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1. Introduction

Most of the industrial robots have open kinematic chains and they are based on serial
connections of links. These manipulators have large workspace and good dexterity,
but their rigidity is poor. Parallel manipulators can be considered as an alternative of
the serial manipulators. Parallel manipulators have some advantages such as higher
stiffness and greater payload-to-selfweight ratio. Their major  disadvantage is the lim-
ited workspace volume. The third group of manipulation systems is the group of hy-
brid type manipulators. Hybrid manipulation systems combine the advantages of both
open and closed chain mechanisms., i.e., on one hand they have greater workspace
and on the other hand good stiffness, high load-carrying capacity and higher accuracy.

Workspace of manipulators has been studied by many researchers. The methods
for determination of the workspace can be divided in two groups: analytical and nu-
merical methods. The analytical methods are very complex while the numerical ones
are relatively simple. Analytical methods give closed form descriptions of the workspace
boundary but they can apply only to a certain specific manipulator. There are investi-
gations of the workspace of serial as well as of parallel manipulators [1­6]. However,
the workspace of different kinds of hybrid manipulators is still to be determined.
Presentation of the workspace of a manipulator not only gives a clear idea of the
geometric characteristic of the manipulator but can be used for evaluation of different
performance characteristics. The knowledge of the workspace helps to determine the
possible applications of the manipulator.

This paper presents workspace investigation of a hybrid type robot manipulator.
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2. Workspace of a hybrid type robot manipulator

The hybrid type manipulator under consideration consists of two variable-geometry
modules, which are serially connected. (Fig.1). A lot of hybrid manipulation systems
can be obtained by combining such modules (see [8]). We will consider one of the
possible structures here (Fig.1). The first module has two actuated links, i.e., they are
with variable lengths, while the second module has one actuated link. In addition to
these modules there are two revolute joints situated at the input and at the output of
the manipulator. This manipulation system has five degrees of freedom.

Fig.1. The hybrid type manipulation system

For the determination of the workspace of this manipulator we have used the
forward and inverse kinematics. That is why the closed form solution of the forward
and inverse kinematic problems  are given below (for more details see [7]).

2.1. Forward and inverse kinematics

For the forward position problem we can write:
(1)       r = 0A

1
1A

1
2 A

1
3 A

1
4 r = A4 r,

i1 Ri
i1 ri 

where i1 Ai  =  
0 1 

i1 Ri is a 3x3 rotation matrix representing the orientation of the i-th coordinate system
with respect to the (i-1)th coordinate system; i1 ri is a 3x1 matrix denoting the position
vector of point Oi with respect to the (i-1)th co-ordinate system; 0 is a 1x3 zero matrix;4 r is a 4x1 position vector written in the O4X4Y4Z4 coordinate system; the left leading
index denotes the coordinate system with respect to which the vectors and matrices
are written. Let 1 ai   and 

1 bi (i=1,2,3) be vectors relative to the O1X1Y1Z1 coordinate
frame, i.e.,

(2)  1 ai = 
0O1

1A1= (0, 0, )
T;

(3)             1 a2 = 
1 a3 = 

1 O
1
1A

2
= (0, 0, )T;
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(4)    1 b
1 
= 1 b

2 
= 1 O

1
1B

1
= (v

1 
, 0, u

1
)T;

(5)                                  1 b3 = 
1 O

1
1B

2
= (v

1 
, 0, u

2
)T.

We can write similar vectors for the second module referred to the O2X2Y2Z2 coordi-
nate frame, i.e.,

(6)               1 c
1 
= 2O

2
1C

1
= (v

3 
, 0, u

3
)T;

(7)               2c
2 
= 2O

2
1C

2
= (v

4 
, 0, u

4
)T.

The rotation matrices 1R2 and 
2R3 , and the position vectors 

1r2, 
2r3 can be written as

follows:
 (u1   u2) 0 (v1  v2) 

(8) 1R2  = 1/b  0 b 0  
 (v2   v1) 0 (u1   u2) 

 (u3   u4)   0 (v3   v4) 
(9) 2R3  = 1/c  0 c 0  

 (v4   v3) 0 (u3   u4) 

(10) 1 r
2 = ( (v1+ v2)/2, 0, (u1+ u2)/2),

(11) 2 r
3 = ( (v3+ v4)/2, 0, (u3+ u4)/2).

The other two rotation matrices are:]

 c1   s1 0   c1   s1 0 
(12) R2  =  c1   s1 0   R2  =  c1   s1 0  

  0 0 1   0 0   1 

where si and ci (i=1,4) denote sini and cosi, respectively.
The inverse position problem is to determine the actuated joint variables (angles

1 and 2, and leg lengths L1, L2, L4) for the given position and orientation of the end-
effector of the manipulator.  Let the orientation of the end-effector relative to the base
be defined by a rotation matrix, R, i.e.,

  ,  l1 l2 l3 
(13) R  = m 1 m 2   m3  

 n1 n2 n3 

Referring to Fig.1  we can easily obtain the angles 1 and 4, i.e.,
(14) 1 = arctg2(m1, l1) ,
(15) 4  = arctg2(n2, n3) .

Then for the rotation matrix representing the orientation of the O3X3Y3Z3 coor-
dinate system with respect to the fixed coordinate system can be written:
 (16)   0 R3 = R

 3R1
4 
,

and respectively:

0R3
0r003 

(17) 0A3  =   
 0 1 

where r003  =  r004  
0R3  r0304  is a position vector written in O4X4Y4Z4  coordinate

system.
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Therefore for the Cartesian coordinates of points Ci (i = 1, 2) relative to the base
coordinate system and O1X1Y1Z1 coordinate system, respectively, can be written as
follows:

(18) 0 OCi= 
0A3 . 

3 OCi ,

(19) 1 OCi= 
0R1 

-1 .0 OCi ,

 where 1 OCi= (xCi, 0, zCi)
T.

Now using vectors ai and bi given by equations (2)-(5) we obtain the following:
(20) v12 + 2  + 2u1 + u12  = L32 .
From the following vector equation
(21)            1 OC1

1 OB1   = 
1 B1 C1

we can obtain:

(22)   (xC1 v1 )
2  + (xC1 u1 )

2  = L52 ,

where L52  = B1 C1
Solving equations (20) and (22) together leads to the following:

      (PQ)(PQ)2 (Q2+1)(P2 +2 L32)
(23) u1=

            Q2+1

    (PQ)(PQ)2 (Q2+1)(P2 +2 L32)
(24) v1=PQ()

             Q2+1
where

        L32   L52   + x2 C1  + x
2 C1  

2      zC1P=    Q=
       2 xC1   

          xC1
Then the variable length L1 is given by the following equation:

(25)     L1= v12  +( u1)2.

Let  1e5  = (
1e5x, 0, 

1e5z)T  and  
2e5  = (

2e5x, 0, 
2e5z)T be unit vectors along the line

B1C1 written in O1X1Y1Z1 and O2X2Y2Z2 coordinate systems, respectively. The vec-
tor 2e5  is constant and depends only on the design of the manipulator, while the com-
ponents of the vector 1e5  can by obtained using the following vector equations:

(26) BC = O1C1 ­ O1B1,

which leads to the following:
          xC1  ­ v1

(27) 1e5x = ­­­­­­­­­,
                                               B1C1

          zC1  ­ u1
(28) 1e5z = ­­­­­­­­­.
                                               B1C1

Obviously, the dot product of these unit vectors represents the rotation of the O2X2Y2Z2
coordinate system with respect to the O1X1Y1Z1 coordinate frame, i.e.,

(29) 2e5.
1e5 = cos2.
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Then keeping in mind the components of the rotation matrix  given by equation (8),
equation (29) leads to:

(30) u2 = u1 ­ b(
2e5.

1e5).

Now, in order to find v2 we will write the following equation:

(31)          1OB2 ­ 
1OC1 = L6,

where
L6 = C1B2.
Equations (31) lead to the following:

 L6
2 ­ b2 ­ xC

2
1
 ­ zC

2
1
 + 2(zC

 
1
 ­ u1)u2 + u1

2 + v1
2

(32)     v2 = ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦ .
      2(v1 ­ xC

 
1
)

Then the variable length L2 is given by:

(33) L2= 

v

2
2+

(

r

+

u

2


)
2.

The unknown rotation matrix  can be obtained by the following equation;

(34) 2R3 = 
1R2.

0R1.R.
3R4­1.

  r11 0      r13 
Let 2R3 = 0 1  0 

 r31 0      r33 

denotes the components of the rotation matrix 2R3 obtained by equation (34). Then
equations (9) and (34) lead to the following:
(35) u4 = u4 ­ cr11,
(36) v4 = v4 + cr31,
where c = C1C2.
Then for the variable length L4 = B2C2 can be written:

(37) L4 =    (u4 + b/2 )
2 + v4

2  .

Equations (14), (15), (25), (33) and (37) give the solution of the inverse position
problem for the considered manipulation system.

2.2. Determination and representation of the  workspace

Two workspaces of manipulators can be defined:
 Reachable workspace: this is the volume within which every point can be reached
by the manipulator end-effector.
 Dextrous workspace: this is the volume within which every point can be reached
by the manipulator end-effector with any desired orientation.
In addition to these two definitions given by Kumar and Waldron [5] another workspace
can be defined:
 Workspace with constant orientation - this is a  volume which consists of all the
points which can be reached by the end-effector with constant orientation.
Obviously the union of all workspaces with constant orientations will give the reach-
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able workspace, while their intersection will determine the dextrous workspace.
In this section of the paper the reachable and dextrous workspaces of the considered
hybrid type manipulation system is presented. The algorithm consists of the following
steps:
-Determination of the reachable workspace by using the Monte Carlo method: i) the
computer programme uses random sampling for the joint coordinates, ii) computes
the Cartesian coordinates of the end-effector using forward position problem and iii)
plots the points;
-Scanning the boundaries of different areas with constant orientation by using the
inverse kinematics;
-Obtaining the dextrous workspace for a given range of orientations by applying the
intersection of the workspaces with constant orientations.
Using the above-mentioned algorithm a radial slice of the reachable workspace for
the considered hybrid manipulator is presented in Fig.2.

Fig.2. The reachable workspace

The other radial slices are identical in shape and dimensions for the whole workspace
and the union of all radial slices will produce the 3-dimensional reachable workspace.
The shown workspace was obtained using 100 000 sample points.

In Fig.3 are  shown two workspaces with constant orientations (the first
orientation=10o and the second=-10o, i.e., this is  the  angle b - rotation about the Y
axis, the other two angles of rotations are zero in this case). The intersection of all the
workspaces with constant orientations  with the range of (10o ё ­10o) gives the dex-
trous workspace. Other two workspaces with constant orientation (the first
orientation=30o and the second=-30o) are shown in Fig. 4. It is clear that in this case
the dextrous workspace for the orientation range of (300ё­30o) is only the common
line for the two workspaces.

The design parameters of the manipulators are as follows: aA1A2=1200 mm,
bB1B2=600 mm, cC1C2=300 mm, L3A2B1=1200 mm, L5B1C1=570 mm,
L6B2C1=700 mm, O3O4=200 mm. The range of motion of the joints are as follows:
q1=0

o360o, q4=0
o360o, L1=7001400 mm, L2=7001400 mm, L4=500900 mm.

Z,cm

X,cm
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First orientation

Second orientation

Dextrous workspace

Z,cm

X,cm

First orientation

Second orientation

X,cm

Z,cm

Fig.3. Workspace for the two fixed orientations
(first = 10o ;  second = ­10o)

Fig.4. Workspace for the two fixed orientations
(first = 30o ;  second = ­30o)
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3. Conclusion

An algorithm for the determination of the workspace of a hybrid type manipu-
lation system is proposed in the paper. This algorithm is based on the obtained closed
form solutions of the forward and inverse kinematic problems for the hybrid manipu-
lator. The determined different kinds of  workspaces are graphically presented.
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Определение рабочего пространства
комплексной манипуляционной системы

Таньо  Танев

Центральная лаборатория мехатроники и приборостроения, 1113 София

(Р е з ю м е)

Исследуется рабочее пространство  манипуляционной сиситемы гибридного
типа. Представлен алгоритм для определения этого пространства. Результаты
показаны в форме графики. Работа предлагает тоже решение правой и
инверсной кинематической задачи.


