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1. Introduction

At present thereexists a large variety of learming-oriented interactive algorithns
of trenultidbjective mathematical prograiming [11,2,3,4] - Thisfact isrelated totherole
of the decision making and the desire of the user or the decision-maker (DM) to control
thewhole process.

An interactive algoritimofthemultiobjective convex programmingand basedonthe
reference directionmethods [5, 6] whichare anexpansion of the reference point ones
[7,8,9] isdiscussed inthepaper -

Thealgorithmsuggests anewscalarizing problemand anewuser”sbehaviour aiming
at the fulfillment of the fol lowing requirement [1] —achievement for asmal l nurber of
algorithim iterationsof certainty in the DM that the solutionchosen by hinvher is thebest
(acceptable) oramong the best.

This behaviour isdeterminedby the proposed here possibi Lty for the DMtoassign
an importance of givenaspiration levelsof saredbjective functions.

Thusabasic scalarizing problemand under choice amodified scalarizingone are
solved ateach terationof the interactive algoritim. e canstate that there isagreater
probabi l ity for the solution of the modified prablemtobe accepted as apreferred one.

Themore active par ticipationof the DM inthe decisionprocess and the corparison
ofaneor wocurrent solutionswith thecurrent reference point predetermineaconparatively
quickconfidence and convergence to themost preferred solution.

11. Problemstatementand prel iminary considerations

Themathematical statement of aconvexmultiple objective problemis:
® max F(xX)
suhjecttothecrstraints:
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) g ®<0,JeF (L, ---. 1),

()] h, ()=0, lel=(lI=1,...,9),

() x>0, kek=(k=1, ..., n).

Herex=(X, X,, - - - » X ) isavector of decisionvariables, xeXcR';
TOAE(), T, - - -, T (X)) isavectorfuction, .(X) :R'—R;

., iclareconcaefuctiats;

g,(X), JeJareconvexfunctions;
X—asetof feasible solutionswhich Isdetermined by the groupconstraints (1) ,(2)
ad(3);

By “max’’we meanthatal l dbjective functions (criteria) have tobe maximized.

The formulation of eachmultiobjective programming problem suggests that there
does not existasolutionwhichmaximizesal l objective functions sinultaneously. Itis
required thatefficientsolutionsx*be foundwherethe increaseof somedbjectivefunctions
is inprovedonly by sacrificing some other functions.

Definition2.1. Thevector x*eX iscal ledanefficientsolution iftheredoesnotexist
another solutionxeX, such that

() T.00=F,(x*) for iel
andwithastrictinequal ityholding for at least one index i -

Definition2.2. Thevector x*eX iscal ledaweak efficient solution iftheredoes not
existanother solutionxeX, suchthatthe (5) aretrue.

(&) T.0)>T, () foreachindex iel

Definition2.3. Thevector F(¢*) corresponding tothe (weak) efficientsolutionx*is
calleda (weak) nondomiinatted vector function / (weak) nondominated solutior/.

Wesuggestareference directiongpproach for solving of the convexmultiple cbjective
programming problem.

e use the fol lowing definitionswhich help for the description of the interactive
algoritim:

Definition2.4. Reference poirnt—apoint inthecriteriaspacewith co-ordinates
whichare the assigned by the DMaspiration levels of the separate criteria.

Definition2.5. Referencedirection — adirectiondefinedas thedifference between
the reference pointand the found solution at the previous iteration; describesapreferred
dange inthecriteriagace.

Definition2.6. Preferred solution — (weak) nondominated solution, whichthe DM
chooses asamoreacceptable oneat the present iteration.

Definition2.7. Final (most preferred) solution — thepreferredsolutionat the last
iteration. Itsatisfiesthe DV insense thathe/she agreeswith the received levelsof the
dojectivefuctios.

Substitutingasingle-objective probllem:

Themultiobjectiveproblem (B) issolvedat several iterations. Ateachoneof them
ascalarizingpraoblem issolved, which isaproblemof the single dbjective mathematical

programing.
The interactive algorittmdiscussed inthis paper isbasedonthe use of the fol loving
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scalarizingproblem:
® min{s@)=max (@af - f,0Q)/(@af <~ £+ +max (F, ) —af Y/(af ~ T}

icl, icl,
Sbjectto:
f.OO=>f forieiul,,
.00t foriel,
XeX,

whereatf * is theaspiration level of the dojective function £, (X) of k-th iteration,

T —avalueof the dbjective function T (X) of k-thiteration,

I, —asetof indicesof criteriawhich the DMwants to improve,

I, —asetofindicesofcriteriawhich the DMmay agree toweaken,

I, —asetof indicesof criteriawhich the DMaccepts inthevay they are.

Theaspiration level af * isassigned insuchavay that:
©® aff>f/< foriel,

aff<f* foriel,
af/=f foriel, I=1l UL UI, .

The scalarizing functionminimizes the difference between the biggest standardized
difference between theaspiration levels and the values of the functionswirth indices 1011
and the biggest standardized difference between thevalues of the functionswirth indices
i012and theiraspiration levels.

Statement:

The gptimumsolution of (B) isaweakefficient solutionof (A)-

Proof: Let x* is anoptimumsolutionof the (B) problem. Then
o s()=s(x*) for each xeX .

Let x* isnotaweskefficientsolutionfor (A) - Then(according todef. 2.2) thereexists
apoint ¥eXforwhich T, (x )>F,(x*) foreach icl. Now

s(x) =max (@f - f,(x))/(af}—£+) +max(F, () - af Y/ (af - )=
icl; icl,
=max((@f— F, R - T,/ (@f - D+
icl;
HEX((F, ()~ af I+, () - F, M)/ (@ - F)<
icl,
<max (afk-F,C*))/(af - Ff<) +
icl,
+max (F. () —af )/ (af <~ 1) =s(x*)

icl,

1€

© SE)SX)-
As (8) contradictsto (7)), x* isaweakefficientsolutionof (A).-
Theminimization of the dbjective function of (B) can be reduced tothe fol loving
equivalentproblem:
(®) min (o +B)
sbjecttocrstraints:
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@ -t/ (af~T ) <o for iel,
(F.-afy/(af —T<)<p for icl,,
Tt foricl UL,
f.O<f foriel,
XeX;
whereo.and  are scalars.

Lemma. The optimumvalues of the objective functionsof (B) and (C) areequal,, i .e.
min (a+B)=min{max (af*— f,(:))/(af - )+

xeX xeX 1del)
+mex (F, () —af )/ (af - F<1)}.
icl,
Proof. Asa (af“— T, (:))/(af *~ F<) holds foreach ic 11, itfolloss that
O amex (af < F.CI)/(af D).

icl;
By analogywith B> (af *— F.(:))/(af *— F?) foreach i1, itfolloss that
10) pmex (F, () —af )/ (af k— F7).

icl,
We sumup the leftand right members of the inequal ities. Then
aH=max (@f - F,())/(af — <) +max (F, () —af)/(afk - £1).

iel; icl,
Let x* isthe optimumsolution of the equivalent problem. Then
min(o+3) =max (@f - T, (x))/(af - T +max (F (x) —af)/(af — £<).

XxeX icl, icl,
Butas
{max (afx—F,(x))/(af ) +max (F,(x) -af)/(af - TFD)}=
icl; icl,
=min {max (af - f.(x))/(af}-f) +max (F, () —af Y/ (af — T<))},
XxeX icl, icl,
rtfollosthat
min(o +3)=min {max (@f.*— F,(:))/(aff - ) +max (F, ) —af )/ (af — £}
XxeX XxeX icl, icl,

Since the problems (B) and (C) are equivalent the optinumsolution of (C) isaweak

efficientsolutianof (B).-

111 . Proposed algoritim

The proposed algor ithm fol lows the common scheme of the interactive methods of the
reference directions. Information fromthe DM regarding the aspiration levelsof the
differentcriteriaisrequired for the fomulationof the scalarizingprablem (B) - IftheDV
doesn”tchoase crirteriawhose values he/she wishes to improve the algorititmstops. The
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startingpointforthesingledojectiveprablenisone fessiblesolutionof trenultichjective
problem. The initial weskefficient solution (thesolutionat the first iteration) iscefined
under the assumption that the DMwishes an inprovement of al I criteria. The scalarizing
problem (B) without the constraints T.(X)>T.°for icl issolved. Ateachnext iterationa
startingpoint for the scalarizing problem 1s the preferred solution fran the previous
iteration. Thealgorithmstopsat the finding of themostpreferred solution.

The describedalgorittm includesanewvelement in its construction.

The aim is that the DMbe givenagreater freedom in the control of the process for
asearchforanmore acogptablesolutionandapossibi ity toorienthimsel Ffor the solutions
of themultiobjective prablemunderthe chosenreference point.. It issuggested that theDV
analyze the found solutionafter havingsolved the scalarizing problemand ifthissolution
doesn”t satisfyhinvher to look foranother one for the chosen reference point by solvinga
modified scalarizingproblem. Wedesignate these problems asabasicscalarizing problem
andanauxi liaryscalarizingore.

Thebasicscalarizing prablemprojects the reference poirntover the nondoninated set
of points. Ateach iterationthe DVexpressesalsohis/her preferences for importanceof the
criteriatogetherwith choosing the crirteria, whose valueswi Tl be improved and those ones
whosevalueswi ll beworsened. But taking into consideration the common ballance among
the levelsof thedbjective functions inthefoudsolution, theDVis likelytoberotsatisfied
with some of them. Thenthe DM is suggested that he/she rank the givenaspiration levels
by importance and look for another nondominated solution. I'tshouldsatisfy the
requi rements of the DMabout the specified criteriaby himwhich arewith bigger
importanceof theaspiration levelsby receivingvalues of these crirteriabigger orequal to
theiraspiration levels. Whenthese requirements have beenmet the praoabi Lty that the DV
agreewiththeother receivedcriteriavaluesalsoand therefore acospt the solutionas final
isbig. Anauxi liaryscalarizingproblemissolved. Thereexist twopossibilitiesafter the
solution of the base problem has been found:

—The DM doesn”t wishworsening below the aspiration levels of the objective
functions (markedwirth indices iel c L) withreceivedundesiredvalues .

Anauxi liary problem (HL) is solvedwhich isthe basiconewithagroupofadditional
arstraints:

T )zafk, iclcl,.

—The DMwishesan achievement of the aspiration levels of the objective functions
(markedwith indices i 1jH 11) with received undesiredvalues .

Anauxi liary problem (H2) is solvedwhich isthe basiconewithagroupofadditional
arstraints:

f.00zaf, ielcl,.

Steps of the algoritihm:

Step 1. Findingan inrtial veakefficient solutionand the respectivewesk nondominated
vaetor.

Step 2. Submission of the solutiion to the DV forestimation. I the DMdecides thatt
the solutiion satisfies himthen Step 10 comes. Otherwise the DMaccepts the solutionas
apreferredoneat the present iterationandgoes toStep 3.

Step 3. The DMdefines a new reference point. The equivalent problem (C) of the
basicscalarizing prablem(B) issolvedbytaking intoconsideration the preferred solution
frantheprevious iteration.

Step4. Estimationof the found solutionby theDV. IT It satisfiesthe DMthenstep
10 comes. Otherwise he/shegoesto Step 5.

Step5. Ifthe DVacoepts the solution forapreferred one at the present iterationthen
Step 3 comes.. Otherwise Step 6 comes.
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Step 6. 1T the DV points objective functionswith indices 1 cl, theauxiliary
scalarizingproblemHl is solved. A transitionto Step8 comes.

Step 7. Ifthe DMpoints objective functionswith indices I cl, theauxiliary
scalarizing problemHl issolved. The problemhas asolutionunder feasible aspiration
leelsand trenatransitionto Step8follois. Iftheaspiration levelsarenct feasible then
‘the DMacoepts the solutionof the basic scalarizing problem (B) for apreferredoneat the
present iterationandgoes toStep 3.

Step 8. Estimationof the found solutionby theDV. I itsatisfiestheDMatransition
to Step 10 comes. Otherwise Step9 folloas.

Step 9. Choice of the more acceptable solution between the solution of problem (B)
and the solution of problem (HL) or (H2) for apreferred oneat the present iteration.
TransitiontoStep3.

Step 10. BEnd of the algorithm. The found sollution is themost preferred one.

Itis\ery inportant trattheaspiration levelsof the inprovederiteriacanbe infessible
insome cases. Thealgorithmcan provide additional information for helping theDV in
his/her decisiontorefer totheauxi liaryproblem. That information referstoacheck-upof
thefessibilityofthepointedaspiration levels. ntheother sice it ispossible trat tree lewels
be achieved by worsening the dbjective functionswith indices i< I, under theiraspiration
levels. But inthiscaseaminimumrisk is takenwhich isexpressed inthe minimumtaking
anay of thevalues of the worsened abjective functions fran the desired vallues.

IV. Example
The problem isstated as:
max F=-(x - 4)*- (X,—- 3)?,
max F,=- x2- 9(x, - 3)?,
max f,=— (x,+0,5)*- (x*+1)?,
sugjectto:

4x?+9x2- 36<0,
x,— 1)+ (x,+3)*- 20,25=0.
Startingfeasiblevector for theprablen (B) -
&, xD=(0,0,5); (R, £, £)=(-18,25,-20,25,-6,5).
Herationl:
1={1,2,3yad (@f}, af},af)=(12,-17,-4).
The solutionof thebasicscalarizingproblemis:
(X2, x7)°=(0,54088, 1,47652); (!, T}, £.H=(-14,2865, -21,1815, -7,21657) .
Heration2:
L={1}, L={2, 3}yand (af?, af? ,af)=(-13,5, -22, -7,9),
2, x?)P=(1,68248, 1,4479%5); (f?, T2, £)°=(-7,77976,-24,5106, -10,7557) .
As the DM does notwishanworsening of the objective function £,(X) under thegiven
aspiration level he/she solvesanauxi liary problem (HL) with the constraint £,() >af?.
The solutionof theauxi liary scalarizingprablemis:
2, x2)"=(1,24986, 1,49306) ; (F?, 7, £)"=(-9,83417, -2, -9,27733).
Let thissolutiondoes notsatisfy theDMalsobut it is accepted for apreferredone
atthepresant iteration.
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Heration3:
L=(3}, L={1}, L={Z}yand (af?, af?, af )= (-12,8, -22, -8).
The solutionof problen (B) is
2, x)=(0,796071, 1,49538); (2, 12, £2)=(-12,5291,-21,0087, -7,90671) .
Itsatisfies theDV, whoaccepts 1tasafinal oneof thermul tiobjective prablem.

V. Conclusion

Themain idea in the development of the algorithm is that the DV should find the final
solutionwithasmal I nurber of rterations of thenul tiobjective problem.

Thefollovingmaincharacteristicsof the reference directionmethods help for this:

—thefindingofthe ideal point isnot requiredwhich leads toareductionof the nunber
ofthe solvedsingle-dbjectiveprablens,

—the intermediate solutions of themultiobjective problemareweak efficient points
whichallowseach of them to be suggested to the DM for an estimationas themost preferred
solubon.

Inparallel withthis theefficiency of the process for searching for thefinal solution
andexpressed inthe achievement of certainty for themost acoeptable solution forasmall
number of Iterations depends on the behaviour of the DM. The described algorithm
discusses anewuser behaviour . By solvingabasic problemand anauxi liary scalarizing
oneateach iterationthe DVhas the possibi l ity toexpress his/her preferencesnot only for
importance of the criteriabutalso for importance of some aspiration levels. Thenthe
probabi ity forthe solutionof theauxi liary tobe acoeptedasafinal one isbigger thanthe
sare probabi l ity forthebasicpraoblem. It is inportant tonote that the requirement for the
achievement ofgivenaspiration levelsexistswhenaseriesof real problemsare solved.
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AJ'[I‘OpMTM MHOT'OKPUMTEPMAJIBHOI'O BHEITYKJIOT'O ITPOI'PaMMMPOBaHM A

Bacw1 BacwieB, Maprig beyeBa

UHCTUTYT MHPOPMALIMOHHEIX TexHoJormit, 1113 Copus

(PeswomMme)

[lpenlaraeTCa MHTEPAKTUBHEIA aJITOPYTM BHITYKJIOTO MHOTOKPUTEPUATILHOTO
MaTeMaTUuyeCKOT'O NPOTPaMMUPOBAHMS, U3IOJL3YIMEr0 MMOOXO0A OTIPABHEX
HaMpaBJIeHVE . AJITOpUTM Oa3MPyeTCs Ha CIIeLMMUECKON CKaJIIpUaMPYIIel 3a1aue 1
OPUMEHTUPOBAHHOE MTOTPeBUTEECKOE [TOBEeIeHME B IIPOLIECCe MIPUHATHUS PelieH s . B
KaXIOM UTEPALIMA PEIAETCS CKAJISPUSUPYIIAS, a [Py BEIOOPE — U MOIMOUIIMPOBAHHAS
CKaJIAPM3MPYIIAs 3a1ada, UTo MPVBOIAT K Bosiee CEICTPOM CXOMMOCTHM K QMHAJIHEHOMY
PEleHVIo .
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