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1. Introduction

The segrentationofan image, 1.e., the separationof the object from itsbackground is
one of themost important procedures in image processing -

Two basictypes of segrentation exist at present —real ized with respect to the
intensity and to the intensity gradient, and two basic types of segrents —areasand
borders, respectively. The term“‘area’” usual ly denotes toplogical ly joined regionsof the
imagewhich have comparatively honogeneous distribution of intensity, while the term
“border”’ relates to zoneswhere the intensity changes sharply, or inotherwords, zones
withgreater value of the intensity gradient. Bordersmay be situated betweenan object
and abackground aswell as between different regions of the object.

One of these two types of segrentation is usual ly appl ied for the purposes of image
processing—the intensityor gradient (the latter being famousas segrentationby form),
which, final ly leads to partial use of the intensity characteristics of thepicture. Thatt is
why a newadaptive threshold-gradient method is proposed in the paper . Thismethod
treatsthe image asone indivisible structure containingareas and borders. Theanalysis
of thisstructuregivesasaresult the segnentation of the image.

2. Methods of Intensity segnentation

The simplestmethod, cal led thresholdmethod, consists inassociatingeacheleventof
the scene with one of the two groups - the group of the object or the group of the
background depending on whether the intensity of the element exceeds a given
thresholdvalueornot[1, 2, 3] - Themainproblem inthismethod use isthe correct choice
of the threshold of separation. Awidespread approach to the problemdefines the
selectionof athreshold value, corresponding to the local minimumofthe intensity
histogram, whichhas tobe bimodal . Unfortunately the histogram isgereral ly unimodal ,
multimodal or step-like, and the threshold has to be defined by another method, for
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instance the entropy method, which analysis the entropy function of the intensity
histogram, i1tsmaximundetermining the optimumthreshold of quantization[7, 8]-

Amethod with varying thresholds has been describes in [10]. The image is
sectioned insmall rectangular regions, a histogram is formed for eachone of them. In
case it isbimodal, the threshold iscalculated by itsminimum, otherwise itsvalue is
obtained by interpolation of the thresholds fromadjacent zones. The chief disadvan-
tages of the thresholdmethods is the obtaining of false regions and the lossof regions
asvell.

Whenusing gradient methods of segrentation it isassured that the shape of the
object is Tixedby itsborders. Theset ofelementswith sharply changing intensity is
denoted as“‘borders’ [11] - Different gradient operators for separationofbordersare
described in [7] : of Raberts, Sobel, Kirsh, Walsh, Laplace.

Themain problem in the gradient methods is the appearance of false contours,
their splittingand loss. Theiradvantage consists in the avoiding of the lov-frequency
noise inthe imege, 1-e., theuneven i Hluminance. Humanvision issensitive tothe contrast
between the separate intensity areasand automatical ly ignores the irrgualar 1llumi-
nance. The gradient methods take into account this feature of human visionand hence
theyare better than the thresholdones.

3. An adaptive threshold-gradient method for segnentation

3.1. Briefdescriptionof the method

In thismethod the connections between regions and borders inthe imageare described
by the structural graph/=(P,G), where P is the set of graph nodes, (the image areas),
andG isthe setof grapharcs (borders between theareas) - I isanoriented non-plain
graph, i.e., Itsarcshavedirectionand thegraphconfiguration isspatial , notplain-like.

The image is considered a tridimensional surface F(X, y, B) =0, fronmwhichthe
areas and objects are separated by a sectionwith n tridimensional cutting surfaces
ALY, D0, i=1,2, ...,n.

The notions “potential’ and “gradient’” markers (PMand (GM) are introduced
thatare infactpoints fronthe tridimensional space, which serve for the construction
by approximation of the cutting surfaces. The latter canbe regarded as adaptive
thresholdsurfaces.

3.2 Definitionofanoptimal gradient threshold

The obtaining ofa gradientvectorﬁ)(x,y) inapoint (X,y) isdone by non-linear
bidimensional discretedifferentiationusingKirshoperator:

() T (x, y) =max{l, max[ 55, -3T 1},
a0 |al az wherek=0, ..., 7; “ §
a7 Xy a3 Sk = ak + ak+1 + ak+2;
a6 |ab |a4 T, =a.*a,, +a,. +a. +a_, .,

calculating the indices kbyamodule of 8.
ﬂedirectimcfﬂﬂevectorg(x,y) is indexed according to the scheme given below:

0 # 2 If the direction of G (x,y) is denoted by DG(x, ), then DG(x, y) =k, and
1<% 3 kisthe index, forwhich themodule of the gradient G (x, y)has amaximum
Ay - -
4 value in conformancewith (1) .
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All treareas, whichareassunedas“gradient”, 1. e., where @, isthedifferential
threshold, mustbe separated fronthegradient field, i. e, @(x, Y)>0,, atthat®, Is
adifferential thresholdand serves toseparate the lovoontrasting intensity transitions
and the homogeneous areas of high contrasting intensity transitions. Anheuristic
approach is proposed for the automatic determinationof ©_, based on the analysis
of the smoothed histogram h,q‘eﬁ) of thegradient |@| , obtained fromthe histogram
hqﬁﬂ) according to the formula:

h(i) =(h@i-1 +h(@) +h(+D))/3, i=1,2, ..., @m-
0, Isselected insuchavay that the first derivativeh, " of h, hasmaximal value in
thepointo,.
The image s divided intwo zones onthe basis of the threshold 6 :
a) Gradient zone: the set G of pixels pix(X, y) forwhich |@(x, Y20, ,
b) Potential zone : the setP of pixels pix(X, y) forwhich @(x, VIO, .

An example division into zones for an one-dimensional case isshown inFig. 1
along theaxis x, where bdenotes the functionof pixels intensity. Thenotion “‘potential™
zore is inturtively conceivedafiter replacarent of the intensity bby the thirddimension
z(height), 1.e., the scene is consideredas a tridimensicanal surface F(X, v, 2) =0.
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Fig-1

3. 3. Aconcept for adaptive segrentation of an image using sectioning of Itssurface F(X,
Y, Z) =0by an adaptive cuttingsurface A(X, y, 2) =0

Theexisting adaptive methods for threshold segrentation focus almost exclusivelyon
a local areamxnand the adaptive threshold ©, is calculated for this area.

In the method described anadaptive surface A(X, Y, ) =0 isbuiltapproximating
apriori selectedpoints (Fig- 2), the selectionbeingdonenot by the investigationof local
areasof the image, that veryoften causeserrors, butanalyzing the caorplete gradient-
potential structure of the scene, whichgivesan entire idea about the character of the
connections between the potential areas P, and the gradients G- EachareaP,,

1=1,2,...,N, andG ,J71,2,...,N, |sanelemerrtcrfﬂ1esetspandG reﬁpectlvely,
P eP, and Gj eG, where N, and N, denote the number of the potential and gradient
Tields inthe image. The sets PandGaresets, obtained from P* and G™ with the help
of the surrectionoperation

Thephysical interpretation of this surrection transfomationof the sets PjandG;
IntoP, and G, respectively is the replacement of the intensities (gradients) of the
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corresponding pixels—elementsof P," andG," by their averaged values for some small
local areas Ix1. Thenthe setsP, ande comprise these average values, the lastbeing
named potential and gradient markers:

P={pP.>P,5 ---5 Py}s Ps P, ---5 P, — potential markers (PV);

G={9,-9 ---> 9} 9,9, ---, g, —gradientmarkers (),
where ni is the nunber of PMfor the 1-th potential area, nj is the nurber of GMfor the
J-thgradientarea.

The selectionofthe local areas IxI inorder toget the average values, depends
onthecharacterofthe imege, 1. e., whether itconsistsof sralleror larger details, which
has to be known apriori . For the examples fromFig. 12 and Fig.- 13, 1=3 ischosen.
b=z o

—— - imageplain
- - - -cuttingplainA(, y, 2)=0
e -potential markers (PV)
x  -gradientmarkers (GM)
b -intEsity
A -chjectaverage intensity

Ao  -backgroundaverage intensity

e 4

doject

background background

=1
e\ 4

Fig-2.

Fig- 3showsanexample, inwhichthe cuttingplainA(x, y, z) =0 is constructed
Insuchaway that it passesacross the gradientmarkers g € (G U G, ) and isatadistance
+h from the potential markers (PM) p P, and at a distance —h from the PM
pe(PUP).

The oriented non-plaingraph /=(P,G) iswithnodesP, andarcsG,, the orientation
of the arcs being assumed conditional ly fromblack towards white level (dowm-up) —
Fig-4.

The average potential P, (node Pi respectively) is computed for every potential
areaB;:

(1)) Bi:(ank)/n,
k=1

wheren isthe nurber of pixels in threarea P, and b, isthe intensity (potential) of each
one of them.
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3. 4. Selection of the gradient (G\) and potential (PV) markers
3.4.1. SelectionofPV.

The selectionofaPM forapotential areaP, isdone separating theareaP, by agrid
mxn. Forexample 1fm=3, the potential (average intensity) bp, of the potential marker
p.eP, Iscamputed as themeanaritimeticof the intensitiesof theneighbouring pixels:

® bp, =(% b,)/9,

119



The average potential B, of the regionP, accordingto (2), is:
N,
(&) B, =(X'bp)/N,,
k=1
where N, is the number of PM in theareaP,.

3.4.2. Selectionof gradientmarkers (GV)
The selectionof gradientmarkers is real ized defining the pointswithmaximal slope of
the intensity transition fronthe gradientareas G, according to the fol lovingalgor ithm:

Step1. The image isscannedby rows, untilapixel pix(x, y)<G,, j=1,2, ..., N,is
detected.

Step 2. Aprocedure for tracing a routewith directionﬁ) isstarted, V\here§> isa
vector perperdicular to the intersity transition.

Step 3. The tracing of the route fromthe initial pixel pix(x,y) isrealized,
continuing inoneoftheeightpossibledirectionsd=0, 1, - .., 7 (ObeingNorth, 1—North-
East, 2-East, 3—Sou1h—East 4-South, 5-South-\est, 6—West 7-North-lest). If d,
demteﬁﬂ”ledlrectlonofg inthepixel pix(x, y) (whichis initial ornextpomtlnthe
route) , andd —thedirection searched for, inwhich the tracing has to continue, then
d, isfound according to the rule:

| (@), -1 T, = MaX (1T, 15 107,]5 197D
d, d,.ifl @ l=max (19,1, 18,,1T,.D
| (A1) - 171G =X (1T, )5 1T, 107,00
where | ﬁ)a_1|, |§>a|, |§)aﬂ|denoteﬂ”legradientsintl"lreefrunﬂﬂeeightneighbouring
topix(X, y) points, whichare reached, startingfranpix(x, y) intoane the threedirections
a-1 .-d, @+ _, respectively.

Step 4. The route tracing is terminated in case the condition:
(Pix_,eP)u(pix eP)u(pix  eP) issatisfied, wereP,, P , P are potential areas and
pix_, , pix , pix  arethepixelsbeingreached ifstarted frompix(x, y) intooneof the three
directions @a-1), -4 ,d +1) ,, respectively.

Step 5. The pointwithmax| §>| must be selected among al l the points belonging
tothe route traced, and it isthegradientmarker .

Step 6. The process goes tostep 1 ifnotall the elements of the scene have been
examined.

The advarntage of the procedure above described is in findingof “representative”
points from the gradient areas G (the so called gradient markers—-G\) , inwhich the
slopeof the intensity transition ismaximal , since It ismost correct that the border
between the potential areas must past across the points withmaximal value of the
inEsitytransitiongradient.

3.5. Buildingofthegraph I=(P,G)

mod8 ?

Inorder todetermire the areasP, P, G, G, it isnecessary togpply for the potential
andgradlerrtmamersnmfoldﬂ”leprooedure described in [8], but withthe following
differences:

1. The connection type 8 ismodified for the potential markers (PV) as follows:
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m IT [bp,—bp, |<®, thenp, and p, are connected;
P, IT|bp,-bp, >0 , then p, and p, are not connected.

The purpose of thismodification isto setapart theareas, that have splitted
contours (weakly connected areas) as aborder between them , as the regions P, andP,
fromFig. 5. The hypothesis considered true, is that for the locationsof slashing the
inequal ity |bp, - bp, [>6 Issatisfied and hence the areas P, and P, are treated as
separated. The threshold ® is chosen lover that the threshold ©,.. For example the
choice for the image inFig. 11 is© =14, ©=8.

7
N

Fig.5

2. The adjacent gradientmarkers g, and g, are not connected if:

a) (d-d), . >1, whered and d, are directions of the gradient inpoints g,
andg .
b) IfL -L >0 , wherethe threshold @ is:

0, =K((L2,-L1) + (L2 -L1)) /2,

i.e., theaveraged levelsof neighbouring transitionsdiffer by anyvalue greater than the
threshold © , definedby the coefficientK. For the examples inFig. 10andFig. 11
K=0, 3 isexperimental Iy chosen
L2 andL1 are the intensity levels of the upper and loner end of the gradient
transition passing throughpointg,, and L, isthe intensity level inthe pointof the
gradientmarker g, (Fig. 6).
b=z A

P Gi Re1

L2

[

Fig-6.

121



Condition 2a) means that transitions (the gradientareas) G, and G, have tobe
separated. Theyaretopological ly adjacent, but theirdirectionsdonot coincide (Fig- 7) -
The meaning of condition 2b is the detection of transitions whichare toplogical ly
adjacent, butatdifferentlewels, i .e., theydonotdifferalongaxisz (Fig- 8).-

y

G

P N

Gj1

»
X
Fig.7.

After theareasP,andG,, 1=1,2,...,N, j=1,2, ..., N,, havebeenobtaired, an
oriented nonplanar graph I'=(P,G) , has tobe constructed, whereP =P, P,, ..., P,
isthesetof the potential areas (P ad G=(G,, G,, ---, G isthesetofgradientareas
GA).

Themain rule to beobserved in the formationof thegraph I'is that Itsarcshave
tobeorienteddom toup, i.e., fronblacktowhite level, If it isassured that theblack
level isdomn. Fig. 9demonstrates an example of graph building.
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3. 6. Aprocedure for sectioning surfaces construction

Inorder tobuild the surface A (X, y, z) =0, It isnecessary to know the initial
approximation A (X, y, z) =0and the points, throughwhichthe plainwillpass, i.e.,a
problem for approximation of the surface with respect togiven points is formulated.

3.6.1. Determinationof the inrtial approximation

a) Theplains A (X, y) =C,, where C,= const, are accepted as initial approximations,
i.e., theseplainsareparallel totheplain (X, y).-

b) ThevaluesC,, 1=1, 2, .., n, and the number n of the sectioning surfaces are
determined by the modified intensityhistogramh(b) , which isobtained fronhistogram
h(bp), buton itshand it isahistogranof the intensitiesof thepoints pix(x, y) , belonging
tothesetP": pix (X,y) e P" . Ontheother hand h(B) hasstil 1 betterexpressed extremurs,
sinceh(B) isdbtained fronh(b) replacing the intensitiesb of A, peP,, by theaverage
intensitiesB, of theareasP, . Asaresultthe intensity-gradient regions P, areequal ized,
and this egualization intensifies the differences betweentheextrerunsof h(B) , which
on itstum is favourable for the process of determining the borders between theareas.

The coefficients C, are defined to beequal to those values of B, forwhichh(B) has
aminimum.

In case the number of the maximums of h(B) isequal ton+1, the number of the
auttingsurfacesisn.

3. 6. 2. Determination of the approximation points

Astructuredgraph I'=(P,G) isgppliedfor the purpose, usingthe socalled iterative
algorittmwithdominating areas. Thismeans that asectioningsurface isbuiltateach
iterationstep, whichhas to separate (segnent) the areas that are the brightest ina
certain local region, i.e. “‘doninatting’”. The procedure determining the final sucoessor
(ornode) ingraph I" is used.

The Iterative procedure with nsteps canbe described by its i-thstepas fol lows:

IT for the i-th stepas initial isassumed the graph I'=(P 1G ?) fromthe
(1 -1D)-ststep, its=envestortheconstructionof thesubgraph N'=(P' G'), which isasubset
of rricr-'andP'cP ! and G'cG respectively. The initial (thefirst) graph
I is thendenoted by the index®, i.e., ' H(P°G9), , where P°’=P and G°=G are the
carplete sets of the potential and gradient areas correspondingly.-
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Inorder tomake clear the process of graph I construction as asubset (subgraph)
of thegraph ', it isenough toexplain theway of cbtaining P'and G'.

a)Thesuoset P! of P (P'cP ™) isdotainedasadifference: P =P *-P" !, where

P ' lisdotained asasubsetof P ' landon itshand P * lisasubset of potential areaswn.‘n
average |ntenS|t|esB fOI’V\hId’]BJ>C This inequal ity means that the areasof average
|ntenS|tlesB Iocatedaboveﬂ”eplalnA(x y)=C, are“‘doninating”. Onthe other hand
meobtaining of PIMromP I (P cP'Dis real ized by the fol lowing procedure.

Prooed,lrefimlingmefinal successors (nodes) ofthegraph N=(P'GY)

The problem solved with the help of this procedure can be formulated as:

To obtain the subset P *! of those nodes that have incomingarcs only and none
outgoing, from the subset P "1ofﬁ1e node of thegrapg I"** forwhich B>C;-

Two methods are proposed

First method. The Final successors must be detected for all possible oriented
elementary routes passing through nodes fronthe set P, and theywill I formthe subset
P "X According to [13] the notion “oriented elementary route” means aroute inthe
graph, each of nodes andarcs in it being used more than once.

Secondmethod. The rons, alll theelements of which are zeroes, are separated from
the matrixof he oriented graph. The nodes corresponding to the rows thus separated
are the searchedelementsof P* .

Special attention has to be paid to the special case (Fig- 9), whencyclesare
obtained, i.e., oneand thesamearc is simultaneously going inand out ofagiven node.
In thiscase the nodeP, is considered againas afinal node, but the potential markers
belonging toP, are not taken into consideration inthe construction of thissectioning
surface. The broken contour G, is closed by the intersection of the cutting surface
A, Y, 2) and the surface of the image F(X, y, 2)=0.

b) The subsetof thearcs G*! is dbtained from P ¥ 'as asubset of arcs, entering
thenodesbelogingto P . After that inananalogousvey toa), G'=G -G * ' isdefined.

Having the subsets P*and G * for the i-thsurface A (X, y, 2) =0, the points that
approximate A, are determined as fol lows:

1. Thegradientmarkersg, , crossed by thesurface A, areelementsof theset G
,whichisanelementoftreset G*'.

G |—1_{G11 G’2 ey Gsz},
Gllb: (gm’ Yip> ---> g“Q)forLzl, 2,...,R,
whereR is the nunber of the gradientareas G, belonging to the subset G, andQis
the number of the gradientmarkres g,, belongingtoG*, .
2. The potential makersp,, , that are at adistance +h from the surfaceA, , are
elements of thesetP",, whichon itstum isanelementof theset P
P iz‘l:{Pél, Plzb, ey szb},
Pllb:(pill’ Pir ---» ||T)forl_1 2, -K,
whereK is the number of potential areas P, belonglngtoﬂ”lesubsetP"1 andTisthe
number of the potential markersp,, belonglngtoP i
3. Thepotential markers, locatedatadistance -h fronthesurfaceA, , areelements
of thesetP ", which isanelementof theset P, .
P ={P}P2,...,P"},
Pllb: (pill’ Piz> ---» pils)for 1=1,2,...,M,
whereM is the nurber of potential areas P!, belonging to thesubset P, , andSisthe
number of the potential markers p,, belonging toP*, .
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Thedistanceh, called distance of separation, isexperimental lydefined. ForFigs.
10and 11, hisassigned 6.

After the initial approximationand approximation points have been determined,
asecond iterationalgoritim (4-steps) isapplied to bui lda““‘smooth” sectioning surface
A, . This iterationalgoritimoonsists insuccessive gppl icationof the operationprogram-
recursive fi ltrationon the surface of initial approximation A (X, y) =C,and the marker
points (PMand G\) for the four different directions.

3.6.3. Analgorithmforprogram-recursive fi ltration

Step 1. For the points fixed a,, 1t isassumed z,=3,,, where a, is the value of the
corresponding marker (PMor GM).
Step2. Thefol loving operation isapplied for al l the pointsoutside a,:

b:(jZ:bxj)/Q_

The segmentation implemented on the image F(X, Y, z) =0by nsectionswith the
helpofthe cuttingsurfacesA (X, y, 2)=0, i1=1, 2, ..., n, canbe regardedas a local
threshold operation, applied ntimes for eachpintof the picture pix(X, y):

ITb(X, y) >z, (X, y), thenpix(X, y) €0,,

ITb(X, Y) <z (X,Y), thenpix(X, y) €®,,
wherez, isapoint frontheA -thsurface, and0, and®, denote conditional ly the object
and the background for the i-thsection.
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4_Bqerimental results

Fig. 10 andFig- 11 showtwo possible appl ications of the method. Fig- 10aand

Fig- 11ashowthe initial images of prirnted documents (a passportand text) withuneven
il luminance, unequal background—texture and bad qual ity. Fig. 10band 11b showthe
imagesafter segrentation in three levels (with two sectioning surfaces respectively),
andFig.- 10cand 11c — the final results, i.e., segmentation intwo levels - textand
background, and Fig. 10d and Fig- 11e demonstrate the results fromanother method
—athreshold one, optimizing the threshold according to an entropy method [8] -

Fig- 10d, 11d and 11e showthe cutting surfaces of the two scenes .. Atendency is
noticed that the sectioning surfaces “‘go round” the irregularities of the background,
which helps the exact separation (without false areas and contours) of the imagesand
the background.

cVETEMY BEREWET el HEl CViCTEMV B
YCTROACTBARFCTRG YCTPOVACTBA

5. Conclusion

The application of the method proposed is various — for analysisof tridimensional
sceneswith arbitrary location of the i Hluminating source, for coding of the image
homogenizingareas, for analysis of printed docurentswit i rregular background and
poor quality, for reducing the number of the intensity levels and removing the
irnformation redundancy, etc.
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A,HaHTMBHbHZ HOpOI‘OBO—I‘pa,JZU/IeHTHbHZ MEeTOO IJid CET'MEHTVMPOBAHNMA
obracTel M OOBEKTOB B [TOJIYTOHOBBIX M300PaXEHMAX

CrosgH JJoOHUYERB

MHCTUTY'T MHYOPMALIMOHHEIX TeXHOoJI0Twwi, 1113 Copms

(PesoMme)

OmyceIBaeTCS HOBBI aJallTUBHEL [TIOPOT'OBO—TPaIMEH THEI METO IJ1 SPKOCTHOT'O
CETMEHTMPOBAHNS, TPV KOTOPOM M300PaXeHVE PACCMATPMBAETCS KaK COBOKYIIHOCTD
TpaHnl ¥ odsacTel. JJis X ONMCaHNs UCIOJb3YyeTCS CTPYKTYPHEL Ipad .

CeTMEeHTMPOBAaHME OCYLIECTBIISETCS C IIOMOIBI0 TPEXMEPHEIX [IOBEPXHOCTEN,
paccekaomye rpad. Vx U4MCcIo onpeneseTcs B 3aBUCUMOCTM OT MMHMMYMOB
MOIMOMIIMPOBAHHON TMCTOTPAMMEL SPKOCTEY . BBEIEeHEl TOHATUS 10 TEHLIMAJIbHEI
MapKep U TPaa/EHTHELN MapKeP, KOTOPEE MUCIIOJIb3YIOTCS IJIS [IOCTPOSHU S CEKYLIX
TIOBEPXHOCTEMN.

MeTon MOXHO MNPVMEHATH Kak mid 00paBoTKM NOKYMEHTOR IUIOXOT'O KAUueCTBa,
Tak M IS KOOUPOBaHMA MB00PaAXEHMI Uepe3 I'OMOT'eHHEE O0JIaCTH .
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