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An Adaptive Threshold-Gradient Method for Segmentation
of Areas and Objects of Grey Scale Images

Stoyan Donchev

Institute of Information  Technologies, 1113 Sofia

1. Introduction

The segmentation of an image, i.e., the separation of the object from its background is
one of the most important procedures in image processing.

Two basic types of segmentation exist at present realized with respect to the
intensity and to the intensity gradient, and two basic types of segments areas and
borders, respectively. The term “area” usually denotes toplogically joined regions of the
image which have comparatively homogeneous distribution of intensity, while the term
“border” relates to zones where the intensity changes sharply, or in other words, zones
with greater value of the intensity gradient. Borders may be situated between an object
and a background as well as between different regions of the object.

One of these two types of segmentation is usually applied for the purposes of image
processing the intensity or gradient (the latter being famous as segmentation by form),
which, finally leads to partial use of the intensity characteristics of the picture. That is
why a new adaptive threshold-gradient method is proposed in the paper. This method
treats the image as one indivisible structure containing areas and borders. The analysis
of this structure gives as a result the segmentation of the image.

2. Methods of intensity segmentation

The simplest method, called threshold method, consists in associating each element of
the scene with one of the two groups ­ the group of the object or the group of the
background depending on whether the intensity of the element exceeds a given
threshold value or not [1, 2, 3]. The main problem in this method use is the correct choice
of the threshold of separation. A widespread approach to the problem defines the
selection of a threshold value, corresponding to the local minimum of the intensity
histogram, which has to be bimodal. Unfortunately the histogram is generally unimodal,
multimodal or step-like, and the threshold has to be defined by another method, for
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instance the entropy method, which analysis the entropy function of the intensity
histogram, its maximum determining the optimum threshold of quantization [7, 8].

A method with varying thresholds has been describes in [10]. The image is
sectioned in small rectangular regions, a histogram is formed for each one of them. In
case it is bimodal, the threshold is calculated by its minimum, otherwise its value is
obtained by interpolation of the thresholds from adjacent zones. The chief disadvan-
tages of the threshold methods is the obtaining of false regions and the loss of regions
as well.

When using gradient methods  of segmentation it is assumed that the shape of the
object is fixed by its borders. The set of elements with sharply changing intensity is
denoted as “borders” [11]. Different gradient operators for separation of borders are
described in [7]: of Roberts, Sobel, Kirsh, Walsh, Laplace.

The main problem in the gradient methods is the appearance of false contours,
their  splitting and loss. Their advantage consists in the avoiding of the low-frequency
noise in the image, i.e., the uneven illuminance.  Human vision is sensitive to the contrast
between the separate intensity areas and automatically ignores the irrgualar illumi-
nance. The gradient methods take into account this feature of human vision and hence
they are better than the threshold ones.

3. An  adaptive threshold-gradient method for segmentation

3.1. Brief description of the method

In this method the connections between regions and borders in the image are described
by the structural graph =(P,G), where P is the set of graph nodes, (the image areas),
and G is the set of graph arcs (borders between the areas).  is an oriented non-plain
graph, i.e., its arcs have direction and the graph configuration is spatial, not plain-like.

The image is considered a tridimensional surface F(x, y, B) = 0, from which the
areas and objects are separated by a section with n tridimensional cutting surfaces
Ai(x, y, z) =0, i= 1, 2, ..., n.

The notions “potential” and “gradient” markers (PM and (GM) are introduced
that are in fact points from the tridimensional space, which serve for the construction
by approximation of the cutting surfaces. The latter can be regarded as adaptive
threshold surfaces.

3.2. Definition of an optimal gradient threshold

The obtaining of a gradient vector G

(x,y) in a point (x,y) is done by non-linear

bidimensional discrete differentiation using Kirsh operator:

(1) G

(x, y) = max{l, max[ 5Sk 3Tk]},

where k = 0, ..., 7;
Sk = ak + ak+1 + ak+2;
Tk = ak+3+ak+4  +ak+5  +ak+6  +ak+7 ,

calculating the indices k by a module of 8.
The direction of the vector G


(x,y) is indexed according to the scheme given below:

If the direction of G

(x,y) is denoted by DG(x, y), then DG(x, y) = k, and

k is the index, for which the module of the gradient G

(x, y)has a maximum

value in conformance with (1). 
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All the areas, which are assumed as “gradient”, i. e.,  where G is the differential
threshold, must be separated from the gradient field, i. e.,  G


(x, y)G , at that G   is

a differential threshold and serves to separate the low contrasting intensity transitions
and the homogeneous areas of high contrasting intensity transitions. An heuristic
approach is proposed for the automatic determination of G, based on the analysis
of the smoothed histogram  hl( G


) of the gradient  G


, obtained from the histogram

h( G

) according to the formula:

h(i) = ( h(i 1) + h(i) +h(i+1))/3,  i = 1, 2, ...,  Gmax.

G  is selected in such a way that the first derivative hl' of hl has maximal value in
the point G.

The image is divided in two zones on the basis of the threshold G:
a) Gradient zone: the set G of pixels pix(x, y) for which   G(x, y)G ,
b) Potential zone : the set P of pixels pix(x, y) for which   G


(x, y)G.

An example division into zones for an one-dimensional case is shown in Fig. 1
along the axis x, where b denotes the function of pixels intensity. The notion “potential”
zone is intuitively conceived after replacement of the intensity b by the third dimension
z (height), i.e., the scene is considered as a tridimensioanal surface F(x, y, z) =0.

Fig.1

3. 3. A concept for adaptive segmentation of an image using sectioning of its surface F(x,
y, z) =0 by an adaptive cutting surface A(x, y, z) =0

The existing adaptive methods for threshold segmentation focus almost exclusively on
a local area mn and the adaptive threshold G is calculated for this area.

In the method described an adaptive surface  A(x, y, z) =0 is built approximating
apriori selected points (Fig. 2), the selection being done not by the investigation of local
areas of the image, that very often causes errors, but analyzing the complete gradient-
potential structure of the scene, which gives an entire idea about the character of the
connections between the potential areas  Pl and the gradients  Gj. Each area Pl,
i=1, 2, ..., Ni and Gj, j=1, 2, ..., NG, is an element of the sets P and G  respectively,
Pl P, and Gj G, where Ni  and NG  denote the number of the potential and gradient
fields in the image. The sets  P and G are sets, obtained from  P' and G' with the help
of the surrection operation

The physical interpretation of this surrection transformation of the sets  Pl' and Gj'
into Pl and Gj respectively is the replacement of the intensities (gradients) of the
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corresponding pixels elements of  Pl' and Gj'  by their averaged values for some small
local areas ll. Then the sets Pl and Gj  comprise these average values, the last being
named potential and gradient markers:

Pl = {p1, p2, ..., pni},   p1, p2, ..., pni   potential markers (PM);
Gj = {g1, g2, ..., gni},   g1, g2, ..., gni   gradient markers (GM),

where ni is the number of PM for the i-th potential area, nj is the number of GM for the
j-th gradient area.

The selection of the local areas  ll in order to get the  average values, depends
on the character of the image, i. e., whether it consists of smaller or larger details, which
has to be known apriori. For the examples from Fig. 12 and  Fig. 13, l=3 is chosen.

object

Fig. 2.
Fig. 3 shows an example, in which the cutting plain A(x, y, z) =0  is constructed

in such a way that it passes across the gradient markers g (G1 G2 ) and is at a distance
+h from the potential markers (PM) p P2 and at a distance h from the PM
p(P1 P3).

The oriented non-plain graph =(P,G) is with nodes Pi and arcs Gj, the orientation
of the arcs being assumed conditionally from black towards white level (down-up) 
Fig. 4.

The average potential Pi (node Pi respectively) is computed for every potential
area Bi:

         n
(2)        Bi =   bk n ,

       k=1
where n is the number of pixels in the area Pi and bk is the intensity (potential) of each
one of them.

image plain

cutting plain A(x, y, z) = 0

potential markers (PM)

gradient markers (GM)

intensity

object average intensity

background average intensity

object

background background
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Fig. 3

Fig. 4

3. 4. Selection of the gradient (GM) and potential (PM) markers

3. 4. 1. Selection of PM.

The selection of a PM for a potential area Pi  is done separating the area Pi  by a grid
mn. For example if m=3, the potential (average intensity) bpk of the potential marker
pkPi  is computed as the mean arithmetic of the intensities of the neighbouring pixels:

               9
(3)        bpk   =   bt  9 ,

            t=1
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The average potential Bi of the region Pi according to (2), is:
            Ni

(4)        Bi   =   b pk  Ni ,
        k=1

where Ni is the number of PM in the area Pi.

3.4.2. Selection of gradient markers (GM)

The selection of gradient markers is realized defining the points with maximal slope of
the intensity transition from the gradient areas Gj according to the following algorithm:

Step 1. The image is scanned by rows, until a pixel pix(x, y)Gj, j=1, 2, ..., NG is
detected.

Step 2. A procedure for tracing a route with direction g is started, where g is a
vector perpendicular to the intensity transition.

Step 3. The tracing of the  route from the initial pixel  pix(x, y) is realized,
continuing in one of the eight possible directions d= 0, 1, ..., 7 (0 being North, 1  North-
East, 2 East, 3 South-East, 4 South, 5South-West, 6West, 7North-West). If  dn
denotes the direction of g in the pixel pix(x, y) (which is initial or next point in the
route), and dbthe direction searched for, in which the tracing has to continue, then
db is found according to the rule:

(da1)mod8 , if  g


a1 = max (  g


a1
,   ga

,  ga+1
)

d b= da , if   ga
 = max (  ga1

,   ga
,  ga+1

)

(da1)mod8 , if  g


av+1 = max (  g


a1
,   ga

,  ga+1
)

where  ga1
,   ga

,   ga+1
 denote the gradients in three from the eight neighbouring

to pix(x, y) points, which are reached, starting from pix(x, y) into one the three directions
(da1)mod8 , da, (da1)mod8  respectively.

Step 4. The route tracing is terminated in case the condition:
(pixa1Pk)(pixaPm)(pixa1Pr) is satisfied, where Pk, Pm, Pr are potential areas and
pixa1, pixa, pixa1 are the pixels being reached if started from pix(x, y) into one of the three
directions (da)mod 8 , da , (da + 1)mod 8  respectively.

Step 5. The point with max   g must be selected among all the points belonging
to the route traced, and it is the gradient marker.

Step 6. The process goes to step 1 if not all the elements of the scene have been
examined.

The advantage of the procedure above described is in finding of “representative”
points from the gradient areas G (the so called gradient markers GM), in which the
slope of the intensity transition is maximal, since it is most correct that the border
between the potential areas must past across the points with maximal value of the
intensity transition gradient.

3.5. Building of the graph =(P,G)

In order to determine the  areas Pi P, Gj G, it is necessary to apply for the potential
and gradient markers twofold the procedure, described in [8], but with the following
differences:

1. The connection type 8 is modified for the potential markers (PM) as follows:
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   pb If  bpa  bpb  , then pa and pb are connected;

  pa If bpa  bpb  , then pa and pb are not connected.

The purpose of this modification is to set apart the areas, that have splitted
contours (weakly connected areas) as a border between them , as the regions P1 and P2
from Fig. 5. The hypothesis considered true, is that for the locations of slashing the
inequality  bpa  bpb  is satisfied and hence the areas P1 and P2  are treated as
separated. The threshold  is chosen lower that the threshold G. For example the
choice for the image in Fig. 11 is G=14, =8.

Fig. 5

2. The adjacent gradient markers ga and gb are not connected if:
a) (dadb)mod8  >1, where da and db are directions of the gradient in points ga

and gb.
b) If La  Lb>L, where the threshold L is:

L = K((L2a L1a) + (L2a L1a)) /2,

i.e., the averaged levels of neighbouring transitions differ by any value greater than the
threshold L, defined by the coefficient K. For the examples in Fig. 10 and Fig. 11
K = 0,3 is experimentally chosen

L2a and L1a are the intensity levels of the upper and lower end of the gradient
transition  passing through point ga, and La is the intensity level in the point of the
gradient marker ga (Fig. 6).

Fig. 6.

 

x

y

1G
2G

3G

1P

2P

x

zb==

GikP k+ 1P

iL1

iL

iL2

ig



122

Condition 2a) means that transitions (the gradient areas) Ga and Gb have to be
separated. They are topologically adjacent, but their directions do not coincide (Fig. 7).
The meaning of condition 2b is the detection of transitions which are toplogically
adjacent, but at different levels, i.e., they do not differ along axis z (Fig. 8).

Fig. 7.

After the areas Pi and Gj,  i =1, 2, ..., Np,  j =1, 2, ..., NG, have been obtained,  an
oriented nonplanar graph =(P,G) , has to be constructed,  where P = (P1, P2, ..., PNp)
is the set of the potential areas (PA) and G= (G1, G2, ..., GNG) is the set of gradient areas
(GA).

The main rule to be observed in the formation of the graph is that its arcs have
to be oriented down to up, i.e., from black to white level, if it is assumed that the black
level is down. Fig. 9 demonstrates an example of graph building.

Fig. 8
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Fig. 9

3. 6. A procedure for sectioning surfaces construction

In order to build the surface Ai(x, y, z) =0, it is necessary to know the initial
approximation  Ai(x, y, z) =0 and the points, through which the plain will pass, i.e., a
problem for approximation of the surface with respect to given points is formulated.

3.6.1. Determination of the initial approximation

a) The plains  Ai(x, y) = Ci, where Ci= const, are accepted as initial approximations,
i.e., these plains are parallel to the plain (x, y).

b) The values Ci, i=1, 2, .., n, and the number n of the sectioning surfaces are
determined by the modified intensity histogram h(b), which is obtained from histogram
h(bp), but on its hand it is a histogram of the intensities of the points pix(x, y), belonging
to the set P': pix̀ (x,y) P'. On the other  hand  h(B) has still better expressed extremums,
since h(B) is obtained from h(bp) replacing the intensities bp  of PM, p Pi, by the average
intensities Bi of the areas Pi. As a result the intensity-gradient regions Pi are equalized,
and this  equalization  intensifies the differences between the extremums of h(B), which
on its turn is favourable for the process of determining the borders between the areas.

The coefficients Ci are defined to be equal to those values of B, for which h(B) has
a minimum.

In case the number of the maximums of h(B)  is equal to n+1, the number of the
cutting surfaces is n.

3. 6. 2. Determination of the approximation points

A structured graph =(P, G) is applied for the purpose, using the so called iterative
algorithm with dominating areas. This means that a sectioning surface is built at each
iteration step, which has to separate (segment) the areas that are the brightest in a
certain local region, i.e. “dominating”. The procedure determining the final successor
(or node) in graph  is used.

The iterative procedure with n steps can be described by its i-th step as follows:
If for the i-th step as initial is assumed the graph  i1=(P i1,G i1)  from the

(i 1)-st step, it serves for the construction of the subgraph i=(Pi,Gi), which is a subset
of   i1: i   i1 and Pi P i1  and  Gi G i1 respectively. The initial (the first) graph
 is then denoted by the index 0, i.e.,    0=(P0,G0),, where P0  P and G0   G are the
complete sets of the potential and gradient areas correspondingly.
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In order to make clear the process of graph i construction as a subset (subgraph)
of the graph  i1, it is enough to explain the way of obtaining Pi and Gi.

a) The subset Pi  of P i1 ( Pi P i1 ) is obtained as a difference: Pi = P i1 P i1
b, where

P i1
b is obtained as a subset of P

 i1
a and on its hand P

 i1
a is a subset of potential areas with

average intensities Bj, for which Bj>Ci. This inequality means that the areas of average
intensities Bj, located above the plain Ai(x, y) = Ci are “dominating”. On the other hand
the obtaining of P i1

b from P
 i1
a  (P i1

bP
 i1
a
  ) is realized by the following procedure.

Procedure finding the final successors (nodes) of the graph i=(Pi,Gi)
The problem solved with the help of this procedure can be formulated as:
To obtain the subset P i1

b  of those nodes that have incoming arcs only and none
outgoing, from the subset P i1

b of the node of the grapg 
 i1 for which Bj>Ci.

Two methods are proposed:
First method. The final successors must be detected for all possible oriented

elementary routes passing through nodes from the set  P i1
a , and they will form the subset

P i1
b . According to [13] the notion “oriented elementary route” means a route in the

graph,  each  of nodes and arcs in it being used more than once.
Second method. The rows, all the elements of which are zeroes, are separated from

the matrix of he oriented graph. The nodes corresponding to the rows thus separated
are the searched elements of P i1

b .
Special attention has to be paid to the special case (Fig. 9), when cycles are

obtained, i.e., one and the same arc is simultaneously going in and out of a given node.
In this case the node P2 is considered again as a final node, but the potential markers
belonging to P2 are not taken into consideration in the construction of this sectioning
surface. The broken contour G5 is closed by the intersection of the cutting surface
A(x, y, z) and the surface of the image F(x, y, z)=0.

b) The subset of the arcs  G i1
b   is obtained from P

 i1
b  as a subset of arcs, entering

the nodes belonging to P i1
b . After that in an analogous way to a), G

 i= G i1
   G

 i1
b   is defined.

Having the subsets Pi and G i for the i-th surface Ai(x, y, z) =0, the points that
approximate Ai are determined as follows:

1. The gradient markers gi1, crossed by the surface Ai  are elements of the set G
 1
b

, which is an element of the set G i1
b  .

G i1
b  = {G

 1
b , G

 2
b, ..., G

 R
b},

G lb = ( gil1,  gil2, ...,  gilQ) for L = 1, 2, ..., R,
where R is the number of the gradient areas G lb, belonging to the subset G

 l
b  and Q is

the number of the  gradient markres gi1  belonging to G
 l
b .

2. The potential makers pil, that are at a distance +h from the surface Ai , are
elements of  the set P l2, which on its turn is an element of the set P

 i1
b :

P i1
b  = {P

 1
b , P

 2
b, ..., P

 K
b},

P lb = ( pil1,  pil2, ...,  pilT) for l = 1, 2, ..., K,
where K is the number of potential areas P l2, belonging to the subset P

 i1
b  , and T is the

number of the potential markers pil belonging to P
 
b
i.

3. The potential markers, located at a distance h  from the surface Ai, are elements
of the set P b

il, which is an element of the set P i
b.

P 
b
i = {P 1b , P

 2
b, ..., P

 M
b},

P lb = ( pil1,  pil2, ...,  pilS) for l = 1, 2, ..., M,
where M is the number of potential areas P lb, belonging to the subset P

 i
b , and S is the

number of the potential markers pil belonging to P
 l
b.



125

The distance h, called distance of separation, is experimentally defined. For Figs.
10 and 11, h is assigned G.

After the initial approximation and approximation points have been determined,
a second iteration algorithm (4-steps) is applied to build a “smooth” sectioning surface
Ai . This iteration algorithm consists in successive application of the operation program-
recursive filtration on the surface of initial approximation Ai (x, y) = Ci and the marker
points (PM and GM) for the four different directions.

3.6.3. An algorithm for program-recursive filtration

Step 1. For the points fixed ai, it is assumed zi=ai, where ai is the value of the
corresponding marker (PM or GM).

Step 2. The following operation is applied for all the points outside ai:
         9

        b =   b xj  9 .
     j=1

The segmentation implemented on the image F(x, y, z) =0 by n sections with the
help of the cutting surfaces Ai (x, y, z) =0, i= 1, 2, ..., n, can be regarded as a local
threshold operation, applied n times for each pint of the picture pix(x, y):

If b(x, y) zi (x, y), then pix(x, y) Oi 
If b(x, y) zi (x, y), then pix(x, y) i 

where zi  is a point from the Ai -th surface, and Oi  and i  denote conditionally the object
and the background for the i-th section.

           a   b         c

          d      e

Fig. 10
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4. Experimental results

Fig. 10 and Fig. 11 show two possible applications of the method. Fig. 10a and
Fig. 11a show the initial images of printed documents (a passport and text) with uneven
illuminance, unequal backgroundtexture and bad quality. Fig. 10b and 11b show the
images after segmentation in three levels (with two sectioning surfaces respectively),
and Fig. 10c and 11c  the final results, i.e., segmentation in two levels  text and
background, and Fig. 10d and Fig. 11e demonstrate the results from another method
a threshold one, optimizing the threshold according to an entropy method [8].

Fig. 10d, 11d and 11e show the cutting surfaces of the two scenes. A tendency is
noticed that the sectioning surfaces “go round” the irregularities of the background,
which helps the exact separation (without false areas and contours) of the images and
the background.

           a   b        c

       d             e        f

Fig. 11

5. Conclusion

The application of the method proposed is various  for analysis of tridimensional
scenes with arbitrary location of the illuminating source, for coding of the image
homogenizing areas, for analysis of printed documents wit irregular background and
poor quality, for reducing the number of the intensity levels and removing the
information redundancy, etc.
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Адаптивный порогово­градиентный метод для сегментирования
областей и объектов в полутоновых изображениях

Стоян Дончев

Институт информационных технологий, 1113 София

(Р е з ю м е)

Описывается новый адаптивный порогово­градиентный метод для яркостного
сегментирования, при котором изображение рассматривается как совокупность
границ и областей. Для их описания используется структурный граф.

Сегментирование осуществляется с помощью трехмерных поверхностей,
рассекающие граф. Их число определяется в зависимости от минимумов
модифицированной гистограммы яркостей. Введены понятия потенциальный
маркер и градиентный маркер, которые используются для построения секущих
поверхностей.

Метод  можно применять как для обработки документов  плохого качества,
так и для кодирования изображений через гомогенные области.


