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1. Introduction

Digital speech coding is important problem in the area of network speech applications
where there is anecessity of transmission of big anount of data through limited
bandwidth chanrels. Investigations inthis fieldaimat finding nevmethods for signal
conpressionand canpatibi litywith the network transfer protocols.

Digital speech coding involves sarpl ing and arpl itude quantization of the speech
signal using minimum number of bits, while preserving the qual ity of reconstructed
Speech

For achievement of good compression rates three basicmanners in speech coders
areused:

+ representation of frequency-domaincharacteristicof speech signal

+ providingwaveform coincidence

+ coder”s optimization according to perceptual propertiesoftheear

According to the coding mechanism there are two types of systems: waveform

codersandvocoders. The latter achive better conpression rates andworkwith speech
model s the most famous type being linear predictive vocoders.

11. Linear—predictive voooderswithdifferentiatedglottal wvaveexcitation

Linear prediction (LP) isthemostwidely used method of speech processing during the
last 20years. ItisbasedonFant”s linearvoice productionmodel [1] . Accordingto this
model sounds are generated by vocal tract excitation from the source signal . The latter
isaperiodic sequence of impulses for voi ced sounds and a randomnoise for unvoiced
sounds. The vocal tract ismodeled as anal 1-pole system; glottal model is represented
astwoole lovpassfilter and the lipradiationasdifferential unit (Fig.- 18) - Thesystem
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can be reduced to an al 1-pole model by cancel lation of one pole by one zero from lip
radiationmodel (Fig- 1b). Figures 1c and 1d shows generation mechanismfor voiced
and unvoiced speech according to the describedmodel . Classical linear prediction
method estimates vocal tract parameters (LP coefficients) . According to shape of A(2)
filterand length of data segrent there aredifferent sets of coefficientsootained using
differentmethods. For longsegments thereare autocorel lationand related to them
reflectioncoefficients [2] .. For shortspeechsegrents therearealgorithms forgeneration
of covariance coefficients [Z]. Therearedifferent representations of these coefficients
thatare less sensitive to quantizationerrors, likelLogAreaRatios (LAR) andLine
SpectrumPairs (LSP) . Estimation of 8-14 LP parameters isusually enough for good
representationofvocal tract.

Systemswith different grades of complexity according to coding of excitation
source have been proposed. Initial ly the source was represented by two-state scheme:
pulse sequences or white noise. For example according to the American Federal
Standard FS1015 [3] 10 LP vocal tract parameters are excited by asource represented
by gainparameters, pitchand flag for segrent type (voiced/ unvoiced) . Maindrawback
of thismethod Iswrong classification for voiced/ unvoiced segrent . Perfect generator
is residual signal obtained as adifference between speech signal and itsLPmodel .
Residual signal carriesal l information thathas notbeen capturedby LPanalysis: phase,
pitch, zeros due tonasal sounds, etc. Viocoderswirth similar source are cal ledResidual
Excited Linear Prediction (RELP) which operate among 6 and 9.6 KB per s.
Decreasing of bit rate is achieved by dom-sampl ing of the residual signal and It’s
bandwidth is restricted to 800 Hz. However this decreases the speech quality.
Excitation models derived by feedback 1oops known as analysis-by-synthesis scheme
are proposed toavoid this problem. Two LPswith long—-termand short-term periods,
represent the pitch and the formant structure respectinvely . Weight Filter W(2) “distort”
error sothat the quantization noise be masked by the high energy formants. Excitation
source forms or selects fromdictionary excitation sequence so that the Mean Squared
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Error (MSE) be minimized. This scheme has been proposed Firstby [6] and itisa
mi lestone in speech coding and provided abigqual ity improvement. According to
excitationmodels thereare: Multipulseexcitation (VPE), regularpulseexcitation (RFE)
[6] and codeexcitation (CELP) [7]-

Analtemative approach for speech coding aims at exact model ing of vocal tract
Teatures and using them in inverse Tiltering (IF) for estimation of glottal waveform
(GW) which represents the function of the voice source [8] - I'tgives information for
phonation type, emotional status and other individual speaker”scharacteristics [9].
Restoration of coded speech signal using excitationsignal that is closetoglottal
waveform leads tomore natural ly sounding. This approach al lows separation of
phonationand speech qual ity of different speakers [10] - Transnission (or storage) of
exact GV requires additional resources. ADifferentiated Glottal Wave (DGV) isused
inspeech encoding tasks. Itrepresentsvoice source functionand lip radiation. Its
typical shape isshomonFig. 2.

Fig-2

Themost inportant instantsare glottal closure instant (CCIN) andglottal apening
instant (GOI) . Between these instants the glottis isclosedand vocal tract systemis in
freeoscillating state. The exact determination of these instants isvery important for
adequate vocal tractmodeling [11].-

111. Compression of DGV with wavelet packets

Wavelet packets and wavelet packet transform (WPT)
Wavelet packet (WP) w isan integrable functionwith finite energy, zeromeanandwel l
localized inboth spaceand frequency - Itmay be assigned three parameters: scale (time
uncertainty), frequencyand time position.
Fastwavelet packets canbe defined by apai r of quadrature mirror filters (QWF)
) Leth={h;j} isalow-pass filterwith thefol loving properties:
@ fores0 Zj I3l <e;
(6)) ® Xh,,=1/\2 fori=0and1;
© Zhj h,.,=5,» Where o is the Kronecker symbol .
The (@) property is related to fi Iter coefficients decay whi le (b) and () concem
rtsorthogoality.
Letg:{gj} isdefinedby:
@ gj=CDHh, .
Two sequences constitute QVF pair. These filters avoid definition of two
convolution-decimationoperators:
(©)] Hx(® =X;h, x (2t-J) and Gx(O) =X,9,x (2t-]J)
andtheiradjoints:
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@ O=15,hx [+ 5 Jandex®=1%,0x —+ -

Let suppose that the sequences hand gare finiteand define:
®&=1im _H"S
whereS is indicator functionof [-1/2, 1/2] . This is the only Tixed pointof the equation
@=Hao . Afastwavelet packet is the image of @ under any Finite compositionofH
and G, possibly translated by an integer and unitary di lated by an irteger power of 2.
Allvavelet packets are orthogonal to their di lated and translatted versions. Order the
frequency, scale and position parameters of wavelet packets W,  ,Wecan write
V0,6 CO= QD) War g (CORHI 6,6 (0)3 Wy, (D=C (1), ETC.

Wavelet packets al low approximation of continuous function xeL2(R) to accuracy
0(2") by the 1?sequence of inner products . We can recursively compute from these
the other WP coefficientsas fol lows:

(X, w
©®

2F, s+, p>: zj hj<X1 W2f, S,2p+j >5

<X’ W2f+1, s+, p>: zj gj<X’ W 2f, S,2p+j >

OperatorsHand Gand their adjoints refer to the discrete sequences (signals) too:

H2 12> 12, HX = 2 h Xonj,
©®
G: P> 17, GX, =X, 0, %0

Wavelet packets formadictionary of basis functions. Their approximationsby 2"
vectors inR'formaset of N IgN vectors. Vectorsand their coefficients aredisposed
inabinary tree nodes. Nodes of one level correspond to one scale and differ by
frequency local ization, and coefficients inasingle nodediffer by time position (Fig- 3) -
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Each node isanorthogonal sumof 1tssons. We can obtainabasis frondictionary
by connection of treebranches.. Differentbases dictionariesare derived frondifferent
QVF pairs, which formaWP basis library.

The best bases selection is carried out by minimization of additive information
measure forall basesofadictionary in R'. Usual ly themeasure isof ertropy type [17] -
Such a procedure can be repeated for the bases library.

Wavelet packets are widely used insignal conpressionbecause of good local iza-
tionand possibi lity of gptimal decarpositionchoice. Canpression is achieved by signal
reconstructionusing the kbiggest inabsolute value WP coefficients. This approxima-
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tion isoptimal inmeansguare sense. 1T theanalyzed signal hasmarked pecul iarity then
more coefficients are neededand the opposite isval id for flatsignals. Inthisway WP
packets focus to significant parts of the signal in information sense. Athreshold
selection toeliminate nonsignificantWP coefficients isvery inportant.

Theminimumdescription length principle

Differentiatedglottal waves are characterized by abrupt transitions round toclosure
instancesand canparatively slanting sections inclosed phase. Hencewe canexpect that
wave let transforms can represent DGW by few coefficients due to their capabi ity of
singularitydetection.

Let us consider DGWas a discrete model of signal-noise mixture:
O y=x+e, wherey, x, e R, N=2"_

Thevectory represents thenoisy obsernvedsiignal, X is informationsignal, € iswhite
Gaussian noise with unknown variance o2:

((3)) e~N (0, o2 I).
Noise component is generated by inadequacy of vocal tract model or rounding
enors.

We can generate a library of morthogonal WP bases: o={A ,A ,A,,...,A}
where A ,A,,A,, -..,A differ by type of QUF’s and comprise the best basis from
dictionarym.

We suppose the signal canbe canpletely represented by k coefficients ofabasis
A

n "

= ®
(©)] x=W a ¢,

whereW eR*" is an orthogonal matrixwhose columns are the basis vectorsof A ,
and a®eR? isthe vector of expansion coefficients with only knon-zero elements.

In the expression (9) the actual values of k and mare not known.

The idea for determination of k and mby simultaneous noise suppressionand
signal compressionalgorithmisdevelopedbySa i to in[13]. Oneofthemost suitable
criteriaforthispurpose is the so-cal led MinimumDescription Length Principle (MDLP)
[14] . According to the latter, minimal lengthofdescriptionofnurbersorvectors, i.e.
cocelength inbits isfound. Inthe Sartoalgoritimcodelengths for representationof the
all camponents of model (7) are estimated.

Letassure Las the operator for determination of codelength. Total codelength
is conposed of the following terms.

1. Codelength of the integers kandm: L(k,m);

2. Codelength of aknumber real coefficients of the bestbasiis: L(a® k, m);

3. Codelength of the noise variance estimation: L(6? k, m);;

4. Codelength of the deviation of the observed signal y from the estimated
signal x (9): L(y|&2, k, m).

The total codelength tominimize is:

@ L(y,a®e, k,m)=Lk, M)+L@EY,67k, m)+L(y|a®,62, k, m).

By assumption of white Gaussian noise it can be seen that maximal likelihood
estimation ofvariance isobtained by sumofthe N - k squared least coefficients [13]:
(@)} 62 = (I/N) |lo, ® —a @2

Terms analysis by MDLP lead to the fol loving expression :
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(@) L(k*, m*) =min ((3/2) k Ig N+ (N/2) Ig]lo. © —a, ®|P).
0<k<N

0<mMm

Minimizing of the latter by Finding the best k* and ™ simultaneously . Recon-
structedsignal isdotainedby:
a3) R@O=W g &

IV. Bxerimentional results

For present investigations conpactly supported wavelets, which are represented by
finite length filters, areused. Basis library consists of Daubechieswavelet family, less
asymetricwaveletsand coiflets[15, 16]

We apply the method described insection 111 (equations (10)-(13). The entropy
minimum isused as the best basis criteria. Each QVF pair fronthe library leads to
decomposition upon the bases dictionary. Fromthe currentdictionary (witth number m)
the minimumentropy basis is selected. The obtained basis determines the value of k
that minimizes expression (12) . Passing thoughtal | the bases fronthe librarywe can
obtainthe (k*,m*) pair, where k* isthe nunber of essential coefficientsandm* isthe
number of bases.

Syrthesizedsignals

Thereare aset of 16 DGN (each of length 512 samples) obtained after IF of synthesized
vorels/a/, /e/, /v and/u/ [8]-

Results of the processing of synthesized signals by the method based on MDLP
aredisplayed inTable 1. The nurber of the essential coefficients k* isshoamn.

Table 1 Table 2

Sigal | Wavelet | k* RMSE Sigal |Wavelet | k* RMSE

x10-3

meil S20 0 85 V4 D20 A 01

mei2 S10 24 87 V4 S6 78 02

babl D16 n 148 v 4 S5 97 0.19

bab2 D14 12 133 Vi 4 S5 159 01

bebi3 S10 28 10.3 V-4 C4 B 02

babi4 S10 2 62 f D14 79 02
N S8 105 04
v A 156 06
ysuivg D8 118 09
mv A 78 19

The comparison reveals that wavelet packets representation of DGW uses few
coefficients. Duetothehigher frequency resolutiion inscalesmoreefficientgrouping
of information contents inbasisvectors isachieved. Entropyasan informationmeasure
leads tobest basis finding too. Minimumdescription length principle corbines coding
with noise suppressionwirthout the necessity of separate noise estimation.
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Natural signals

The database consists of six DGV (lenght of the analyzed segrents is 512 samples),
obtained via IFof voiced sounds of two speakers (male and female) . Signalsare shoawn
in Table 2 together with root mean squared error (RMSE) between DGW after IF and
DGV afterwavelet packet reconstruction from reduced set of coefficients. The latter
isvastly less thannurber of coefficients dotained by synthesized signalsanalysis. Mean
squared errorsare canparable inthe two cases because of the existence of more noise
components innatural soundswhich influence on processing.-

Fig. 4 shows inverse filtered DGV, reconstructed DGV after WPT compression
and the difference between them. Recovered signal isveryclose tothe original oneand
isachieved by a lownumber of coefficients. The corresponding glottal waves arealmost
of the same shape according to possibi lity of WP transform for detection of local
Teatureswithgood time-freguency resolution. Thebest\WPbasis “Finds”” essential high-
frequency components too.

050

000 —

Inverse filtered DGW

-0.50

050

-0.50 T T T T T

Restored DGW

020

0.00 —

Residual

-0.20

T T 1
0 100 200 30C
Time, samples

Fig-4

V. Conclusions

The potential of WPT to compress effectively DGW is reported in the present paper -
This transformhas been chosen haviing inmind the possibil itiesof preservingpoints in
DGV whichenables the natural sounding of the reconstructed signal .

The results of DGW compression make possible the construction of low and
mediumbit-rate speech coderswith equivalent or higher qual ity in conparisionto the
present CELP coders insimi lar transmission rate.
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KO,JZU/IpOBaHI/Ie PEeYEeBEIX CMT'HAJIOB ITPM ITOMOLIM KOMITPE CCUM
BOJIHOBEIX IIaKEeTOB

AraHac I'oueB, EjieHa PaHresoBa, 30paBKO HUKOJIOB

VHCTUTYT MHYOPMAILIMOHHEIX TexXHoJorwi, 1113 Copus

(PesowMme)

B paBoTe mpenyioxeH MeTol KoMIpeccun mubbepeHIraibHEIX TJIIOTUCHEIX BOJIH,
TIOJIYYEHHEIX TOCJIe MHBEPCHOM OMIILTPaluM PeUeBHX CUTHAJIOB Ha OCHOBE
IEeKOMITOBULIVIM BOJIHOBLIX NTAKETOB . [JIg onpenesieHrs KOsddMI MeHTOR IPUMEeH IeTCsI
OPUMHUUI ONMCaHMS C MMHMMAJIbHOM IJIMHOM. Pe3yJIbTaTH I[IOKa3BEBAalT
IPUMMEHMMOCTE METOJAa B KOOVMPOBAHUU PEUEBHX CHUTHAJIOB B KOMILIOTEPHBIX
ceTsx.
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