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Obtaining Weak Pareto Points for Multiobjective Linear
Fractional Programming Problems*
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1. Introduction

Linear fractional criteria are frequently encountered in finance, marine transportation,
water resources management, health care, etc. [13]. The real decision making in these fields
must take into account  linear fractional (ratio) criteria very often.

The  linear fractional programming (LFP) problem is defined as follows :

 p(x) 
(1) max f (x) =  

 q(x) 

s.t. x  S  R n,

where   p(x) and  q(x)  are linear functions  and the set  S  is defined in the  following way:

        S = { x| Ax = b,  x > 0 }.

Here   А  is a real  valued  m n  matrix,  b  Rm . We  suppose that  S  is a nonempty bounded
polyhedron. The  maximal value of  f(x) on  S is denoted by  fmax .

Many authors have proposed algorithms for solving problem (1), for example:
[5, 11, 17] and  others. Comparative investigations of such algorithms can be found in
[1, 3]. Additional information concerning especially the “bad points” is given  in the paper
of [14].  A point  x1   S  is called  a “bad point” if  f(x)  when  x  x1 . A complete
simplex type algorithm for solving problem (1) is presented in [1].

B a z a r a a  and S h e t t y  [2] have shown that the goal function in (1) has several
important properties  it is (simultaneously): pseudo convex, pseudo concave, quasi convex,
quasi concave, strict quasi convex and strict quasi concave. This means that the point, that
satisfies the Kuhn-Tucker conditions for the maximization problem gives the global
maximum on the feasible set. In addition, each local maximum is  in the same time a global
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one on the feasible set. This maximum is obtained at an extreme point  of  S .
The multiobjective linear fractional programming (MOLFP) problem can be written

as follows:
 p1(x)

     max 
 p2(x)

            q1(x)     max 
q2(x)...

ph(x)     max 
qk(x)s.t.

         x S.

Here  S  Rn is a nonempty bounded polyhedron (as in problem (1)). All pi(x) and
qi(x)are linear functions. We denote fj(x) = pj(x) / qj(x) (i) and suppose that
qi(x) > 0,  x S, i=1, 2,..., k. А description of these problems, some basic information
and many examples can be found in [13].  Nykowski and Zolkiewski [12] have proposed
a replacing multiobjective linear programming problem and a compromise procedure for
its solving. Several years later Dutta, Rao and Tiwari [6] have shown that computationally
some of these results can be improved for the case when the denominators are identical.
Choo has shown that the weak efficient set for problem (2) is not always a union of
polyhedrons, it may contain some nonlinear parts  [13]. The explicit description of the weak
efficient set can be very useful but  it is often a hard problem to get such description. An
advantage of the weak efficient set of problem (2) is that it is always a closed set. (The
efficient set may not be closed.[13]). A nonlinear programming technique and the reference
point method are proposed here for obtaining weak efficient points for problem (2).

2. Analysis of the MOLFP problem using an auxiliary nonlinear programming
problem

Let us consider problem (2). We can try to use the reference point method for an analysis
of this problem, thus  we formulate the following  nonlinear programming problem

min  D
s.t.
(3)     D > bi (ri 

 fi(x)),  i,
         x   S.

Here   bi 
 > 0 (i) , the numbers  ri 

  are  the reference point components, they satisfy
the following inequalities :

ri  > max fi 
(x),  i.

 It can be seen that the solution of problem (3) determines weak efficient points for
problem (2). Really suppose that x1  is a solution of problem (3) , that gives the minimal
value Dmin, but x1 is not a weak efficient point. Then there exists another point
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 x2 S,  such that  fi( x
2 ) > fi( x

1 ),    ( i, ) . Therefore it is obviously that for the corresponding
value    D2  we get   D2  <  Dmin , and this is a contradiction.

Definition 2.  Consider the function  h: S   E
1
 , where  S  is a nonempty convex set

in  Еn . The function   h  is called strict quasi convex ,  if for each two points  x
1,

x2  S,  such that  h(x1)  h(x2), the following inequality holds:

 h (x1  + (1 ) x2) <   max  { h (x1) , h (x2) }   for all   (0,1).

The functions  gi(x) = bi (rifi(x)), i, are strict quasi convex because  fi(x)  are linearfractional [2].
It is obvious that in problem (3) the minimum of the following function is searched

    (x) = max  [b
i
 (r

i
 f

i
(x)) ] = max [ g

i
(x) ],   i = 1, 2,... , m.

       i     i

Theorem. Let    S  Еn  be a nonempty convex set. Suppose that the functions  gi(x)
(i ,x  S)  are strict quasi convex. Then the function   (x) = max

i
 [ g

i
(x) ]  is  strict quasi

convex, too.
Proof.   Let  0 <  < 1,   x1,  x2   S,.  Then

(x1  + (1 ) x2) = max
i
  g

i
 (l   x1  + (1  l)  x2)<

    < max [max ( gi ( x
1 ), g

i
 (x2 )] = max [ max gi(x

1), max
i gi(x

2) ]=
      i       i

= max [ ( x1 ), (x2)]   

Therefore in problem (3) we have to minimize a strict quasi convex function on the
convex set  S. Each local minimum of a strict quasi convex  function is in the same time a
global minimum of this function on the feasible set  S [2].   This means that we can solve
problem (3) using nonlinear programming algorithms that give local minimum. The
obtained solution will give a weak Pareto point for problem (2) and a corresponding weak
efficient point.

3. Numerical example

The Choo’s example described in [13] will be used here for illustration purposes. This
example is:

        max ( f
1 
= x

1 
 / x

2
 )

           max ( f
2
 = x

3
 )

        max ( f
3
 = (x

1 
 + x

3
) / (1 + x

2
) )

s.t.
1   x

1 
, x

2 
, x

3
  4.

The feasible set  S  is determined by the above given constraints. The weak efficient
set  Е w  is described as follows [13]:

Е w  =  U
1 
  U

2 
  U

3
  U

4 
  U

5 
,

where
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       U
1
= { x  S | x = ( a, b, c ) ,  a = bc },

       U
2
= { x  S | x = ( 4, b, c ) ,  bc  4  },

   U
3

is the convex hull of the points   (1, 4, 4), (1, 4, 1), (4, 4, 1), (4, 4, 4),

   U
4

is the convex hull of the points   (4, 1, 4), (1, 1, 4), (1, 4, 4), (4, 4, 4),

   U
5

is the convex hull of the points  (4, 1, 1), (4, 1, 4), (1, 1, 1).

In order to get weak efficient points for this problem we use  formulation (3). The
computations were made by program NELI. The feasible set is given as shown above. The
functions  f

i   are written in general mode in the constraints containing the variable D. Thesefunctions are determined explicitly by separately written constraints. On the other hand the
reference point components are numerically written in the constraints containing the
variable D. In addition b

i  1 for all  i.  Table A contains data illustrating the behaviourof the solution.

     Table  А

1 r1 r2 r3 x1 x2 x3 f1 f2             f3

2 1  2 3 4 5 6 7       8 9

3 5 5 1 1,999922 1,00 1,999959 1,999959 1.,99959 2,000041
 4 6 5 1 2,75 1,00 1,75      2,75 1,75 2,25
5 5 6 1 4,00 2,171158 2,842325 1,842325 2,842325   2,157675

              6 5 5 2 1,499922 1,00 1,499959 1,499922 1,499959  1,500041

The components of four reference points: (5, 5, 1), (6, 5, 1), (5, 6, 1), (5, 5, 2)  are
written in columns 1, 2, 3 and in rows number 3, 4, 5, 6. The same rows and columns
4, 5, 6 contain the corresponding feasible points determined by the solution of problem  (3)
obtained with the corresponding reference point. The last three columns contain the
corresponding criteria values.  The comparison with the  given explicit description of the
weak efficient set shows that all feasible points written in Table A are weak efficient.  It
must be pointed out that all used reference points  dominate the ideal point for the problem.

Table A very clearly illustrates the effects of increasing of one reference point
component keeping the rest unchanged. Row 4 contains a reference point with first
component increased with respect to the reference point in row 3. This leads to increasing
the value of the first criterion (rows 3 and 4, column 7). The same effect can be seen for
the second and the third reference point component. This effect is generally described in
the paper [8].

It must be added here that the computations made with the nonlinear programming
formulation (3) were compared and confirmed by computations based on the usage of
linear programming  technique.

4. Some comments and conclusion

The paper [8] contains a result concerning the usage of reference points for the analysis of
nonlinear multiobjective optimization problems. It is shown in the paper that the obtained
value of a given criterion can be improved by a correspondingly chosen reference point.
This result is valid for the considered here multiobjective problems and is illustrated by the
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example. The same result gives a way to move in the weak Pareto set.
The paper [8] contains, in addition, a result about the Pareto points attainability. This

result is valid for the problems considered here, too . The solution of problem (3) determines
weak efficient points for problem (2) (and weak Pareto points, of course). In general, if the
reference point is close to a Pareto point, then the solution determines a Pareto point. Thus
from practical point of view it can be said that weak Pareto points are attainable.

It is worth noting that problem (3) must be fully solved in the following sense. It is
not sufficient to find (or to estimate) the needed minimum only, without determining the
corresponding argument. This argument determines the needed weak Pareto or weak
efficient point.

The proposed way for obtaining weak Pareto (weak efficient) points seems to be more
attractive in the cases, when the weak efficient set has a large number of  extreme  points
and it is a hard problem to get a full description of this set.
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Нахождение  слабых точек Парето  для  задач многокритериального
дробно-линейного программирования

Боян Метев
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(Р е з ю м е)

Для анализа задачи многокритериального дробно-линейного программирования
(все критерии максимизируются) предлагается использовать известную скалярную
оптимизационную задачу, решение которой определяет слабые Паретовские
точки (а также и слабоэффективные точки). В рассматриваемом случае в этой
скалярной задаче минимизируется строго квазивыпуклая функция, что позволяет
использовать алгоритмы нелинейного программирования, дающие локальный
минимум.


