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1. Introduction

Studying the complexity of analgoritim involves the answer of two basic computational
questions—for the convergence and the amount of computing resources — time and/
ormemory, needed for executing the algorithm. Three basicapproachesare uti lized for
analyzing the performance ofanalgorithm-worst-caseanalysis, empirical analysisad
average-case analysis [1, 2, 3] . Theworst-case analysis provides a performance
guarantee, while theenpirical analysisgives anestimationofthealgorittmbehavior
inpractice. Qptimizationalgor ithms thatexploit network structure arehighly efficient.
They can solve real-life network flow problems hundred times (by an order of
magnitude) faster than the general algoritihms of linear programming .- In [5] anetwork
Tlow, calledaflovwith inverse linear constraints (1LC-Flow) , has been introduced and
investigated. The lower bounds of the arc floas are entirely replacedwith linear
inequal ities onthe arc flow functions. This flovowns reduced network properties.
Searching forafeasible and gptimal ILC-Floas isnot aneasy taskand suchflons exist
under certain conditions. Anefficient approach for the solution of ILC-Flow
optimizationproblems isthe approximationof these models by exploring the network
characteristics. Onthisbasisan iterative algorittmfor anapproximate solutionof the
ILC—-Flow optimization problems has been developed. Exact methods and algorithms
for optimization of the standard network floware applied. The paper focuses on the
complexity of the approximate algor ithm for optimization of the ILC-Flow. Theworst-

case analysis isadopted.

2. Theoretical and algoritihmic background

The optimization of ILC-Flow includes solving two problems — Problem 1 for finding
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minimal ILC-Flowand Problem 2 for finding ILC-Flovwithminimal cost

Problem 1 canbe stated as: i
min v

subjectto

D G, DTN, O =v;
&) (x, N) TN, ) =0;
&) 2hoy) fxy)>G, iel,

x,y)eU
&) TX.Y)2>0; (.y)eU,

where v is the value of the ILC-Flow; N—the set of the nodes of the graph G={N,U},
INJ=n; U-thesetof itsarcs, |U]=m; thenodes sand t- the source and the sink,
the function f, F:U-R" isthe ILC-FlovinGfromstot.

Problem 2 canbe stated as:

min 2 a@,y) f.y),
*,y)el
subject to (1) - (4), wherea(X,y), (X,¥)eU, are costsor objectivearcestimations.

Consider acapacity constraint (3) of inequal ity typewithan indexi, icl, calledan
inverse linear constraint (ILC-constraint) . Let us denoteby D, anarbitrary subsetof U,
such that foreach j,kel, D,ND, =&, UD, =U, where & isanempty set. Then ineach

icl

ILC-constraint, thevalues of the flovonthe arcs of thesetD, are in linear dependence.
The coefficientsb, (X,y) belong to theset of real non-zeronunbers ifieland (X,y) €D,
and are zeros, otherwise. The right-hand sides C, of the ILC-constraints are real
nonnegative nurbers. They canbe interpreted as““col lective capacities’” with respect
to thearcs of the set D, . The effectiveness of the algorithm for solving the stated
optimization problems depends on the values of the coefficients b,(x,y) and on the
structureof thesetD,.

The algorithmfor solving Problem 1 and Problem 2 incorporates an iterative
procedure of threemain steps that canbe generalized as fol lows:

A. The algorithm for optimization of ILC-Flow is based on a constructive
approach. Inthisapproach an approximation of the ILC-Flowvia the standard flons,
introduced by Ford and Fulkerson proceeds. The standard Flow is defined by loner
bounds af arc capacities, determined by appropriate relations and the standard network
Flowconstraints. The fol lowing theorem guarantees that the approximating flow isan
ILC-flow.

Theorem 1. Every non-zero real ization of the standard network flow satisfies
simultaneously the requirements (1)-(4) and isan IIC-flowat the same time.

Inthe conversiion from ILC-Flow into the standard fllov the coefficients b, (x,y) play
an important role for determining the loner bounds of the arc capacities. The dbjective
arc estimations are used when seeking an ILC-Flowwithminimumcost. At solving
Problem2andminimal value of the ILC-Flowboth b, (X,y) and a(X,y) areutilized. The
main idea is todirect the flov tonardsarcswithsmal ler coefficients.

The solution of the standard optimization problems—finding the maximum
standard flowand finding standard flovwithminimum cost needs the determination
of the upgper bounds of thearc capecities. Inthegereral case inorder toobtaina feasible
Flowand after that to solve the above problems sufficiently large real nurberscanbe
applied to theupper boundsof thearc capacities. Thedisadvantage is that their “profile”
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may appear to be too far removed from the “profile” of the lower bounds of thearc
capacities. This leadsto increasing the iteration nurber andas awhole—the corpllexity
of thealgoritim. Onthe other hand if the two “profiles’ are tooclose eachother itis
not guaranteed the feasibi l ity of the approximating flow real ization and therefore and
the fessibil ity of the ILC-Flow. Finding inrtial feasiblestandard flowis carriedoutby
an iterative procedure that incorporates sixsteps. Inthe firststep the initial upper
bounds of the arc capacitiesof the standard flow in theoriginal networkare determined.
Second — an extended networkwith all zero lower bounds is constructed. Third - the
maximal flow in the extended network is found. The last two steps are based on the
folloving theorem [4]:

Theorem 2. In the original network there existsa feasible Tlow iT the maximum
value of the flow in the extended network isequal tothe integral lorver bounds of the
arccyecities.

ITthe conditionof theorem?2 is fulfi l led then the upper bounds of thearc capacities
are determined by the respective lonver bounds and the optimal Flow realization inthe
extended network. Otherwise, the “profile” of the upper bounds of the arc capacities
isaugrented till the fulfil Iment of theorem2 condition.

B. The standard approximating network flow is optimized. Highly efficient
network flowalgorithms for solving maximum Flow problemand standard flowwith
minimal cost flovare applied. The dotained optimal real izationof the standard flow
isat the sare time arealizationof the ILC-flowbut notobligatory the optimumone.
The current cut is determined by a recurrent procedure. An index is applied to the
currentset. Anunber of quantitiesare determined.

C. Thereare stored the initial values of the standard flow real ization, of the
capacitiesand of some other quantities. Apathological case - the existence of apath
franthe source to the sink that containsarcswithonly negattive constraint coefficients,
iseliminated by an appropriate procedure. The difference between the lefthand side
and right hand side of each constraint isdetermined. The val idity of the necessary
condition forminimal ity of the ILC-Flow is checked.

Theorem 3. The necessary but notasufficientcondition forminimality of the ILC-
Flow is the existence of acut, which separates the source and the sinkand inwhicheach
forward arcand each backward arcwirth positive coefficientsenter at least one saturated
astraint.

“Rough”” and “Fine” set-up of the arc capacity profile is accomplished if the
necessary condition of theorem3 doesnot hold. A transfer tostepB for new iteration
isperformed after that. The Iterative procedure ends if the necessary condition is
satisfied. The approximate solution cannotbe improved. The suboptimal ILC-Flow is
dotaired.

Ineach 1teration the algorithmfor solving Problem 1 and Problem 2 controls and
guarantees the fulfil Iment of the necessary condition forminimal ity of ILC-Flow. This
improves the approximate solution. By iterating the solution tends fromabove tothe
sought suboptimal solution. At each iteration exact highly efficientmethods and
algorithms of the standard network floware applied.

3. Complexityanalysis

The First general ized step of the algorithm for optimization of the ILC-Flovapproxi-
mates this flow by the standard network flow. A conversion is acconplished atwhich
the initial profi le of the loner bounds of the arc cgpecities isdetermined. Aful l network-
tracing isneeded. At that eacharc isanalyzed nomore thanonce or intheworst case

38



—-many timesbut the number of which isbounded by a constant. Inpractice this does
not complicate the full network-tracing. Inthedeveloped algorithmtwo efficient
methods for network analysis are realized - depth-first search (1) andbreadth-first
search (2) - Thedifference is inmaintaining thenode list asastack (1) or asaqueue
(@) . Thedisadvantage of the firstmethod, asawhole, isthattwhen findingapath between
each two node this path isnot the shortestone. Inthe second method thisdisadvantage
isavoided. Both methods examined each node twice—once at including the node into
the stackor the queue, and second time when excluding the node fromthem—altogether
2ntimes. These examinations incorporate doubleanalysisofeacharc incident toagiven
node— altogether 2mtimes. Therefore the complexity of both methods is O(n+m),
which ispractically the conplexity of the first general ized step of the algorirthm.

At the second general ized step of the devel oped algorithm the standard network,,
dotained inthe previousstep isoptimized. Thecomerstone of carplexityanalysisisthe
rational integrationofhighly efficientmethods and algorithms for finding maximum
approximating network flow and such flowwith minimum cost into the proposed
algorithm. Theobtained real ization isan ICL-flow, too. Each ILC-Flowreal ization is
called a pseudooptimal one due to the adoption of exact and fast network flow
optimizationalgorithms. Final lya suboptimal ILC-Flow isobtained. Fundamental
problem of network Flow programming is finding a maximun standard flow. Al known
algorithms for constructing amaximum Floware based on the iterative increment by
the application of the augnenting path methods. The efficiency of eachalgorithm is
caused by the proper selection of an augmenting path and by the opportunity for
incrementing the Flowat each iterationwith maximun number of units. Inthebasic
algorititmof Fordan Fullkerson the augmenting path is arbitrary selected and the Flow
is incremertted by aunit. For finding each augmertting patth r? operations or O(r?) time
isneeded. At the beginning the maximumvalue of the Tlow is unknomand intheworst
case thisalgorithm is not bounded in the terms of nand m. Asawhole the algorithm
has a complexity of O(Cm), where C is the integral arc capacity. Therefore the
algoritim is pseudopolynomial . In theworst case this estimationmay notbe attained.
The number of Iterations is unbounded and the optimumsolution isnot achieved. Ifthe
shortest path in the network is selected for the augmentation then the algorithm
becomes strongly polynomial with complexity O(nm(n+m)) . When the flow is
incremented simultaneously inmore than one path the estimation isO(?m) . Further,
ifanode iseliminated instead of anarcat findingablocking Flow, and after reducing
the number of Iterations the complexity becomes O(r®) . At the moment this is thebest
estimation fordense networks, The respective best estimation for sparse network is
O(nm Ign) - Itisarchivedby using specificdatastructures cal leddynamictrees.

The second standard optimization problemfor flow in networks is the one for
Finding a flowvwithminimum cost — mincost problem. Nevertheless that this problem is
a firsthand general ization of the maximum Flow problemthe complexity analysis has
more sophisticated character . For a long time strongly polynaomial algorithmhad not
been developed and published. Onthe other hand, besides that for some pathological
cases anumber of pseudopolynomial algorithms have exponential caonplexity, their
improvement and application are of real interest. Anappropriate example is the
standard negative cycle algoritim. Series of improvements concerming the identifica-
tion of the negative cycle lead todbtaining optimal solutions for O(A*Cmigm) , where
A* isthe upper bound of the integral cost. For solving the mincost problemthereare
applied subroutines for Tinding the shortest path and maximum flowwith complexity
respectively O(m+nlgn) and 0(rmlig(r?/m)) . Complex dynamic tree structures of data
are used. The most efficient pseudopolynomial algorithmfor al 1 networks except the
very dense ones has a complexity O(nmiglgA*1IgnC) . The Firststrongly polynomial
algorithmneeds O() time. At the time being the fastest strongly polynanial algoritim
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has a complexity of O(m(Ign)(mnlgn) . This algorithmsolves the mincost problemby
aconsequence ofmlogn shortest path problems.. 1t should be noted that the above results
are only theoretical ones that must be yet proved by computational experiment.

Inthe second general ized step under study a nurber of substeps are executed.
They are related todetermining and storing basicvalues and current variablesand to
determining cuts by respective recurrent procedures. Let the number of 1LC-con-
straints isnomore than m-1, and eacharc isanalyzed at least once or several times
but the number of examinations is bounded by a constant k* . Then the complexity of
all these operations does not exceed O(k*(n+m)) or Finally O(n+m). 1T only the
number of nodes is used in the estimation then it isabligatory to take care about the
network size and density. Obviously the estimation O(m?) is preferred to O(i'm) at
sparse networks and vise versa—at densenetworks.. Inthe present complexityanalysis
both parametersareused. Here it isof interest not the exact carplexity of the proposed
algorittmbutonly itsasymptotic complexity. That istosay the asymptotic speed rise
of the steps under the condirtion that the problemsize—in case the nurber of nodes and
arcs grows boundlessly. Therefore besides the numerous and var ious operations that
areexecuted inthisstep, 1tscomplexity isdefined by the time needed for running the
maximum and mincost standard flowalgorithms.

Thethird generalized step isbasic infinding the suboptimal solutionof ILC-Flov
problem. Here the fulfi l Iment of the necessary condition for optimal ity of ILC-Flow,
according to theorem 3 is checked. This check needs O(m) time ifk is the number of
ILC-constraints and intheworst case k=m-1. Depending on the checking result two
separate corrections or set-ups of the profi le of the approximating standard arc
capacitiesproceed—“rough” set-upand“fine” set-up. Inboth set—Upsdepth-Firstsearch
orwidth-firstsearchis real ized. Eacharc isexaminedat leastonce. Besides thereare
updated the Flow realization, the value of the flowand the cost function. Aswell an
examination of at least one constraint or in theworst case —all constraints, is
accomplished. The complexity of al I these operations is O(n+Hmk) . The number of
ILC—constraintsk isnomore thanm-1. The estimation isanasymptotic correlation.
Therefore the overall complexity is O(n+tm+m-1) or Finally O(n+m). Let the
necessary condition for optimal ity of the ILC-Flowbe valid. The end values of the
obtained solution are determined for O(n+m) time. Otherwise a transfer tothe second
generalized step of the algorithm for new iteration is performed. Each iteration
approaches the intermediate solutiontoa finite value of ILC-Flov—minimal or mincost
ILC-Flow. The number of iterations isbounded by n. These two circumstances make the
developedalgoritmfiniteand prove its convergence. Two basicprerequisites deter-
minethe insignificant influence of both iterationcycles onthe overal | carplexity. The
Firstone is that the number cycles for each “rough” and “fine” correction isbounded by
constants. For each separate problemthey are selected due to the preferable precision
reevery iterationand the total nurber If Iterations. Thesmal ler step corresponds to
the greater number of Iterations and vise versa. An important fact is that the number
analyzed arcs reduces rapidly together with increasing the bounded number of
iterations. The second prerequisite isthat the nunber of the different maximum cuts
is limitedunlike the nurber of different Flows. Nevertheless the iteration cycles
increase the execution time needed for obtaining the suboptimal solution. Inthe
proposed methodology for ILC-Flow optimizationeach iteration isasingle execution
of anested cycle at which the maximumor mincost approximating standard flow is
found. Further, intheworst case each nestedcycle Isexecuted ntimes. Thereforethe
index of apower in the complexity of the highly efficient standard network flow
algorithms increases nomore thanl. Forexample, the camplexity of thealgoritim for
findingminimal ILC-Flow isbetween O(n*) and O(I*) - As an approximation onthe base
of numerous computational experiments it may be accepted that the power in the
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conplexity increasesby 0.8, namely for the minimal ILC-flowvalgorithm it isnotworse
thanO(*%).

4_Conclusions

Thi's paper studies the computational complexity of analgorithmfor the network flow
with inverse linear constraints optimization. Twoproblems are solved by the proposed
algoritim- finding the minimal ILC-Flowand finding ILC-Flovwith minimumcost. The
algorithm is based on the deduced necessary conditions for ILC-Flowoptimality and
othertheoretical inferences. Anappropriate gpproximationof thisflovby the standard
network flows is real ized. Exact methods and algorithms for optimization of the
approximating Flovare embedded. These algorithms are timedeterminative ones re the
complexity of the proposed approximate algorithm. The approach of worst-case
analysis for examining the performance of the algorittm is accorplished.. The following
main resultsare dotained:

1. The algorithm is convergent. Each 1teration approaches the intermediate
solution fromabove to afinite value of ILC-Flowv-minimal or mincost ILC-Flow. The
number of the Iterations is bounded by the number of nodes n.

2. Each iteration isasingle execution of anested cycle. The carplexity of the
propased algorithm is comensuratewi th the complexity of the standard network flow
algorithms —the indexaf apower inthis comnplexity increases nomore thanaunit.
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O BEUMCIIUTEJILHOM CJIOXHOCTU NPUOJIMKEHHOT'O MEeTOona
IJIS OTITUMIMBALIMM CETEBOT'O [IOTOKA
C o6paTHBEIMU JIMHEVHEIMM OT'PaHUUEeHU MU

ATaHac ATaHacoB

VHCTUTY'T MHYOPMALIMOHHEIX TexXHOoJI0Twi, 1113 Codrmsa

(PesoMme)

B paboTe nccienoBaHa BEUVCIIMTEIIbHAA CJIOKHOCTE ITPUOJIVDKEHHOT'O aJIlOpUTMa
0J1s1 ONTVMM3alLMM CETeBOT'0 TIOTOKAa C OOPATHEIMY JIMHEVHBIMM OT'PaHMUYEHVAMNU
(OJIO-noToka) . AHAIM3UPOBAH MHTEPAKTUBHLI aJITOPUTM HNPUOJIMKEHHOTO
pelleHrs 3anad onpenesyieHra MMHEMMAaJIbHOTO OJIO-IIoToka M TaKOI'O Xe [IOTOKa
MMHVMAaJIbHOM CTOMMOCTM . OH OCHOBaeTCH Ha 2bdeKTHBHOM annporcymalym OJI0—
[IOTOKa IPKU IOMOLIM KJIACCUYECKOT'O CETEBOT'O ITIOTOKA .

B OCHOBe NpenjioXeHHOI'O aHalu3a [IPMMeHAEeTCA [IOOX0 OlpeaesleHA
BPEMEBOM CJIOXHOCTM aJITOpMTMa OJia "xynmero ciydasa" . BpeMsaonpenessouyMA
YacTaMM aHaJM3MPOBaHHOT'O aJITOPMTMa SABJISIOTCS TOUYHBIE METOIBl M aJITOPUTMEL
ONTVM/3ALMM KJIACCUUECKOT'O CETEBOI'O II0TOKa . AHAIMBOM [I0OKa3aHa CXOIVMMOCThb
NPUOJIMXEHHOTO alToOpMTMa M COM3MEPUMOCTEL MeXIy €T'0 BEUMUCIMUTEIIbEHOM
CJIOXHOCTBIO M BDEMEBOM OLIEHKOM KJIaCCHMHUEeCKOT'O CETEBOTO [IOTOKA . ITOT Pe3yJIbTaT
IPOVICXOOUT OT OT'PaHMUEHHOT'O UMCcila UTepalydi M OTTOTO, UTO KaxIas MTepalys
NpelCcTaBJsgeT BJIOXEHHEM LMKJI M NPUOJIMKaeT CBEPXy MEXIMHHOE pelleHre K
bmHanbpHOM BesmumHe OJIO-IIoToKa .



