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1. Introduction

Thevariationsof the plant pararetersalwaysworsens the performance indices inacontrol
systemand requiresmore sophisticated control approaches|1,10] . Fortunately, thereare
but few industrial caseswhich require continuous adaptation. Thenmodel reference
adbptivesystensorself-tuning regulatorswithdirectand indirectalgoritims, stochastic
ordeterministic, aredesigned, whichmain tradeoffsare still related to the complicated
time-consumingaalaulations, highsansitivity toroiseeffects, goerationmainly intransient
modes, problemswithconvergence rateand stabi lity. More often same othermore sinple
approaches cando.- Themethod of the frozen parameters assumes that for different time
intenals theplantpresenesitspararetersatdifferentbut constantfor the interval vallues.
The robust approach can ensure a satisfactory control for plantswith specified
uncertainties. Automatic tuning isawide spread technique for all standard linear
controllersthat is repeatedly appl ied after sore time or fol lowing the plant parameter
changes. Gainscheduling is powerful when the plant parareter var iationsare related to
the change of the operationmodes,, which can be distinguished by the interval value of
associated measuredvariables. Thenthe control ler istunedforafinite nurber of plant
parareter sets that determine the plantdescriptionfor eachmode. Final lyatablewiththe
operatingmodesor interval values of the associated variables and the corresponding
cortrol ler parameters iselaborated. Thisprocess oftenrelies onexpertknovledgeonhow
todefinethe variousoperationmodes, torelate themto themeasuredvariablesandto the
plantparareters. Ascheduling table inpliesdiscretization inthe valuesof the plantand
controller parameter and a finite nunber of modes considered. By interpolation the
dropped information can be restoredwithagiven accuracy .

Neural networks can successful ly be implemented inthe control of technological
processeswithvariable parameters. There isanurber of notionsand trials for their
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incorporation invariousadaptationalgorithms, which usual ly sernve specificpurposesor
arestill farfromindustrial practice [ 2, 5, 9, 11, 17] . Moreover, thisscanty experience
pointed out to some newunsolved problems that arise such as optimal architecture
lection, religbilityandrdoustressof real-time trainingalgorrtins,, self~organization, ete.
[6, 8, 11]. Yet, theneural networksappl ication incontrol of technological processesisa
relativelynew, ratherprospectiveand fastdevelopingarea, whichneeds furthereloration
before theelaborationofpractical recamendations.

11_Preliminaries

Most technological processesare plantswith variable parameters, described by non-
stationarydifferential equationsof the fol loving type [10]:
dxn dxt
O a®—+a, (D)—+. . .+ Ox=b ) —+ ... +b(Dy.
dar de+t dat"
Treccefficients g, ...,a adb,, ..., b arefunctionsoftine, analytical ly orgraphically
represented, that express the deterioration of the heat exchangewith time due to
incrustation inheattexdhangers, boilers, evaporators, metal lurgical ovensandsoon , or of
thetransformationrate inchemical reactionasaresultof thecatalystpoisoning inresctors,
rectificationcolums, etc. Thevarietyof industrial plantswithvariable parareterscanbe
classifiad intothefol lovingcategories]1, 4, 10]:

—plantswith parameter drift that concerm lov rate paraneter changeswith regard
totherate of the transient response, asa ruledue toaging of the technical equipmentand
instal lationand change intheoperating conditions;

— plantswirth batch processes suchas oxygen conver ters, chemical and biochemical
reactors, whichstart the processes under various initial conditions —composition,
temperature, etc. , of the fed substrates; besides, the exothermicoxidizing reactions
introduce additional uncertainties inthe descriptionofthe elerertary dhemical, thermal
andhydrodynamic processes;

— plantswithparameter changes correlated tomeasurable variables -thechanges in
thevariables result inchanges in themass and heat transfer, inthekineticand the
hydrodynamic parameters ; so, thegeneral plant parameters canbe expressedas function
oftrerelativeplant loading

Q

(2) =,

Q,
where the currentand thenominal loading are denoted respectivelybyQandQ, . In
gereral, tre inertia, eqressad inthe time-delayand themain time-constant, increasewith
decreaseofthe relative loading. Suchsingle-input=single-output plantcanbedescribedby
thefol loving parareter differential equation:

I m ]
d [yi(t)] = 2 b; [‘I’(t)]d—jx{t —7[¥Y(®)]}m<n.
dt j=0 dt
where thevariable coefficients a, [V] andbj [¥] and the time-delay T[] depend on time
viathe parareter ¥ (t) - Depending onthesense of ¥V (1) thereare possibly three cases:
—¥Y(®) isan independentparareter inputsuchas fluidor production rateand then

® Sa[¥(0)
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Y=FP.(©]ad (3) isalineardifferential equation;

—¥ (©) dependsontheplantoutputand then V=T [y (], thedifferential equation is
non-linear andaparameter feedback appears;

=¥ () depends on the pllant input and then =T [x ()] and thedifferential equation
isror-linear.

Themathematical descriptionof aplantwithvariable parareters bymeans of the
parameter equation (3) gives some advantages to the descriptionwith non-stationary
equation(2), suchas:

—the steady state non-linear characteristics a,[ V], bj[‘P] that depend on the
oconstructionpararetersof the instal lationcanbedeterminedexperimental lyor analytical ly;

—the relationship V=¥ (t) candescribeal I possible plant gperatingmodes

a) for VY- aconstant, theplant isstationaryand the describingdifferential equation
iswithconstartooefficiants;

b) for'Y- varyingaboutsarevalue ¥ , theplant isquesi-stationaryand its transfer
function parameters canbe assumed near ly constant ;

c) for ¥ (t)- knom deterministic time function equation (3) describesanon-
stationary processwirth deterministicparaneter cranges;

d) for¥ (1) —arandomtime function (3) describes anon-stationary processwith
stochastic paraneter ormode changes.

Amore general applicationof the neural networks in the control of plantswith
variable parareters isbased inthe property of the neural networks to reproduce agiven
non-linearor non-statiionary relationship. Thiscanbethe relationshipbetweenvariables
andtime, inplied inthereferencemodel orthe linearizing cortrol ler foranon-linear plant
or betweenthe plartor control ler parareters onone side and measuredvariables or tine,
ontheather side ingainscheduling. The training processof neural networks isbasedon
anadvanced intel ligent technology for function interpolation and approximation. The
neural networksdevelap in leaminggeneral ization, association, andadaptation properties
which make them invaluablemodels. Neural models can account for the simultaneous
(paral lel) variations of several plant parameterswith respect to the change of several
variables. Thissurpassesthe possibilitiesofatable presentation ingainscheduling to
reflectmore preciseand camplexrelationships. Fordeteministic relationships thenetnork
canbe trained off-1ine and incorporated inthe control algorithm thus providing fast
control ler parareter adjustment.

Theaimofthepaper isto investigateonthegpplication of neural networksas function
gpproximators in the corrol, ormore specifical ly in thegain schedul ing, of industrial
plantswithdeterministical ly described paraneter changes.

111. Prablenformulation

Assume that the plant isdescribed by the fol loving transfer function:

Ko (4) o570 ()
T,(2)s+1

&) Wés, D=

where thegainK , the time-constant T and the timedelay 7, areknown deterministicnon-
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linear functions of timeviathe parameter A which isan independent measurablevariable
A thatt can In some cases be an estimate of the plant relative loading.

Astandard algorithmPI ischosen as most commonly used and easy to tune by well
developed simple procedures. According tothe Chien-Hrones-Reswicktuning rules [ 7] that
ensure anovershoot of the overal 1 clased-loop system S=20% the control ler parameters
are determined fram:

() K()=0,7——— 2—, KD =0,7T,(1)-

The control isrestricted intherange (10, 10) V.
The problem is todevelop anon-linear neural networkwith one input 4 and three

outputs K, , T, and t, thatmodels the relationshipsK (1), T.(1) andt (1) inorder to
currentlyadjust control ler pararetersaccordingto (5) -

IV. Design of gain schedul ing control on neural network function
approximator

Atwo-layerneural networkwirthnon-1 inear activation functions in thehidden layercanbe
off-line trained to performfunction approximation usingarepresentative input-target
‘training couple of vectorsand applying the badropagation rule. Thusany deterministic
non-linear relationshipbetieen continuous values of themeasured variablesassociated to
the gperatingmodes, and the correspodingcoefficients of tredifferential equation (1.3),
describingthe plant, canbe producedwithgivenaccuracy -
Suchanetwork with K batching input vectors Pand logisticsigmoid, orelse log-
sigmoid, activation functions inboth layersFland F2 isshown inFig.1. Theoutput Aot
log-sigmoid function isgivenby:
©® A=1logsig (N, B)=1/(1+e™&)),

whereNisthe function inputandB isthebias. It isused tomapthe input fronthe intenval
(~0,+0l) intothe interval (0, 1) . Other oftenused with backpropagationnon-linear
differentiable and monotonic increasing function is the hypertangent signoid or tan-
sigmoid-A=htg (\+B) , mapping the input from (—ooI, 40l ) 1o (-1, 1). Occasionally, a
linear function can be usedwhenthe output isnot constrained.

The number of the inputs R corresponds to the number of the number of the mode-
related variables, the nurber of the modes is supposed tobe K. Whi le the nurber of the
output layer neurons S, dependson thenunber of the variable plant parameters, thenuroer
of theneurons inthehidden layer S, canbe freely selected inorder theoptimization problem
tohaveasatisfactorywith respect to time and accuracy solution. Typically, themore
neurons inthe hiddenthemore ponerful thenetwork, the longer thetraining tine, the larger
theweightmatrices and the bias vectors and the higher the accuracy that canbe achieved.
Too fewneurons, onthe other hand, can lead tounderfittingwhi le toomany neurons can
oontribute tooverfitting, invhichtretrainingpointsarevel 1it, butthe fittingaune takes
wi Idoscil lations betweenthesepoints.
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K batching N=W*P , A= F(N+ B)
input vectors

= N1

RxK S1xK SIXK | A2
S1xR 2xK

s 4 i

O]

RxK : Six1

Six1 ‘ S2x1
| S1| | s2]
hidden layer (1) output layer (2)

Fig-1

TheweightmatricesWl and W2 and the bias vectors Bl and B2 are being continual Iy
adjusted inthedirectionof the stegpest descentwith respect to minimizationofthe sum
souarederror of thenetwork. Derivativesoferror cal led deltavectorsdare calaulated for
thenetwork”s output layer and thenbadkpropegated through the network unti | celtavectors
areavai lableforeachhidden layer .

Theerror is thedifference Ebetween the target T vector and the output Avectors
(E=T-A), that corresponds to agiven input vector franthe battch of inputvectors. The
steepest descentnethod isusedwithadgptive leaming rate inorder to increase convergence
of the gradient procedure inthe surroundings of the minimum, to decrease the nurber of
iterations, andtoavoid local minimaand instabi lityat large rates. Inttializationofthe
network is provided by a randamnurber generator that producesvalues within the range
-1,D.The newweightsWi,j andbiasesB, at thek+1 iterationare calculated according
to thebackpropagation rulle:

@) W, ; (D) =W, . 4O+AW, . (), AW, ; (K)=Lré, () P, (K),

® B,(k+1) =B,(K)+ AB,(K), AB,(K)=Lrs, (K),

where s, isthecdeltavector for theaurrenti layer, P, isthe corresponding inputvector, Lr
isthe leamingrate. Thecalaulationsmove franthe output to the input layer of thenetwork.

Whenadesiredaccuracy is reached inthe target points, thenetwork is testedwith
more input vectors than theones used intraining tosee if ithas leamed togereralize the
functionitis leaming. 1T the approximated function issmoothandmonotonic in-between
the target points, the training is consideredto haveended successfully . Else, itshouldbe
started frondifferent initial conditions, orelsethe nurber of theneurons inthe hidden
layer or the number of hidden layers should be increased. Often more inputs and
corresponding targetsare added to the training vectors.

A specialized software — the Neural Network Toolbox of the MATLAB package
assiststhe synthesisof the functiongpproxinator .

The general blockdiagramof the gain schedul ing control is represented inFig.2,
whered istheplant inputdisturbance, Y isthe control ledvarieble, Yr istrereference, T(1)
is the independent measuredvariable associatedwith plant relative loading that effects
both the output and the plant parameters. The neural model gives the current plant
parareters.
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V. Investigationof neural gainschedul ing systemfor the control of heat
exchanger

Againschedulingsystem isdesigned for the control of the temperatured of the heatted Fluid
at theoutputofapipe heatexchanger The transient responsesof theplant at step increase
of the tenperature of the heating fluid for different relative loading). (Fluid rate) are

experinental lydotained in [4] andgiven inFig.3. TherelationshipsK (1), T.(1) andt(A),

shown inFig-4, are obtained after Ziegler-Nichols approximation [ 7] of the transient
responses that leads toplant transfer function (4) -
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Atwo-layer log-sigmoid/log-signoid neural networkwirth fiveneurons (S1-5) inthe
hidden layer was successful ly trained tomodel the characteristics fronFig-4 , reaching
accuracy of 10 after 20000 epochs and the fol lowingweightsand biases:

W1=[-35,5253 33,9337 -34,0720 -37,0186 —-32,6359]";
B1=[4,56%4 -17,1182 8,8747 30,8310 27,1351];
w2=[-4,6023 -0,6183 1,5440-0,7212 1,4638
1,0983 -0,2505 0,7855 -1,5403 1,7136
-1,6371 -0,6764 2,9320 -2,9422 3,3709];
B2=[-1,3706; -1,2743; -1,5219] .
ASIMULINKmodel was proposed, incorporating as S-function the neural model for
the relationshipof the plant pararetersand the relative loading, that isshoan inFig. 5.
The change of 1 affects the systemwitha transfer function W (s)= 1/(0, 1s+1) . Theneural
model reproduces the relationshipsK (1), t (1) and 10 T (1) since the plant parameters
comeoutas log-signoid functionoutputs, sotheyare restricted intherange (0,-1) - An
aplifiertolOrestorestheactual value for T - Theplantmodel isrevealed inFig. 6, where

the plant pararetersare taken fron the neural model . The simulation results, produced
by asystemwithanadaptive Pl control ler anda systemwithanordinary Pl control ler are
shoan inFig.7. Theordinary control ler paraneters Ti,=1,54, Kp =25,6are calculated for
plant parametersK=0,25; T=2,2s; 7=0,15s, takenfor 4-0,6.

Acorparisonshons that the systemwirthan ordinary cortrol ler loses stabi litywhen
A decreases since the control ler does not adapt to the increase of the plant parareters.
Besides, the control becames rather dangerous for the actuator and the valve because of
thehighfrequencyascil lations, tuming itselfalmost intoanon-off cortrol and consuming
agreat amount of energy for control . Far too economic and smooth with only few
oscillations isthe control of thesystem
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withtheadaptive control ler, which isexplainedwith the decrease of the proportional and
integral cains. Thegainsaheduling isnoteffectivewhenthe diangesof onlyore of theplant
parameters are accounted for . The advantages are guararnteed when the variationsof at
least two of the plant parareters—K andz orequally T and 7 are considered. Besides,
even it theactual plantpararetersdiffer fronthe calcullated by the neural model vallues,
thesystemwith thegain schedul ingocontrol presenvesstabi lityandperformence. Thisisseen
inFig-8.a. andFig-8.b. forthesare diangeof A, after anadditive plant parareter drifthes
been included g=gm(1+0,05t) , whereby q isdenoted theactual value for the planit gain,
the plant time delay and 1/plant time-constant, and by gnm— the corresponding neural
model values. Thesimultaneous increase of the plant gainand the time delay together with
‘the decreaseof the time-constant due todrifteffects sinulates themostunfavourable case

withrespecttosystenstability.
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VI . Conclusion

Again-scheduling control based onneural network non-linear functionapproximator is
proposed for plantswithvariable parareters.. A two-layer non-linear network is trained
using the backpropagation ruleswithadaptive leaming rate toreproduce the deterministic
relationship between the plant parareters andameasuredvariable associatedwith their
changes. The final neuronmodel isthen incorporated inaPl controller sothat the
cortrol ler parareters fol lovthe plant parareter danges. The procedure isappl ied forthe
designofthecontrol of the fluid temperature of aheatt exchanger - Closed-loopsystemswith
anadaptive and an ordinary Pl control ler are simulated using SIMULINK of MATLAB
package . The advantages of neural gain schedul ingevenwhen the actual plant paraneters
differ frantheir values fromthe neural model are good performance for fastand large
parameter changes, econanic, smooth and saffe for the actuator and the valve control .
Investigations shovthatgainschedul ing is effectivewhen thechanges inat least twoplant
parameters are accourtted for—the time-delay and the gain or the time-constarit -
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ViccrienoBaHMsa HEKOTOPEIX IPYMEHEHMM HEMPOHHEIX CEeTEN
IJ19 yIpaBJIeHMS OOBEKTAMM C MEHAOIMMMC A [TapaMe TpaMm

CHexaHa ﬁopﬂaHOBa , Acen TonopoB

TexHHMYeCKMit yHuBepcureT, 1756 Coprs

(PeswomMme)

[[peJIOXEHO aNanTYBHOES yIIpaBJIeH e OOBEKTaMM 1PV [TOMOLM HEVPOHHOW aIllIPOK -
CYMMPYIOIEV MOLeJM, 3afanilell IeTePMHMPOBAHHYI0 HeJIMHENHYIO 3aBMCYMOCTb
TapaMeTPOB OT M3MePSIEMOM IepeMeHHOV . Monerls MoJTydeHa I0CTIe O0yYeHsI IBY CIIOVHOM
CeTU C JIOTUCTHUYECKMMM QYHKIMAMM METOOOM OOPaTHOT'O PACIPOCTPaHEHWS IS
[IOICTPOMKM NTapamMeTpos [ perysaropa. [Ipolelypa NPUMEHSETCS K yIIPaBIIEHMIO
TeMrepaTypoy ¢iyrna B TemnsooBMeHHMKe . Uepes CUMMYJISUUM IPM ITOMOIM
porpaMvel CUMYJIMHK [IOJIyUEeHE! [I€PEeXOIHEIE TPOLIECCH B CHUCTEME C alalTYBHONM
IOICTPOMKOM TapaMeTPOB PeryJIaTopa U IMOKa3aHO COXpaHeHMe lloKasaTesen
KauecTBa NIPpU OBICTPEIX M OOJIBUIMX M3MEHEHMM IapaMeTpOB OOBEKTOB U
SKOHOMMUYHOCTBL yINPaBJIEHUS IaXE €CJIM IIapaMeTpPrl OObeKTa OTJINYANTCH OT
rapaMeTpPOB HEMPOHHOM MoTeNM. JccienoBaHus Nnokasaia HeoOXOOUMOCTE B
YUMTBEIBAHMM MSMEHEHNS Kak B KOohbrIMeHTe, Tak 1 B ONa3IbBaHMM OOBEKTA .
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