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in Control of Plants with Variable Parameters*
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I. Introduction

The variations of the plant parameters always worsens the performance indices in a control
system and requires more sophisticated control approaches[1,10]. Fortunately, there are
but few industrial cases which require continuous adaptation. Then model reference
adaptive systems or self-tuning regulators with direct and indirect algorithms, stochastic
or deterministic, are designed, which main tradeoffs are still related to the complicated
time-consuming calculations, high sensitivity to noise effects, operation mainly in transient
modes, problems with convergence rate and stability. More often some other more simple
approaches can do. The method of the frozen parameters assumes that for different time
intervals the plant preserves its parameters at different but constant for the interval values.
The robust approach can  ensure a satisfactory control for plants with specified
uncertainties. Automatic tuning is a wide spread technique for all standard linear
controllers that is repeatedly applied after some time or following the plant parameter
changes. Gain scheduling is powerful when  the plant parameter variations are related to
the change of the operation modes, which can be distinguished by the interval value of
associated measured variables. Then the controller is tuned for a finite number of plant
parameter sets that determine the plant description for each mode. Finally a table with the
operating modes or interval values of the associated variables and the corresponding
controller parameters is elaborated. This process often relies on expert knowledge on how
to define the various operation modes, to relate them to the measured variables and to the
plant parameters. A scheduling  table implies discretization in the values of the plant and
controller parameter and a finite number of modes considered. By interpolation the
dropped information can be restored with a given accuracy.

Neural networks can successfully be implemented in the control of technological
processes with variable parameters. There is a number of notions and trials for their
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incorporation in various adaptation algorithms, which usually serve specific purposes or
are still far from industrial practice [2, 5, 9, 11, 12]. Moreover, this scanty experience
pointed out to some new unsolved problems that arise such as optimal architecture
selection, reliability and robustness of real-time training algorithms, self-organization, etc.
[6, 8, 11]. Yet, the neural networks application in control of technological processes is a
relatively new, rather prospective and fast developing area, which needs further exploration
before the elaboration of practical  recommendations.

II. Preliminaries

Most technological processes are plants with variable parameters, described by non-
stationary differential equations of the following type [10]:

         dxn             dxn-1 dym
(1) an(t) ––––– + an-1(t) ––––– + . . . +a0(t)x = bm(t) ––––– +  . . . + b0(t)y.

         dtn             dtn-1 dtm
The coefficients  a0,..., an and b0,..., bn are functions of time, analytically  or graphically
represented, that express the deterioration of the heat exchange with time due to
incrustation in heat exchangers, boilers, evaporators, metallurgical ovens and so on , or of
the transformation rate in chemical reaction as a result of the catalyst poisoning in reactors,
rectification columns, etc. The variety of industrial plants with variable parameters can be
classified into the following categories[1, 4, 10]:

plants with parameter drift that concern low rate  parameter changes with regard
to the rate of the transient response, as a rule due to aging of the technical equipment and
installation and change in the operating conditions;

 plants with batch processes such as oxygen converters, chemical and biochemical
reactors, which start the processes under various initial conditions  composition,
temperature, etc., of the fed substrates; besides, the exothermic oxidizing reactions
introduce additional uncertainties in the  description of the elementary chemical, thermal
and hydrodynamic processes;

 plants with parameter changes correlated to measurable variables -the changes in
the variables result in changes in the mass and heat transfer, in the kinetic and the
hydrodynamic parameters ; so, the general plant parameters can be expressed as function
of the relative plant loading

        Q
(2) l =  ––– ,

      Qn
where the current and the nominal  loading are denoted respectively by Q and Qn . In
general, the inertia, expressed in the time-delay and the main time-constant, increase with
decrease of the relative loading. Such single-input-single-output  plant can be described by
the following parameter differential equation:
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where the variable coefficients аi []  and bj [] and the time-delay [] depend on time
via the parameter (t). Depending on the sense of (t)  there are possibly three cases:

(t)  is an independent parameter input such as fluid or production rate and then
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=f [(t)] and  (3) is a linear differential equation;
(t) depends on the plant output and then = f [y (t)], the differential equation is

non-linear and a parameter feedback appears;
(t) depends on the plant input and then = f [x (t)] and the differential equation

is non-linear.
The mathematical description of a plant with variable parameters by means of  the

parameter equation (3) gives some advantages to the description with non-stationary
equation (2), such as:

 the steady state non-linear characteristics аi[], bj[]  that depend on the
construction parameters of the installation can be determined experimentally or analytically;

 the relationship =(t) can describe all possible plant operating modes
a) for    a constant, the plant is stationary and the describing differential equation

is with constant coefficients;
b) for   varying about some value 0 , the plant  is quasi-stationary and its transfer

function parameters can be assumed nearly constant;
c) for (t)  known deterministic time function equation (3) describes a non-

stationary process with deterministic parameter changes;
d)  for (t)  a random time function (3) describes a non-stationary process with

stochastic parameter or mode changes.
A more general application of the neural networks in the control of plants with

variable parameters is based in the property of the neural networks to reproduce a given
non-linear or non-stationary relationship. This can be the relationship between variables
and time, implied in the reference model or the linearizing controller for a non-linear plant
or between the plant or controller parameters on one side and measured variables  or time,
on the other side in gain scheduling. The training process of neural networks is based on
an advanced intelligent technology for function interpolation and approximation. The
neural networks develop in learning generalization, association, and adaptation properties
which  make them invaluable models. Neural models can account for the simultaneous
(parallel) variations of several plant parameters with respect to the change of several
variables. This surpasses the possibilities of a table presentation in gain scheduling to
reflect more precise and complex relationships. For deterministic relationships the network
can be trained off-line and incorporated in the control algorithm thus providing fast
controller parameter adjustment.

The aim of the paper is to investigate on the application of neural networks as function
approximators in the control, or more specifically in the gain scheduling, of industrial
plants with deterministically described parameter changes.

III. Problem formulation

Assume that the plant is described by the following transfer function:

(4) W(s, l)=
K

T s
e s0

0 1
0
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where the gain K0 , the time-constant T0 and the time delay 0 are known deterministic non-
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linear functions of time via the parameter  which is an independent  measurable variable
 that can in some cases be an estimate of the plant relative loading.

A standard algorithm PI is chosen as most commonly used and  easy to tune by well
developed simple procedures. According to the Chien-Hrones-Reswick tuning rules [7] that
ensure an overshoot of the overall closed-loop system s=20%  the controller  parameters
are determined from:

           T0()
(5)      Kp() = 0,7 ,  Ki() = 0,7 T0().

        T0()0()

The control is restricted in the range (10, 10) V.
The problem is to develop a non-linear neural network with one input   and three

outputs  K0 , T0  and t0 that models the relationships K0(), T0()  and t0() in order to
currently adjust controller parameters according to (5).

IV. Design of gain scheduling control on neural network function
approximator

A two-layer neural network with non-linear activation functions in the hidden layer can be
off-line trained to perform function approximation using a representative  input-target
training couple of vectors and applying the backpropagation rule. Thus any deterministic
non-linear relationship between continuous values of the measured variables associated to
the operating modes, and the corresponding coefficients of the differential equation (1.3),
describing the plant, can be produced with given accuracy.

Such a network with K batching input vectors P and logistic sigmoid, or else log-
sigmoid, activation functions in both layers F1 and F2 is shown in Fig.1. The output A of
log-sigmoid function is given by:

(6)             A = log sig (N, B)=1/(1+e(N+B )),

where N is the function input and B is the bias. It is used to map the input from the interval
(,+Ґ) into the interval (0, 1). Other often used with backpropagation non-linear
differentiable and monotonic increasing function is the hypertangent sigmoid or tan-
sigmoidA = htg (N+B) , mapping the input from (Ґ,+Ґ) to (1, 1). Occasionally, a
linear function can be used when the output  is not constrained.

The number of the inputs R corresponds to the number of the number of the mode-
related variables, the number of the modes is supposed to be K. While the number of the
output layer neurons S2 depends on the number of the variable plant parameters, the number
of the neurons in the hidden layer S1 can be freely selected in order the optimization problem
to have a satisfactory with respect to time and accuracy solution. Typically, the more
neurons in the hidden the more powerful the network, the longer the training time, the larger
the weight matrices and the bias vectors and the higher the accuracy that can be achieved.
Too few neurons, on the other hand, can lead to underfitting while too many neurons can
contribute to overfitting, in which the training points are well fit, but the fitting curve takes
wild oscillations between these points.
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Fig.1

The weight matrices W1 and W2 and the bias vectors B1 and B2 are being continually
adjusted in the direction of the steepest descent with respect to  minimization of the sum
squared error of the network. Derivatives of error called delta vectors d are calculated for
the network’s output layer and then backpropagated through the network until delta vectors
are available for each hidden layer.

The error is  the difference E between the target T vector and the output A vectors
(E=T A), that corresponds to a given input vector from the batch of input vectors. The
steepest descent method is used with adaptive learning rate in order to increase convergence
of the gradient procedure in the surroundings of the minimum, to decrease the number of
iterations, and to avoid local minima and instability at large rates. Initialization of the
network is provided by a random number generator that produces values within the range

(1, 1). The  new weights Wi,j  and biases B i at the k+1 iteration are calculated according
to the backpropagation rule:
(7) Wi,j (k+1) = Wi,j (k)+Wi,j (k),  Wi,j (k)=Lr i (k) Pj (k),
(8)     Bi(k +1) = Bi(k)+ Bi(k), Bi(k)=Lr i (k),
where  i  is the delta vector for the current i  layer, Pi is the corresponding input vector, Lr
is the learning rate. The calculations move from the output to the input layer of the network.

When a desired accuracy is reached in the target points, the network is tested with
more input vectors than the ones used in training to see if it has  learned to generalize the
function it is learning. If the approximated function is smooth and monotonic in-between
the target points, the training is considered to have ended successfully. Else, it should be
started from different initial conditions, or else the number of the neurons in the hidden
layer or the number of hidden layers should be increased. Often more inputs and
corresponding  targets are added to the training vectors.

A specialized software  the Neural Network Toolbox of the MATLAB package
assists the synthesis of the function approximator.

The general block diagram of the gain scheduling control is represented in Fig.2,
where d is the plant input disturbance, Y is the controlled variable, Yr is the reference,  f()
is the independent measured variable associated with plant relative loading that effects
both the output and the plant parameters. The neural model gives the current plant
parameters.
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Fig.2

V. Investigation of neural gain scheduling system for the control of heat
exchanger

A gain scheduling system is designed for the control of the temperatureof the heated fluid
at the output of a pipe heat exchanger The transient responses of the plant at step increase
of the temperature of the heating fluid for different relative loading (fluid rate) are

experimentally obtained in [4] and given in Fig.3. The relationships K0(), T0()  and t0(),
shown in Fig.4, are obtained after Ziegler-Nichols approximation [7] of the transient
responses that leads to plant transfer function (4).

                                    Fig.3                                                                                    Fig.4
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A two-layer log-sigmoid/log-sigmoid neural network with five neurons (S1=5) in the
hidden layer was successfully trained to model the characteristics from Fig.4 , reaching
accuracy of 106 after 20000 epochs and the following weights and biases:

W1=[35,5253  33,9337  34,0720  37,0186  32,6359]T;
   B1=[4,5654 17,1182  8,8747  30,8310  27,1351]T;
  W2=[4,6023 0,6183   1,5440 0,7212   1,4638
       1,0983 0,2505    0,7855  1,5403  1,7136
       1,6371 0,6764    2,9320  2,9422  3,3709];

    B2=[1,3706; 1,2743; 1,5219].
A SIMULINK model was proposed, incorporating as S-function the neural model for

the relationship of the plant parameters and the relative loading, that is shown in Fig. 5.

The change of affects the system with a transfer function Wf(s)= 1/(0,1s+1). The neural
model reproduces the relationships K

0
(), t

0
() and 101 T

0
() since the plant parameters

come out as log-sigmoid function outputs, so they are restricted in the range (0,1). An

amplifier to 10 restores the actual value for T
0
. The plant model is revealed in Fig. 6, where

the plant parameters are taken from the neural model. The simulation results, produced
by a system with an adaptive PI controller and a system with an ordinary PI controller are
shown in Fig.7. The ordinary controller parameters Тi1=1,54, Kp1=25,6 are calculated for
plant parameters K

0
=0,25; T

0
=2,2 s;

0
=0,15 s, taken for =0,6.

A comparison shows that the system with an ordinary controller loses stability when
 decreases since the controller does not adapt to the increase of the plant parameters.
Besides, the control becomes rather dangerous for the actuator and the valve because of
the high frequency oscillations, turning itself almost into an on-off control and consuming
a great amount of energy for control. Far too economic and smooth with only few
oscillations is the control of the system

Fig.5

5   Problems of Engineering Cybernetics and Robotocs, 47
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Fig.6
with the adaptive controller, which is explained with the decrease of the proportional and
integral gains. The gain scheduling is not effective when the changes of only one of the plant
parameters are accounted for. The advantages are guaranteed when the variations of at
least two of the plant parameters K0 and0 or equally T0 and 0 are considered. Besides,
even if the actual plant parameters differ from the calculated by the neural model values,
the system with the gain scheduling control preserves stability and performance. This is seen
in Fig.8.a. and Fig.8.b. for the same change of , after an additive plant parameter drift has
been included q=qnm(1+0,05 t), where by q is denoted the actual value for the plant gain,
the plant time delay and 1/plant time-constant, and by qnm  the corresponding neural
model values. The simultaneous increase of the plant gain and the time delay together with
the decrease of the time-constant due to drift effects simulates the most unfavourable case
with respect to system stability.
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VI. Conclusion

A gain-scheduling control based on neural network non-linear function approximator is
proposed for plants with variable parameters. A two-layer non-linear network is trained
using the backpropagation rules with adaptive learning rate  to reproduce the  deterministic
relationship between the plant parameters and a measured variable associated with their
changes. The final neuron model is then incorporated in a PI controller so that the
controller parameters follow the plant parameter changes. The procedure is applied for the
design of the control of the fluid temperature of a heat exchanger. Closed-loop systems with
an adaptive and an ordinary PI controller are simulated using SIMULINK of MATLAB
package. The advantages of neural gain scheduling even when the actual plant parameters
differ from their values from the neural model are good performance for fast and large
parameter changes, economic, smooth and safe for the actuator and the valve control.
Investigations show that gain scheduling is effective when the changes in at least two plant
parameters are accounted forthe time-delay and the gain or the time-constant.

R e f e r e n c e s

1. A s t r o m,  K. J., B. W i t t e n m a r k. Adaptive Control. Second Edition. Bonn, Addison-Wesley Publ.Co,
1993.

2. C i c h o c k i,  A., R. U n b e h a u e n. Neural Networks for Optimization and Signal Processing.1993.
3. D e m u t h,  H., M. B e a l e. Neural Network Toolbox for Use with MATLAB. Users Guide. The Mathworks

Inc., 1993.
4. H a d j i s k i,  M. Design of Control Systems for Technological Plants. Part I. Applied Methods. S., Technika,

1982 (in Bulgarian).
5. H u n t,  K. J., D. S b a r b a r o, R. Z b i k o w s k i, P. J. G a w t h r o p. Neural Networks for Control

Systems a Survey.  Automatica, 28, 1992, No 6, 1083-1112.
6. K i r o v a, T. Neural Networks. Basic Architectures and Learning Algorithms. Sofia, SOFTECH, 1995

(in Bulgarian).
7. L e i g h,  J. R. Applied Digital Control. Prentice Hall, 1992.
8. L i p p m a n,  R. P. An introduction to computing with neural nets.  In: IEEE ASSP Magazine, April,

1987, 422.
9. N e r a n d r a,  K. S., K. P a r t h a s a r a t h y. Identification and control of dynamical systems using neural

networks.  In: IEEE Trans. Neural Networks, 1, March, 1990,  426.
10. T o m o v,  I. Optimal and Adaptive Control Systems. Part Two. Sofia, Tech.University, 1991 (in Bulgarian)
11. W a s s e r m a n,  P. D. Neural Computing. Theory and Practice. ANZA Research, Inc. N.Y., VAN

NOSRAND REIHOLD, 1992.
12. Y a n g,  Y. Y., D. A. L i n k e n s. Adaptive neural network based approach for the control of continuously

stirred tank reactor. In: IEE Proc. Control Theory Appl., Sept., 141, 1994, No 5, 341349.



6 8

Исследования некоторых применений нейронных сетей
для управления объектами с меняющимися параметрами

Снежана Йорданова, Асен Тодоров

Технический университет, 1756 София

(Р е з ю м е)

Предложено адаптивное управление объектами при помощи нейронной аппрок-
симирующей модели, задающей детерминированную нелинейную зависимость
параметров от измеряемой переменной. Модель получена  после обучения двуслойной
сети с логистическими функциями методом обратного распространения для
подстройки параметров ПИ регулятора. Процедура применяется к управлению
температурой флуида в теплообменнике. Через симмуляции при помощи
программы Симулинк получены переходные процессы в системе с адаптивной
подстройкой параметров регулятора и  показано  сохранение показателей
качества при быстрых и больших изменений параметров объектов и
экономичность управления даже если параметры объекта отличаются от
параметров нейронной модели. Исследования показали необходимость в
учитывании изменения как в коэффициенте, так и в опаздывании объекта.


