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1 Introduction

Most of the industrial robots have open kinematic dhains and they are based on serial
connections of links. These manipulators have large workspace and good dexterity,
but their rigidity is poor. Parallel mnenipulators can be considered as an altermative of
the serial manipulators. Parallel manipulators have some advantages such as higher
stiffness ad greater payload-to-selfieight ratio. Their mgjor disadvaritage is the lim-
ited workspace volume. The third group of manipulation systens is the group of hy-
brid type manipulators. Hybrid manipulation systems combine the advantages of both
open and closed chain mechanisms., i.e., on one hand they have greater workspace
and on the other hand good stiffness, high lcad-carrying capecity and higher accuracy -

Workspace of manipulators has been studied by many researchers. The methods
for determination of the workspace can be divided in two groups: analytical and nu-
merical methods. The analytical methods are very complex while the nurerical ones
are relatively sinple. Analytical methods give closed form descriptions of the workspace
boundary but they can apply onlly to a certain specific manipulator. There are investi-
gations of the workspace of serial as well as of parallel manipulators [1-6] . However,
the workspace of different kinds of hybrid manipulators is still to be determined.
Presentation of the workspace of a manipulator not only gives a clear idea of the
geoetric daracteristic of the manipullator but can be used for evaluation of different
performance characteristics. The knowledge of the workspace helps to determine the
passible applications of the manipulator .

This paper presents workspace investigation of a hybrid type robot manipulator .



2 Workspace of a hybrid type robot manipulator

The hybrid type manipulator under consideration consists of two variable-georetry
modules, which are serially commected. (Fig-1).- A ot of hybrid manipullation systems
can be dbtained by combining such modules (see [8])- We will consider one of the
possible structures here (Fig-1). The first moodule hes o actuated lirks, i.e., they are
wi'th variable lengths, while the second module has one actuatted link. In addition to
these modulles there are two revolute joints situated at the input and at the output of
the manipulator . This manipulation system has five degrees of freedan.
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Fig.1. The hybrid type manipullation system

For the determination of the workspace of this manipulator we have used the
forward and inverse kinematics. That is why the closed form solution of the forward
and inverse kinematic prablems are given below (for more details see [7])-

21. Forward and inverse kinematics

For the forward position problem we can write:
O r= 0AllAl2 A13 Al4 r=Ar,

where A :Fil R n W;
Lo 1]

R, is a 33 rotation matrix representing the orientation of the 1-th coordinate system
with respect to the (i-1)th coordinate system; ' 1, isa 31 matrix denoting the position
vector of poirnt O with respect o the (I-1)th co-ordinate systan; 0 is a X3 zero matr ix;
“r is a4xl position vector written in the 0;%,Y,Z, coordinate system; the left leading
index denotes the coordinate system with respect to which the vectors and matrices
arewritten. Let'a, and'b, (i=1,2,3) be vectors relative 1o the 0,%Y;Z; coordinate
frag, ie.,

o 1ai:0011A1: , 0, p)T;
(©)) 132:133:1011A2: ©, o, _p)T;
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(4) 1 b1: 1 b2 = 101181: (Vl , 0, ul)T;
(5) 1b3: 101182: (Vl - 0, uz)T-

We can write similar vectors for the second module referred to the O,X>Y2Z, coordi-
rete fram, i.e.,

(6) 1C1: 2021C1: (V3 , 0, us)T;
O 2C2: 2021C2: (V4 - 0, u4)T-
The rotation matrices 'R, and R, , and the position vectors 'r,,, °r, can be written as
Tolloas: )
) ©w-w 0 & -w
© R, =1 | O b 0 ,
L& -v) 0 (U -w) |
, [ -wW 0 - ]
(©)) R, =1 | O c 0 ,
L& -w 0 W -u) |
a0 = (W, 0, Uruw)/2),
an 1= (W22, 0, (s u)/2).
The other two rotation matrices are:]
[ ¢ -s O] [ ¢ -s 0]
@ R =| ¢g-s 0], R =lg-s50],
Lo o 1] Lo 0 1]

where s, ard ¢, (1=1,4) denote sind; and cosH;, respectively.

The inverse position problenm is to determine the actuated joint variables (angles
6,and 6,, and leg lengths L4, Ly, Ly) for the given position and orientation of the end-
effector of the menipulator.  Let the orientation of the end-effector relative to the bese
be defined by a rotation matrix, R, i.e.,

, L
) R = Im, m, m]|.

Ln, n nJ
Referring to Fig-1 we can easily dotain the agles 6, and 6,4, i.e.,
@ 0, = arctg2(mg, 1 ,
€5)) 04 =arcty2(np, ny) -

Then for the rotation matrix representing the orientation of the O3X3YsZ3 coor-
dinate systemwith respect to the fixed coordinate system can be written:

() °R,=RR", >
ad respectively:
0R3 0,
an A
lo 1 |

where ry, = ry, - R, o, 1S @ position vector written in Og%gY4Z, coordinate

systen.



Therefore for the Cartesian coordinates of points Cj (i =1, 2) relative to the base
coordinate system and 0;X1Y1Z; coordinate system, respectively, can be written as

follons:
»® °0Cj= A, *0Cj -
€)] "oCj= R, " .°CCj -

where *OCj= (X, 0, Z;,)'- ] ) _ _
Now using vectors aj and bj given by equations (2)-(5) we dbtain the followving:

@ V2t p? +2pup +u? =Lg7 .
From the following vector equation

@) ‘oc,-'0B; ='B;Cy

we can obtain:

(2) ()(Cl _Vl )2 + ()(Cl _ul )2 = L52 ’

where L2 = || By Cq||.
Solving equations (20) and (22) together leads to the following:

_ -V (pPQZ- (D (P2 +p? -LD)

(23) ul_ ________________________________ s
@+
(PQ-p)+N (p-PQ2- (HD(P? +p2 -Lg?)
@ vyPQ(—mo-m it 29,
@+
where
oo T 4 1y 2 Py
2% X
Then the variable length L is given by the ol loving equattion:
(€:5) L=V v2 +(p— ).

Let ‘e, = (e,, 0, ') ad % = (%e,, 0, %e,)T be it vectors along the line
Blckwritten in 01X1Y1Z; and OxX>YoZ, coordinate systems, respectively. The vec-
tor ‘g, is constant and depends onlly on the desiign of the manipulator, while the com-
ponents of the vector ‘e, can by dbtained usiing the fol lowing vector equations:

@) BC = 0,C; - 0,B;,
which leads to the folloving:
1 X v
(27) eSx I 4
[1B,C4 |
1 ch U
€3] €, =T~ .
[1B,C4 |

Cbviously, the dot product of these unirt vectors represents the rotation of the OpXoYoZ
coordinate system with respect to the 0yX,Y1Z; coordinate frame, i.e.,

(€9)) ‘e,-"e, = coshy.



Then keeping in mind the components of the rotation matrix given by equation (8),
equation (9) leads to:

@ U = - b(e,.'8).
Now, in order to find v, we willl write the folloving equattion:

@D |[*0B, - "0C,I| = L,
where
Le = l1CyB, | -
Equations (31) lead to the followving:
p - 0 - 72, - 2G, - U+ UV
€% V2 = diddadaiiaiiiiniinni
- %)

Then the variable length L, is given by:
@ L= WIH(rvu, ).
The unknoan rotation matrix can be obtained by the folloving equation;
@D R = Ry-RioR-Ry-

[ r, 0 r, |
let’R, = | © 1 0 |

L r, 0 r, |

denotes the components of the rotation matrix R, obtained by equation (34). Then
equations (9) and (34) lead 1o the following:
(€9)] u,=u,-cr,,
£5)) vV, =V, +cCr,,
where c = ||C1C2|| -
Then for the variable length Ly =[|B,C,|| can be written:

(€7)) Ly = \/(u4+b/2)2+vj .

Equations (14), (15), (25), (3) and (37) give the solution of the inverse position
problem for the considered manipulation system.

2.2_ Determination and representation of the workspace

Two workspaces of manipulators can be defined:
¢ Reachable workspace: this is the wolume within which every point can be reached
by the manipullator end-effector.
¢ Dextrous workspace: this is the wolume within which every point can be reached
by the manipullator end—-effector with any desired orientation.
In addition to these two definitions given by Kurar and Walldron [5] another workspace
can be defined:
¢ \Workspace with constant orientation - this isa wlume which consists of all the
poirnts which can be reached by the end-effector with constant orientation.
Coviously the union of all workspaoes with constant orientations will give the reach-
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able workspace, while their intersection will determine the dextrous

In this section of the paper the reachable and dextrous workspaces of the oonS|dered
hybrid type manipulation system is presented. The algoritim consists of the folloving
Stes:

-Determination of the reachable workspace by using the Monte Carlo method: 1) the
computer programme uses random sampl ing for the joint coordinates, 1) conputes
the Cartesian coordinates of the end-effector using forward position prablemand i)
plots the points;

-Scanning the boundaries of different areas with constant orientation by using the
inverse kinaratics;

-Cbtaining the dextrous workspace for a given range of orientations by applying the
intersection of the workspaces with constant orientations.

Using the above-mentioned algorithm a radial slice of the reachable workspace for
the considered hybrid manipulator is presented in Fig-2.
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Fig-2. The reachable workspace

The other radial slices are identical in shape and dimensians for the whole workspace
and the union of all radial slices will produce the 3-dimensional reachable workspace.
The shown workspace was obtained using 100 000 sample points.

In Fig.-3 are shown two workspaces with constant orientations (the First
orientation=17 and the second=-1C, i.e., this is the angle b - rotation about the Y
axis, the other o angles of rotations are zero in this case). The intersection of all the
workspaces with constant orientations with the range of (1 & -10°) gives the dex-
trous workspace. Other two workspaces with constant orientation (the first
oriatatio~30° and the seoond=-30°) are shoan In Fig- 4. It is clear that in this case
the dextrous workspace for the orientation range of (30°6-30°) is only the camon
line for the two workspaces.

The design parameters of the manipulators are as follows: a=A A=1200 m,
b=B B,=600 mm, c¢=C,C,=300 mm, L,=AB,=1200 mm, L.=BC =570 mm,
L=B,C =700 mm, 0,0,=200 mm. The range of motion of the joints are as follows:
q,=0°+360°, ,=0°+360°, L,=700+1400 mm, L,=700+1400 mm, L,=500+-900 mm.
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Fig-3. Workspace for the two fixed orientations
(First=10 ; second =-10°)
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Fig-4. Workspace for the two fixed orientations
(First =30 ; second = -30°)



3 Conclusion

An algorithm for the determination of the workspace of a hybrid type manipu-
lation system is proposed in the paper. This algoritim is based on the dotained closed
form solutions of the forward and inverse kinematic problems for the hybrid manipu-
lator. The determined different kinds of workspaces are graphical ly preserted.

References

1.Alciatore,D.G.,D.Ng. Chung<Ch i ng. Determining manipulator workspace boundaries using the
Monte Carlo method and least squares segmentation. — In: Proc. of the ASME Design Technical
Conf., Minneapolis, Minesota, DE-wol .72, Sept.11-14, 1994, 141-146.

2.Ferraresi,C.,G.Montacchini, M Sor I i. Workspace and dexterity evaluation of 6 d.o.T. spatial
mechanisms. — In: Proc. Ninth World Congress on the Theory of Machines and Mechanisms, vol.l,
Ag. 29- Sept 2, Milan, Ialy, 196, 57-61.

3.Gosselin,C.M,,LavoieE., P. Toutant. Anefficient algorittm for the graphical represertation of
the three-dimensional workspace of parallel manipulators. - In: Proc. of the ASVE Design Techni-
cal Conf. , Scottsdcale, Arizoma, Sept. 13-16, DE~ol .45, 1992, 323-328.

4.Holland,N., J. S.Dai,D. R. Ker r. Agplication of the finite twist in serial menipulator workspace

investigation. — In: Proc. Ninth World Congress on the Theory of Machines and Mechanisms, vol.3, Aug.
29- Sept.2, Millan, Italy, 1995, 1757-1761.

5.Kumar, A, K.J.Waldron. The workspace of a mechanical manipulator. — In: AVE J. of Mechanical
Design, vol 103, 1981, 665-672.

6.Merlet,3P.,C. M.Gosselin,N.Mouly. Workspaces of planar parallel menipulators. Mech. Mach.
Theory, vol. 33, No.1/2, 1998, 7-20.

7. Tanev, T. K. Kinematic Analysis of a Manipulation System Based on Variable-Geometry Modules.
- J. Mechanics of Machines, Varna, Bulgaria, No.14, 1996 118-122.

8. Tanev, T. K. Manipulation Systems Based on Variable-Geometry Modules. - J. Mechanics of Machines,
Varma, Bulgaria, 1996, No14, 85-88.

Onpenenienre paboyero MNpoCTPaHCTBa
KOMIIJIEKCHOM MAaHUITYJISLIVMIOHHOM CUCTEeMbI

TaHeO TaHeB

LleHTpanbHas JabopaTopmns MEXaTOOHMKM 1 IpmubopocTpoers, 1113 Cogrus

(PesoMe)

ViccnenyeTcs pabouee MPOCTPAHCTBO MAHUITYJISLMOHHOM CUCUTEME TMOPUIHOT'O
Tvria. [IpencTariIeH ajll'oOpUTM IJIs ONpellesIeHMS DTOTO MPOCTPAHCTBA . PesyJibTaTs
nokasaHel B dopme rpaduxkm. PaboTa mpemjyiaraeT TOXE PelleHMe IIpaBOoil U
VIHBEPCHOM KMHEMATMUECKON 3alaun.
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