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There are certain difficulties in realizing of fast motions with rooots. The prablems care
fram the strong couplings between individual joint motions. Non-adaptive compensation
of the couplings requires time-consuming carputations, since accurate enough dynamic
models are bulky. There is sane decrease of the sanpling rate associated with the in-
creased amount of computations, and too slow sarpling may deteriorate rabot perfor-
mence, especially in the case of fastnotiions. Actually, decerttrallized fixed-gain conrol is
used with all commercial ly available robot control lers. Such type of control results inan

inherently parallel modullar structure of the control ler, which is most practical .
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Fig. 1. The gereral scheme of the direct adaptive cotrol
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Adgptive cotrol is a label assigned to awide group of goproades, which are besed
onvariations of the control inputs adeguately to a priori ukoan variatians of the plant”s
dynamics [1]. There are two widely recognized groups of adsptive control: direct ad
indirectaes [2].-

Adgptive control schemes based on the indirect approach use a corrol ler-erbed-
ded model of the plant with a known structure but with unknoan parameters. During the
normal gperation of the system the model parareters are updated on-line (or cortinu-
ously, for amalog systams) in order 1o give the minimum mismatch between the outputs
of the model and the plant to ae and the sare conrol 1Input. Subsequently, the control is
gererated according o the model . Thils approach is also referred to as identification-
besad adgptive catrol, as vell as explicit adgptive aontrol.

Direct adcgptive control schares (see Fig- 1) are based on control lers wirth previously
defined structure but with unknown parameters. During the normal operation the con-
‘troller parareters are ypdated directly with the goal to minimize the error, or sore other
qual ifier of the closed-logp system performance.

Problem statement and nomenclature

The equattion of motion of an n degree-of-freedam rigid-link manipulator is described by
() M@ G +C@, d)d + 9@ =u,
where geR" is the vector of joint variables;

M(@<R ™ is the generalized inertia matrix; this matrix is positive definite ad

bourdd [3], i-e.

(124) 3m >0 3 m>msuchthat vgeQ=ml < M(@Q) <ml,

where Q denotes the alloned joint space, and the matrix inequalities inply positive defi-
niteness rather then corponent-wise inequalities;

C(@, 9) g eR" is thevector of Coriolis ad catrifugal foross;

C(, 9) g eR™ is the matrix of Coriolis and centrifugal effects; although this
matrix is not uniquely defined [5], It can be represented in a unique form [3] such that
&) C@, N+7@, PH=M;

g@eR" is the vector of gravity terns;

u(®eR" is the vector of gereralized forces; it is also the control..

The problem of gross motion robot cortrol 1S to achieve closed-loop performance
that meets sare previously defined criteria. The folloving theorem [3, 5] helps to fird
suchaocotrol .

Theorem 1. The equilibriumstate e (©) =0 of the system (D) is gldoally asynptoti-
cally stable uder the control
é u=M@ g +C@, d)q,+9(@ +u,,
where u=Ke+Ke is the feedbedk stabilization control, e is the joint error, and the
gainmetrices K and K are constartt and positive definite.

Proof. Using the control (4), the closed-loop system is represented by the equation

M@ e  +[C@,d)+K,1e +Ke=0.
Coviausly, e (©) =0 isanequilibriumstate. It hes 1o be proven that this state is stable.
The proof is performed using the direct method of Lyapunov [4, 5]- The Lyapunov func-
tion candidate can be dhosen in the folloving energy-like form
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(®)] V=/2{e "M@ € +e'Ke}.
This quadratic function is positive definite and bounded, since the gereralized inertia
matrix M(Q) s positive definite and bounded by virtue of inequality (2), and the gain
metrix K is constant. Thus the Lygpunov functiion candidate s estimated by the folloving
ingelites:

me 2+klef*svsm | € [2+K]|e]|?,
where k and k(k >k >0) are the greatest and the smal lest eigenvalues of the gain
matrix, regectively. Thus, function (B) is bounded, ad therefore it is a legitinate Lygpuov
fmct_im candidate. The derivative of (5) is further obtained with the esserttial use of
egation (3):

v/ eK € .

The derivative is negative semi-cefinite, while the “standard” tednigue requires it should
be negative definite. Hever, an equillibriun state e =0 is not possible for € =0, ascan
be verified from the equation of the closed-loop system. Hence (5) should decrease and
firally (asynptotically) reach zero. Thus, e (©) =0 is the onlly equillibriun state, ad this
state is glanally asynptotical ly stable. (.

Remarks:
o Frergy-like Lyapunov functions prove 1o be very suitable for stabi lity analysis of me-
denical systars.
¢ Unlike the camputed torgue method, the generalized inertiamatrix isnot used as a
cain matrix; this is most suitable for use with direct acptive control schares. Honvever,
such sdheres require that the reference trajectory be avai lable together with its first ad
second order derivatives. This requirement may be very erbarrassing in inplementation.
¢ According 1o the theorem, the equilibriun state e (£)=0 is proven to be asynptotical ly
stable when arbitrary positive definite gain matrices are used. The equilibriium state can
be made glabally exponerntially stable, provided the velocity feedback is deep enough
(efer o5, 6] forcetails).

In order to develop the control system that guarantees exponential stability of the
equilibrium state, the direct method of Lyapunov is used again, and the associated
Lyapunov function is foud to be in the fom [5]:

€2)) Vo, = (A2 {(€ +A )M +A e) +e'[ XK, - A M@)] €},

where the matrix AeR ™" is a positive definite constant and diagonal - The function (&a)
is a positive definite function of the system state.  Its derivative with respect to tine is
negative definite alag the trgjectory of the closed-loop system.

The adaptive cortrol

Acoording to all direct adgptive scheres, the control is performed on the bese of a chosen
st of actal signals in the closed-logp systam, such as position and velocity errors, sssor
outputs, reference quantities, etc. Gererally, the control is dotaingd in the form [5]

® u=Yebh,

where s is the vector of sigals used, p is avector of the controller parareters, ad Y(S)
is some functional matrix with appropriate dimensions, which is defined by the adopted
structure of the controller . It is assumed that there exists a vector of *ideal'” parareters, p,
such that the performance of the closed-logp system meets sone prescribed requirenents,
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provided f):p- The controller parareters are gereral ly gains [1-6] - The updating of the
gains may be performed using a gradient estimator gpproach [3-5], yielding

0] p=rvre,,

where I"'>0 is a user—-defired matrix, ad e, isavector of signals, often referred o as
filtered error. Stability analysis an the bese of erergy-like Lygounov functios  shons that
the filter can be designed in the forme, =€ + Ae, where A> 0[4, 5]. Decentralized
versions of direct adgptive aontrol are attractive topics of research, as logas they pro-
vide sinpler and more practical solution to the problem of  robot corrtrol in comparison
with the centralized control methods [4] - With the decentrallized gpproach, the aontrol (6)
can be represented in the component-wise form

U=Y; /ﬁj ;
where j, 1< j <n, isthe joint index, u is the corresponding control iUt u (sj) isa
functional vector of tre sigrels s, , s, is the vector of sigalls used with the j-th control loop,

(wally, Y, =5, ), ad /p\% IS an estimate of the \ector of the "iceal’” aontrol lex paraneters.
The parareter tuning is performed according to the folloving law

(t3)) f%:l“jyj €, »Werels< j<n.

The adaptation gain matrices, I, have 1o be positive definite. Sovetines the parareter
twning is not effective, in particullar when the signals used are srall in aplitude. The
goproach here is to use axiliary sigals and adjust them on-line, rather then menipulate
the gains, inorder to avoid such a drawback. The control can be represented as

() u=(y, + 3 )p.1<j<n,

v\here/éj is an estimate of the vector of auxiliary signals associated with the j-th control
logp. The dimensiion of this vector depends on the structure of the control ler. Wirth proper
cdhoice of the auxiliary signals any control input can be dotained, provided the galins are
not zero, i.e. P, # 0. The adgptation law is syrnthesiized in acocordance wirth

Y] /éj =13 &; -
which isanalogous to (8)-

Stehility 1Isses

Detailed consideration of the system stability is not possible here because of ladk of
Spece. Since the aontrol s in decentralized form, practical stability is the control design
goal rather then asynpitotic stebility. It isvell knoan, that asynptotic stabil ity does not
necessari ly guarantee goad closed-logp performance, e.g- refer to [7]. It is assured fur-
ther that there exiists an "'ideal " auxilliary input, a*, such that the equilibriun of tre clossd-
logp systeme (©) =0 is exponential ly stable with the control (9), provided there are o
disturtences, i.e. if 3= g*- /éj:O, 4=12, ... ,n) eenywharealay te trajectory
of the closad-loop system. We willl assume thatt the associated Lygpunov function s in the
fom (&) - These assunptias are \ery ratural, since the roootic system is catrol lsble, the
energy-like Lygpunov functions are nost surtable for the analysis, ad It is essy to show
that arbitrary cortrol can be dotained through goplication of (9), provided p,# 0. Asfar
as the udisturbed system is exponential ly stable, the derivative of (5a) with respect to
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Fig- 3. Results of nurerical simulations along a fast trajectory — the position errors (left), the velocity
ervors (right) ad the controls (bottan)

time is negative definite. Folloving the scheme of proof for theorem 1, and with the
essential use of the direct method of Lyapunov, the folllowing theorem can be esteblished.

Theorem 2. Consider the nonlinear system (1) with the control (9). Suppose that
ﬁlereexist\ectorsa}*,j =1, 2, ..., n, with bouded elerents and bouded derivatives with
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respect to tine, such that the equilibriun e () =0 of the udisturbed closed-logp system

is eqonential ly stable. Then the control (9), togetier with the adjusting (10), guarantees
glabal uniform ultimate boundedness of the closed-loop system errors.

Proof. For ladk of space the proof is anitted here. Honever, the proof isvery similar
o the proof of theorem 3.2, given in [5], ad it uses the staterents of Theoram 1 given
aoe.

Remarks:
o The actual values of the "'ideal" vectors are unknoan; honever, they are not needed for
implemertation.
o The gpproach falls in the group of direct adaptive control schemes, and it is based on
the direct method of Lyapunov.

The schame of the adaptive control wirth auxiliary signals is given inFig. 2. The
reference model (see Fig- 1) is assured to be unity, as log as such adoice sinplifies the
control and does not requiire integration of the reference model eguations.

Nurerical simulations

Nurerical sinulations with a two-degrees-of-freedan robot with revolute joints are car-
ried out and quoted here 1o demnstrate the method efficiency. The eguatiions of motion
are highly cauplled and they include gravity terms. The reference motiion is smooth, though
it is relatively fast, with world velocity and acceleration of sore 10 /s and 10 /<,
respectively. For sake of camparison, the reference notion is the sare as the one used In
[4] ad [5]- The standard PD control does not supply for sufficiently good results, since
the estimated tracking error is 0.3 [rad] for each joint [4, 5]- In aonparism, the adgptive
cottrol with tuning of the feedbadk gains Is quite a sucoess [5]- Honever, the adgptive
aontrol besed onauxiliary sigrals as reported in this pgeer is acasiderably better doice.

The control is adopted in the form

U= (1 +D =k () + k@t a)- K@+ a) +u (T, );043,),
where t, denotes the discrete tine, and the velocity gains relate to position gain in
accordence with ki, =k, =2, k. (friction is not considered). The control is generated
using pest experience, and it is assured that b, =b=0. Initial joint ervors are forced in
orter to clarify the tendency in decaying of the joint errors. The error filter is designed
using the values 1, =3, A,=5s.

The tiime history of tre auxiliary sigrals is givenonFig. 5. The tine histories of the
a,xiliarysigalsah, J=1, 2, arenot reported, as log as they ooincide but for the sign
witha,,, J=1, 2, respectively.

Coviasly, both the auxilliary signals and theilr derivatives are sufficiently srall in
aplituce (see Fig- 5). Actually, they depend on the reference motiion and the control
actions required for the motion. The experiments show that the frequencies presant in the
reference trajectories induce similar frequencies in the ideal auxiliary sigals. Honewer,
the arplitudes of these induced frequenciies are nuch smaller.

"Willd" initial values of the auxiliary signals have been assigned during sinula—
tion. The initial values do not gopear to be of great significance in a long run, since the
auxi liary Inputs are adjusted in due time. The closed-loop transients can be inproved
through appropriate dhoices of the initial values. Hovever, we do not pay attention to
these doices here, as lag as the accant is put on the adgptation process.



rad/s

0.6 i ; £
-0.1 -0.0% 0 0.05 0.1
Fig. 4. Preseplare plots (left—¢€,(e), rigit—€,(e))
1 (rad) ' 0.5 (rad) '
a,, (t
0 W 0 2, (t)
-1 : -0.5 :
(rad/sec) (rad/sec)
0.05 : 0.05 :
a,,(t
-0.05 -0.05
0 1 2 (sec) 0 1 2 (sec)
1 0.12
0.8 l\/a&/ 0.1r¢ ay, (1)
0.6 : 0.08 :

Filg. 5. Tine histories of the axilary signals of the Ist (left) and the 2nd (right) joint.




Conclusion

The article puts forvard a new direct adgptive control tedmige. It is based on decentral-
ized fixed-gains control, as the one used with all commercial ly available raoot control-
lers. Such type of control results inan interently parallel modular structure of the con-
troller, which ismost practical . The tednique falls into the group of sinplified adgptive
control [4], and it can ke essilly inplemented, since there isno need of extensive capu-
tational capacity and the sarpling rate can be easily kept sufficiently high. Feedback
control is used only, in contrast to the well known adaptive cortrol approaches with
proven asynptotical stability [1-3] of the equi libriun state, where the Teedfornard con-
trol camponent is essential . The experimental investigations show that the adgptive con-
trol besed on auxiliary signals is a much better doice, when carpared 1o the control with
variegble adgptive gains.
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Hp,qMoe alallTrMBHOE YyIIpaBJIEHME MaHMITYJIALMOHHBIMA pO@OTaMI/I
Ha OCHOBE€ IOOIIOJIHMTEJIBbHBIX CHMI'HAJIOB

B. BariaBecoB

Cekripss pOBOTHUKM U MEXAHUKM, VHCTUTYyT Mexauuku, 1113 Copusa

(PesmoMme)

[penyaraeTcs MOOXOI IJIs yIPaBJIeHMs MaHUITYJISLMOHHEMMY POOOTaMM Ha OCHOBE
AmanTUMBHOM HACTPOVKM CUTHAJIOB B OOPAaTHOM CBA3M. [IOOXOI OTJIMUYaETCS
MPOCTOTOM peayms3alym U TpefyeT IMHaMYeCKOM MOIEIIM MeXaHNIECKOM CUCTEMEL.
YOpaBJeHVE MOXHO MPWUIIOXUTE M 10 OTHOWEHMO K [TOCTOSHHEM KO3bbrumeHTaMm
yCusieHrsi. PesyJsbTaTe! MOOEIIMPOBAaHNUS WUIOCTOMPYIOT SQOEKTMBHOCTL YIIOaBIIEHNS .«
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