve, have beenusedas such information. These levelsdefine
inthecriteriaspacethesocalled local reference point. Especial attention ispaidtothe
possibilities for training the DV, expressed inthe definingduring the computing phase
of more than one (weak) nondominated solution. These solutions are shown for
evaluationtotheDM(KorhonenandLaasko[6])- Itshouldbenoted nevertheless
that in modem interactive algorithms for solvingnultiobjective linear problems it is
accepted by default that the DV can easi ly estimate more than two (Weak) nondominated
solutions. Anyway , when comparing and evaluating more than two (weak) nondominated
solutions, especial lywhenthe crirterianurber is large andwhen the (weak) nondominated
solutionsdiffer considerably, the DMmay encourtter difficulties inthe selectionof the
local (global) preferred (weak) nondominated solution (Jashkiewichand Slowinski) .

The problems of linear integer programming are NP-difficult problems
(Garey and Johnson[2])- Theexact algorithms, solving these problems have
exporertial complexity. Moreover, the finding of afeasible integer solution inthemis
sodifficultasthe findingofangptimal solution. That iswhy inthedesignof interactive
algorithms solvingnul tidbjective linear integer prablens, it isobligatory totake into
account the time for solving the scalarizingproblems. Ifthistime istoo long, the
dialogue with the DM, though quite convenient, may notoccur . This canhappen incase
‘the DM does notwant towait too long for the solution of the scalarizing problem

In modem interactive algorithms solvingmultiobjective linear integer problens
(Gabbani and Magazine [3];Ramesh,Karwan and Zionts[9]:
Hajelaand Shin[4];Eswarn,Ravindran and Moskowitz[1];
Narulaand Vassilev|[8];Karaivanova, Korhonenetal. [7], in
asmal ler or greater extent, the factor ““time” of scalarizingproblemsolving is taken
intoconsideration. For this purpose, the nurber of the integer problems solved is
decreased; approximate algorithms are used to solve the integer problemsor a
passibility isprovided to interrupt the exact algorithms in solving these problems;
instead of integer problems (especial ly inthe process of DV”s learming),, continuous
problems are solved and the (weak) nondominated solutions obtained are represented
‘to the DM for evaluation.

Some of the interactivealgoritims operatewithaspiration levelsof thecriteria,
othersuseveight coefficients for the relative significance of the criteria. Thegreater
part of them show the DM for evaluation one (wWeak) nondominated solution at each
iteration, the remainingones —several (weak) nondominated solutions (sometimes
hardly compared solutions) -

In the paper presented, on the basis of new scalarizing problems, interactive
algorithms are suggested, which to a large extent include the positive aspects of the
interactivealgoritimssolvingmultiobjective linear integer problems, realizedutothe
present moment. The main features of these interactive algorithms areas follows:

— the information required fran the DM refersto thedesired values of al teration
or thedesireddirectionsof change inany of thecriteria. This information iseasily set
by the DM;
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— apossibi lity to obtain continuous solutions and also approximate integer
solutions, which decreases the wating time of the DV;

—reduction inthe nunber of the integer problems solved;

—apossibility for comparatively quick learming of the DMwith respect to the
multiobjective linear integer problems, providingat each iterationmore (weak)
nondominated solutions for evaluation or approximate (weak) nondominated solu-
tions, aswell as free movement of the DM inthe whole domain of these solutions;

—comparatively easy evaluation of the problems by the DV due to the fact that
they arenear one toanother .

2. Problemformulation

The problemof multiobjective linear integer programming (we shall denote it as
problem (1) can be formulated as:

@D max {f, ), keK}

subjecttothe constraints:

(023 Za_lj)%ébi, ieM,
JeN

(€)) O<x<d,, jeN,

@ X~ integer, jeN,

where

—the symbol maxmeans thatal I the objective functions have tobe simultaneously
maximized;

-K={1,2, ...,p}, M=, 2, ..., m},N={1, 2, ..., n}arethe indexsetsrespectively
ofthe linear dbjective functions (criteria),, of the linear constraintsand thevariables
(olutdas):

-1, keK, are linear dojectivefunctions (criteria):

.0 :Z_cjkxj ;
JeN

X=X %5225 X5 - - -, X ) isthevectorofthevariebles (solutions).

The constraints (2)-(4) determine the feasible set of the integer variables
(solutions). Weshall denote thissethby X .

The problem (1)-(3) isaproblemofmultiobjective linear integer programing.
We shall denote it as problem (P) . The feasible set of the continuous variables is
denoted by X, . The problem (P) isarelaxationof problem(l).

Weshall introduce several definitionsbelow for greater clarityandaregoing to
use newdenotations.

Definition 1. Thesolutionx iscal ledefficient solutionofproblen() or (P), if
theredoesnotexistanyather solutionX , sothat the fol loving inequal itiesare satisfied:

T .(X)>f (X) forevery keKand
T .(X)>T (X) at least for one index kekK.

Definition2. The solutionx iscalledaweak efficient solutionof problem (1) or
(P) it theredoes notexistanother solutionX such that the following inequal itiesare
fulfillet:

T .(X)>T (X) for every keK
Definition 3. Thesolutionx iscal led a(weak) efficient solution, ifxisertheran
efficientsolution, oraweakefficientsolution.
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Definition4. Thevector FOO=(F,(9), - - ., £,09)" iscalled a(weak) nondominated
solution inthecriteriaspace, ifxisa(weak) efficientsolution inthevariablesspace.

Remark. (Weak) efficient solutions in the space of the variables and (weak)
nondomiinatted solutions inthe space of thecriteriaare (Weak) Paretooptimal solutions.

Definition 5. Anapproximate (Weak) nondominated solution isafeasible solution
inthecriteriaspace, located comparatively close tothe (weak) nondominatted sollutions.

Definition6. Desiredalterationsof thecriteriaateach iterationare thevalues, by
which the DMwishes to increase the values of some criteria in the last (weak)
nondominated solution obtainedwith the purpose to improve this solutionaccording
‘to the local preferences of the DV..

Definition7. Areference (local reference) point inthe criteriaspace isthepoint,
determined by the last point obtained and the desiredal terations of the criteria.

Definition8. Areference direction inthecriteriaspace isthedirection, defined
by the reference point and the last pointobtained.

Prablems (1) and (P) donot possess an optimal solution. Hence it isnecessary to
select one solutionamong the (weak) nondominated solutions, which fitsbest theglobal
DM”s preferences. This choice is subjective and depends entirely on the DM.

3. Scalarizingpraoblems

Asalready pointed out, each interactive algorithmconsists of two phases: a computing
oneandadialogue one. Inthe computing phase a scalarizing problem issolved, with
the help ofwhichnew (weak) nondominated solutions are found, that the DMexpects
to improve (with respect to his local preferences) in comparisonwith the current
solutionpreferred (the last solutionfound) .

Depending onthe values of the criteria inthe current preferred solutionand the
local preferences of the DM, the criteriaset canbe separated into three groups. Letus
denote themby K , K, andK; respectively. ThesetK , contains the indices keKof those
criteria, whichvalues the DMagrees to be improved at the current preferred solution
(treirvaluesto be incremented by givenvalues A)) . ThesetK, includes the indiceskeK
of the criteriathat the DV does not take intoaccount. Theirvalues may beworsened.
The setK, contains the indices keK of the criteria, the values of which the DMwants
topresene.

Letusdenotealsoby T, , keK , thevaluesof the criteriain the current preferred
solutionandby f,_, keK, thevaluesof thecriteriain thereference point. These values
aredeterminedas follons:

_ l F+A, L keK ,
f

L, keK K, ,
where A, isthevalue, bywhichthe DMwants to improve the value of the criterionwith
an index k.
Inorder to findbetter (Wweak) nondominated solutionsof thermultiobjective linear
integer problem, taking intoaccount the local preferences of the DM, the following
scalarizing problem is proposed (let usdenote itas (A)).

Letusminimize:
© SGA) =max [mex( —F, GO/ [F |, max(f, -0/ IF}]]
keK; keK,
subjectto
©® T.00>T , keK,,
(@) XeX,,
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where
l T, ifk0,

L1, ifk=0.

Prablem (5)-(7) hasafeasible solution if the feasibleset X isnotemptyandhas
anoptimal solution, ifthefeasiblesetX is limited.

The main advantage of the scalarizing problem (Al) is theminimizationofthe
maximal component standard deviation of the solution searched TG) =(f,(X),- - -,
fp(x))T, franthereference point F)=( F,(9),- - -, fp(x))T inthecriteriaspace.

In order to find better (weak) nondominated solutions of the multiobjective
problem (P), considering the DV”s local preferences, analogous to (Al) scalarizing
problem issuggested (denotedas(A2)) . Thescalarizing problem (A2) isobtained from
the scalarizingproblem (Al), replacing the constraint (7) by the fol lowving constraint:
((9) xeX,.

Theorem 1. The optimal solution of the scalarizing problem (Al) isaweak
efficientsolutionof themultiobjective linear integerproblem(l).

Proof. The scalarizing problem (A1) has any sense, whenK #J. That iswhywe
acoept that K #J . Letx* be angptimal solutionof the problem (AL) . Thenthe folloving
iregualityisvalid:

(&) S(*)<S(X) for each xeX and F, (x*)>T,_, keK,.

Let usassume that x* is not aweak efficient solutionof problem (1) . Thenthere
mustexistanother pointx™ inthevariables space, which satisfiesthe condition:
(@0)) T .0 <t (x") forkeKand £ (x*) >, keK..

After the transformation of the objective function S(X) of problem (A1), using
inequalities (10),, thefol loving relation isootained:

@ S(x) =max [max(f, —F CD/|T |, max(f - F D)/ 1=
keK, keK,
=max [max((f, —F, CD+(FC)-F D))/,
keK;
max ((F, —F, O +(F ) -1/ IF 1<
kekK,
<max [max(f, —F OC))/|T |, max(F T <))/ |F 1=
keK, keK,
=S0F).

It fol lons from (11) that S(x")<S(x*) and £, (x*)) > £, , keK,, which contradicts
1o (9) - Hence x* is aweak nondominated solutionof problem (I).

Itisobvious, that the corresponding solution inthe criteriaspace T(X) isaweak
nondominated solution of problem (1).

Consequence 1. Theorem 1 is true for arbitrary values of T, keK.

The proof of the consequence iselementary, since the proof of Theoreml does
not take inmindwhatvaluestrecriteriaf,_, keK, will have inthe lastsolutionootained
(the current preferred solution), Inotherwords, =(f,,. . -, fp)Tcznbeafeasibleor
unfeasible solution of the problem (1) inthecriteriaspace; a nondominated, aweak
nondominated or even adominated solution.

Theorem 2. The optimal solution of the scalarizing problem (A2) isaweak
efficientsolutionof themultiobjective linearprablen (P) -

The proof of Theorem 2 is analogous to the proof of Theorem 1, where it is not
accounted whether x* is an integer or continuous solution.

58



The objective function of the scalarizing problem (Al) isanonlinear, even
indifferentiable function. The problem (Al) is equivalent to the fol lowing standard
problem of mixed linear integer programming (we shall denote ithy (A1")):

@ min o
subjectto:

3 oz (F-F,0)/IF,], kekK,,
(@) a>(F -f )/ |, keK,,
5 (2T, kek,,

® XeX

an o—arbitrary.

When problem (A1) has a solution, problem (A1") hastoo. This is so, since the
‘two problems have oneand the same constraints, defining their feasible sets. Thevalue
of the dbjective function inthe optimal solutionof problem (AL) isequal tothe value
of the dbjective function inthe optimal solution of problem (A1) . This fol lows from:
Theorem 3. The optimal values of the objective functions of problems (Al) and
(AL™)areequal: _
min o =minmax [max( f, -f CQ)/| T, |, max(f - T )/ [T 11-
xeX,; xeX; keK; keK,
Proof. Itfolloas fran (13) that
oz (f —F Q)/|T,| forkeK .
Since the upper inequal ity isvalid foreachkeK , then it folloas that
a axmax(f_—T CO)/|T |-
keK;
From(14) itfollons that
a>(F T CQ)/|T |, keK,.
Since this inequal ity is inpover foreverykek,, itfol loas that

(@) axmax (F, —f.0Q)/|T |-
kekK,
I'tcan bewritten from (18) and (19) that
(¢.0)) o=max[max( f: -T.0C)/IE |, max(F, - £/ |]-
keK; keK,

ITx* isanoptimal solutionof (A1™), then:
@  mino=max[max(f, —FC))/|T |, max (F - <))/IT (1.
xeX; keK; keK,

because otherwise c.couldbe still decreased.
Therightsideofequality (21) canalsobewrittenas:

minmax[max( f, -, COY/ ||, max(f -, CO)/If 11,
xeX; keK; keK,
which proves the theorem.

The scalarizing problem (A1™) has three properties, which enable the overcaning
toagreatextent of the carputingdifficulties, connectedwith itssolution, andalsothe
decrease inDM”s tensionwhen comparing new solutions. The first property is
connectedwith the fact, that the current integer preferred solution (foundat the
previous iteration) isafeasible integer solutionof problem (AL) . Thisfacilitatesthe
exact, aswell as theapproximate algorithms solving problem (A1), because they start
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withafeasible integer solution. The second property is that the feasible solutions of
problem (A1) inthe criteriaspace, found with the help ofan exact or approximate
algoritim, lienear tothe nondominated surface of problem (1) . The obtainingand use
of such approximate (weak) nondominated solutions can decrease considerably the
time, the DM is expecting to evaluate the new solutions. Hence, with insignificant
decrease inthequal ity of the solutionsdbtained inthe criteriaspace, thedialoguewith
the DM can be considerably improved. The third property is connected with the
realized strategy of DW”s search, and namely - “not large benefits—little losses”. The
solutions obtained along the reference direction, defined by acurrent preferred
solutionand the reference point, are corparatively clase oneto another , whichenables
the DM evaluate themmore easi ly and choose the next local preferred solution, maybe
aglobal preferred solutionalso. Inotherwords, the influence of theso called
“restrained comparabi 11ty of the (Wweak) nondominated solutions decreases.

The scalarizing problem (A2) is equivalent to the fol lowing standard problemof
linear programming (we denote itby (A2)):

@ min o

Subjectto: _

(€<)) ax(f, -F0IN/IT ], keK,,
(¢22)) ax(f-F0Q)/|T ], keK,,
@ £,002F,, kek,,

@®) XeX,,

@) o—arbrtrary.

Problem (A2) has simi lar propertiesas problem (A1), but it concems continuos
solutionshere, not integer . The relation between problems (A2) and (A2) is identical
to that between problem (A1") and (A1), which canbe easily proved.

Let us assume thatwe have found a (weak) nondominated solution of problem (P)
wi'th the help of problem (A2") and wish to find a (weak) nondominated solution of

problem (1), which is near to the (weak) nondominated solution of problem (P) . Let us
denote by F=(f .. . ., f )" a (weak) nondominated solutionof problem (P). Incaseve
assume that F=(F ,. . ., fp)T isthe reference point, inorder to find anear (weak)
nondaminaited solution of problem (1) (thecriteriavalues inthissolutiondonotdiffer
much from f~k, keK), thenwe can use a standard Chebyshev’s problem (Wierzbicki
(1980)) . Ithas the following type (we shall denote itby (A3)):

Letusminimize
€3] SCO =max{(f - F.CO)/If 1},
keK
subjectto:
(€)) XeX,,
where N
[ f,, iF£20,
L1, ifk=0.
The following problem of mixed integer programming is equivalent to this
problem:
@ min o
under the constraints:
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GD a>(F,-F,00)/1 fl. kekK,
(€2 XeX, ,
S o—arbrtrary.

Problem (30)—-(33) will be denoted as (A3).

With the help of scalarizing problems (A1) and (A2) ((A1) and (A2) respec-
tively), (weak) efficient solutions of themultiobjective problems (1) and (P) are found.
ITneeded toabtainonly efficient solutions, thenmodified scalarizing problemscanbe
solved (denoted by (B1) and (B2) respectively). The problem (B1), withwhich
efficient solutions of problem (1) are found, hasthe form:

Minimize
(€D) TE)=max [max (£, —F,CQ)/IF, |, max (F-F.0Q)/|F, |1+
keK; keK,
+B [ (F-F.00) +Z(F-F. 0]
keK; keK,
subjectto:
(€D f.0)>T , keK,,
(€9) xeX,,

where 3 isanarbitrary smal Il nunber.

Problem (B2) , with the help ofwhich efficient solutions of problem (P) are found,
is the same typeas problem (B1) , but constraint (36) is replaced by the folloving
arstraint

xeX, -

Theorem4. The optimal solution of the scalarizing problem (BL) isanefficient
solutionofthemultiobjective linear integerproblem (1) .

Proof. Thescalarizing problemhas sensewhen the setK  is notanempty set.
Let K=,

Let x*bean optimal solution of problemB1. Thenfor any xeX , the following
ocoditinissatisfied:

(€)) TOMT).

Let usassume that x* is notan efficient solution of problem (1) . Then theremust
existanother x (another point in thevariables space) , forwhich the conditionbelow
givenissatishied:

(€5)) T (X)>E (x*) for keK
and at leastfor one index 1=k,
T,60>F,(¢9.

After the transformation of the objective function T(X) of problem (B1) , using
inequalities (3B), thefol loving relation isootained:
€°)) T(x) =max[max(f, — £,/ I, |, max(F —F, /I 11+

keK; keK,
HBLE (F, - F O +X (F-FON]=
keK; keK,

=mex[max((f, —F,0¢)) + (R TN/,
keK;



mex((f,— <)) + (F.6) £,/ 1T 11+

kek, ke,
+BL % e(K(f: - ) + (D) TN +
Zkg f, ifk(X*)) + (6D -FCON] <
< maX[”E{(f: -TCMDV/IL, f?(ai(fk O/ If 11+
+B [kze K(f: ifk(X"*)) +§€(K f. —fk(Xi))] =TOX™).

Itfollows fram (39) that T(X) < T(x*), which conmtradicts o (37) . Hence x* isan
efficient solutionofthemultiobjective linear integerprablem(l).

Consequence. Theorem4 isval id for arbitrary values of f_, keK.

The proof of the consequence iseasy, since the proof of Theorem4 does not take
intoaccount thevaluesof thecriteriaf, , keK, inthe lastsolution dotained (the current
preferredsolution).. Inotherwords=(T,,. . . ,fp)Tcaqbeafeasibleorqueasiblesolutim
ofproblem (1) in the criteriaspace; anondominated, aweak nondominated or evena
dominatted solution inthecriteriaspace.

Theorem5. The optimal solution of the scalarizing problem (B2) isanefficient
solutionof themultiobjective linear problem (P).

The proof of Theorem5 is analogous to the proof of Theorem4, where it is not
‘taken into account that x* s an integer or cortinuous solution.

Problem (BL) is equivalent to the fol lowing standard problem of mixed linear
integer programing (we shal l denote itby (B1)):

“@0) min (a+BXy)

keK
subjectto
“@ f -F )=y, keK,
@) f-FT0)=y,, keK,,
(CS)) (f, —F.OOV/If | <0, keK,,
@ (T GO/ I |<a, keK,,
*) FOCO=>1,, keK,,
(C9)) XeX,,
@n o, Y., keK-arbitrary.

The scalarizing problem (B1") has the same properties as problem (A1), but it
containsmany more constraintsandvariables. That iswhy it ismoredifficulttosolve.
When the initial problem (1) isaproblemof larger dimension, Tt ismore appropriate
to use problem (A1") than problem (B1").

The scalarizingproblem (B2) is equivalent to the fol lowing standard problemof
linear programming (we shal I denote itby (B2)):

(¢3)) min (a+pXy,)
keK
subjectto
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“0) f, - f0O=Y,, keK,,

&) T -1 0O =y,, kek,,
G (F, - TN/ | <o keK,,
® (f,~ £ OOV I | <0, kek, ,
o) £, F, ke, ,
& xeX, ,

&) a; Y., keK-arbitrary.

The scalarizing problem (B2) has identical properties as problem (A2), but it
contains more variables and constraints. Praoblem (B2) helps the finding of efficient
solutions, whille problem (A2)- (weak) efficient solutions. Thetwo problemsareeasily
sollved and hence 1t ismore appropriate to use problem (B2) instead of problem (A2) .

Let us assume that we have found anondominated solution of problem (P) with
the helpof problem (B2) and wish to Finda nondominated solution of problem (1), close
to the nondominated solution of problem (P) . Ifwe denote the nondominated solution

of problen ®) by =(f,,.. . ., £ )T the findingof anondominated solution of problem
(D) canbe real ized solving the fol lowing problem of mixed irnteger programming (we
denote itby (B3), corresponding to problem (A3):

€9 min (o +BXy)
keK

subjectto:

()) - f,00=y,. keK,

) F-F,00)/ I 1<a, keK,

(62)) xeX,,

@ a;Y,, keK-arbitrary,

where

[f, , if £20,

|1, ifk=0.

Problem (B3™) contains more variables and constraints compared to problem
(A3). Frana computing vienpoint problem (A3) ismore appropriate for application,
though 1tgives (Wweak) nondominated solutions. This isparticularly true for problems
of largedimension.

4_ Conclusion

Several scalarizing problems have been formulated in the work presentedwhich lead
to obtaining of (weak) nondominated solutions of the mul tiobjective continuous and
multiobjective integer prablems. Asabase of these scalarizing problems the values of
thecriteria inthe lastsolutions dotainedare used, asvell as thedesired inprovements
of some criteriaby theDMalso.

These scalarizingproblems enable the design of user-friendly interactive algo-
rithms foreffcicient solutionofmultiobjective integer problems.
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CraJgpuaupyIye 3a0ady MHOTOKPUTEPMAaJIbHOTO
JIMHEVHOT'O LIeJIOUMCIIEHHOT'O NIPOTPaMMMPOBAHNISA

MapraHa BacrieBa

VHCTUTYT MHYOPMAILMOHHEIX TexXHoJoTwi, 1113 Coprmsa

(PeszwowMme)

[IpenCcTaBJIeHHE M @aHATIM3UPOBAHE HECKOJIBKO CKAJIIPUSMPYOIMX 3a0ad, KOTOPHE
MIPVIMEHSIOTCSA B MHTEPAKTUBHEIX aJITOPUTMAX IJIS PeleHUY MHOT OKPUTEPYATIbHEIX
JIMHEMHBIX 1IEJIOUMCIIEHHHEIX 3anad. CBOMCTBA CKAJIAPU3UPYIIMX 3a0ay [10'3BOJISIOT
YMEHBbIIEHME BEUMCIMTEJILHEX TPYOHOCTEM, CBSABaHHEIX C MX PElleHVEM B
VHTEPaKTUBHOM PeXVME, a TakKke U yJIydlleHre OIMajiora C JIMLOM, NPMHVMALIMM
pemenye . [puBeneHs OOOCHOBKY, YTBEPXKISHUS M IOKa3aTEJILCTRA .

6 4



