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1. Introduction

The use of many-valued logical systens inartificial intelligence knovledgebases is
connected with their efficient representation by formal quantitative methods and
models.

In1986C.Blair andR. Jeros law][1] proposed Programming Techniques
forPropositional Logic [1] . Later onthe latter of the authorshas general ized the resulits
inthisdirection inhis lastbook [Z] . In[3]aguantitative approachto logic inference is
described.

In [4] amocel, interpreting two-valued logic by anetwork flovwith additional
linear equalitiesand inequal ities is suggested. The present paper proposes the
applicationof this network-Flowapproachto various many-valued logical systems.

The network Flows are defined on agraph G(X, U),, where X is the set of arcs, and
U—thesetof nodes [5] - The conservationequation, inwhicheach xeX, isbasicforthe
flos:
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i€l jey v, ibet

where I and J are setsof the indices of the out-and incomingarcs for the node x, and
seXand teXareasourceand asink respectively.

The ark flow function does not change along the arc length at network-flow
interpretationof two-valued logic. Thisrequirement cannotbe satisfFied inmany-valued
logic, that iswhyagereralized Flovwith profits and losses inwhich the flov function
canbedifferentat the initial and final node of thearc [5] isused further on inthemodels
suggested. Besides, unlike the classical network flow, which is limitedbyanarc
capacity, moregeneral linear inequalitiesare used inthemodels proposed.

Several types of many-valued logic [6, 9] correspond totwo-valued logic [ 8], that
isvwhyan interpretationof the logical operationsdisjunction, conjunction, negationand
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implicationwith the help ofa generalized network flow in three of themostwidely
spreadmany-valued logical systems, will be described.

2. Network-Flowdescriptionof the logical operations insome classes
of many-valued logical systems

2. 1. Many-valued logical systemof J. Lucasiewicz

Historical ly this is the First system inwhichan attempt has beenmade toproceed from
‘two-valued towards many-valued logic. The logical variablesx, y, z in itobtainvalues
withinthe interval fronOup to 1, indicatingat that the truevalueby 1, and the false
—by 0, the remaining values between them corresponding to the other states.

In this systemthedisjunction z between xandy isdefined as
(&) z=max [x, y]-

Fig. 1 shows agraphwiththree nodes, three arcs and three non-negative arc
functions T, fand T, forwhich I ={1, 2}yand J ={3}.
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Let the fol lowing relations be defined among the three functions:
T =k(f-T) +f;
O<f<f,<1;
0<f<f,<1;
k=0or1.
After canparison of theabove equal itiesand inequal ities, the inference ismade

[f,,if f,<f,k=0,

3

S § 8030

f, iff>T; k=1,

orf,=max[f, ]

which corresponds to (1) and interprets the many-valued disjunction of Lucasiewicz.
The disjunction canbe represented by relations (3) and (6) and the inequalities

(t5)) 0<Ff,<f <1;

© 0<Ff,<f,<1;

These requirements lead to
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J f,iff<f;
(@0)) f=min[f, f]=
L £, iff>f.
The negations in the many-valued logical systemstudied are represented for f,
and f, by

@ f, =1-f or f, =1-1,
regectiely. ) )

The implication f —f, inLucasiewicz”system is specificwhen f.<f and itcanbe
illustratedby:

J f,iff<f;
(@) f=min[f, f]=
L £, iff>f.
The relation above given can be obtained by three functionsf , f, and f from
Fig- 1 inthefollowingway:

(€X)) f.=1-k(f -T);
(@) O<k-f-f <1;
(@5)) 0<f<1;0<f<1;k=0o0r1.

It isoovious that the equal ities (7) provide azerovalueof k incase T, <f, and then
it fol lows from (13) that £.=1. At T >T, thesame inequalities lead tok=1, and (13)-
to f.=1-f +F,. Hence (13), (14) and (15) interpretunambiguously (12).

2. 2. Many-valued logical systemof L. Brower and A. Heyting

An initial point for the construction of this system is the concept of L. Brover that the
unlimited action of the law for excluded of the third is inpower only for thispartof
mathematics, which isa limitedmathematical system. This fact reflectsdirectlyonthe
way negattionand implicationare formed inmany-valued logical systemns.
The disjunctionand conjunction inBrorver-Heyting’s systemare the same as in
Lucasiewicz” system, i.e. , they canbe interpreted by relations from (1) upto (10) ..
The negation—T, inthe systemdiscussed canbe defined as:
0,if £,=1; 0,if £>0;
@) —F,=F=1,if £=0; _
0,ifO<f<1. (1,iff=0.

This negation can be represented by the relations:

an f=k(@-F);.
a O<k+f<1
under conditions (15) -

Incase >0 itfollows from (15) and (18) that k=0, which leads in (17) to £-0.
Otherwise (T =0), itfolloss from the same relations that k=1and T.=0.
The implication inBroner-Heyting’ssystem isdefined relativelyeasy by

Lif £ <f;
@ fof=Tf= {fz T
The representationof f —f by equal ities and inequal ities isdone as
@) f=1+k(F,-F)

satisfying inequalities (14) and (15) -
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The justification for the correspondence of the inplication between (19) and (20)
can be done by considerations, similarto those justifying the correspondence between
(2 and (13).-

3. Many-valued logical systemofE. Post

When constructing his many-valued logical system, E. Posthas used formal considera-
tions according towhich the arguments obtain values from the first nnunbers of the
natural seriesN ={1, 2, ..., n}. The functions of these argurents obtain values from
the sare setN..

Atn=2 themany-valued logic of Post generalizes the classic two-valued logic. In
Post’ s systemthe truth is represented by 1, and the false —by the number n. This
produces formally a reverse way of defining the disjunction and conjunction in
comparisonwith Lucasiewicz” system. Thedisjunction inPost’s system is defined by
relations(3), (6), (10) andthe inequal ities:

@ 0<f,<F<n;0<f,<f<n.
where
@ T eN;F,eN:;F eN .
The conjunction is interpreted by relations (3), (6), (7), (8), (22) and the
ineual Tties:
(¢2)) 0<f <f<n;0<F <F<n.

There are two types of negation inPost’s system. For the First of them

f+1,iff<n;
(2] -f=f=
1,iff=n.
It can be represented by requirements (6), (22) and
(¢5)) f=1+kf; f<k+f<n.

The zerovalue of k isobtained at —f =f =+1; f <n, andk isequal to1 inthe case
when —f =1; f=n.

The second type of negation isdefined by
@) —-f=f=n-f+1 forevery T eN.

InPaost”s systemthe inplication isdefinedas inLucasiewicz” one, acoounting the
specifics inthe interpretation of the truth and false respectivelyby 1andn. The
implication has the fol lowing form in the formal ism proposed in the current paper:
l 1,if F,< F;

((1-F+F), iff>T.

It can be obtained by requirements (6) , (22) and
(¢23)) f=1-k(f - f),

(¢22)) O<k+(/n) (f -F)<1.

Theanalysisof these relations indicates that k=0 corresponds tothe case T.<f,
whenf=1, andk isequal tolwhenf>f and f=1-F + T, .

Inasimilarway, using the flov functions {f. } fromthegraph inFig. 1, some logical
operations inother many-valued logical systems canalsobe formalized.

@) fof, = f=
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4_Network-Flow interpretation of many-valued logical formulas

The formal ism for representation of many-valued logic decribed enables the
solution of the foll loving two problems:

a) withthe help of formulaswirth apriori knomn truevalues todefine the true value
ofa lagical expressionwhich contains these formulas;

b) givenanapriori settruevalue of the logical expression todefine the truevalue
of oneof the formulas included in it.

For this purpose the initial graph should be constructed so that the formulas in
brackets precede the more common expressions.

Let the fol loving expression inmany-valued logic of Lucasiewiczbe givenas an
example:
(€9)) E=((AvB) AC) -D,
whereA, B, C, DandEare formulas, conmnectedwirth the logical operationsdisjunction,
conjunctionand implication.

Fig- 2 shows the graphwith 8 nodes and 7 arcs corresponding to (30), onwhich
the logical operations that are interpreted at the respective node, are conditional ly

shoan.
Xo Xq X6
O O O
B |f; C |fy D | fs
f fs fs f;
X1 Vv A - Xs
oO— O
Fig-2

The conservation equations (1) of Lucasiewicz” logic for this graph have the
fol loving form:

(€1)) f=k (f,- )+ f; f=k (f,- f)+ f;
(€%) f=1- Kk, (f,—-f).
They followfrom (3) and (13) .

In order to define the network flow, It isnecessary to satisfy the following
arstraints:

(€9)) 0<f <f<1;0<f,<f<1;

@& 0<Ff <f,<1;0<f <F<1;

(€9)) O<k,+f -F<1;0<f <1.

(€9)) 0<f <1;0<f <1; k.k,,k=00r1.
IfItisassuredthat

A=f =0,9;B=f,=0,7;C=1,=0,6; D=1, =0,4.
Then, solving the extremum problem ¥, — max, under constraints (31)-(36),
T=0,8will bedotained.
The i Hlustrated network-flow interpretation of the Implicationshons that inan
analogous way the rules Modus Ponens and Modus Tal lens can be represented for
many-valued logical inference.
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4. Conclusion

The present paper discusses the possibi lities for application of some quantitative
methods inthedefinition of the true value ofmany-valued logical formulas. Theuseof
ageneralized network-flowmodel is proposed for interpretationof disjunction,
conjunction, negation and implication inthe logical systems of J. Lucasiewicz,
L. Brauer-A. Heyting andE. Past. This enables the fol lowing:

a) withthe help of formulaswirth apriori known truevalues todefine the true value
of acommon formula, which contains these formulas;

b) given apriori set true values of the cammon and some other formulas to define
the true value of one formula included in I't.

It is shown that the general ized network—fFlowmodel suggested can be used to
interpretamany-valued logical inferenceaswel 1.
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MeTon KOJUIMUECTBEHHOM MHTepIrpeTaluy MHOT'OSHAYHEIX
JIOITMYECKMX CHCTEM

Bacw CriypeB, Brnanymip ﬁOHOB

VHCTUTYT MHYOPMAIMOHHEIX TexXHoJoTwi, 1113 Coprmsa

(PesoMme)

B paboTe npenjaraeTca METOI KOJIJIMYECTBEHHOM TIOTOKOBOV MHTEPIIPeTallum
MHOT'O3HAYHEIX JIOTMYUECKMX cUucTeM. C IoMOLB0 0O0OBMEHHOM IOTOKOBOV MOOEIN
C BBHIOPAHHBIMM COOTBETCTBYIMM 00pas0oM paBeHCTBaAMM M HepaBEeHCTBAMU
IpeICTaBJIEHE JIOTMYECKME Ollepaly OU3bIOHKLNMSA, KOHBIOHKLMA, VMIIMKAUMI U
OTpMliaHMe B MHOT'O3HAYHEIX JIOITMKax JlykaceBuda, Bpayspa-T'emTuHra 1 IllocTa.
OnpemnesieHre MHOTO3HAaYHBIX JIOTMYECKUX QOPMyJl CBEIEeHO K BKCTPeMaJIbHOM
IIOTOKOBOM 3aade Ha CeTH.

IaHEl BO3MOXHOCTM IPMMEHEeHM S KOJIJIMYEeCTBEHHOTO [IOTOKOBOT'O MeTona
IJ15 OCYLIECTBJIEHMA MHOTO3HaYHOT'O JIOTWMYECKOT'O BEIBOAA .
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