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1. Introduction

The basic algorithms having established themselves as fundamental in solving integer
multiple dbjective programming problems are interactive (refer to [1, 4, 5, 6, 9]- Each
interactive algoritim performs a sequence of iterations consisting of two phases: a
computational phase and a dialogue phase. During the computational phase one or
saveral solutions are generated, usual ly solving a scallarizing probllem. They are sumitted
for evaluattion to a person, called decision meker (OV) during the dialogue prese. If the
M acoepts any solution as the most preferred ane, the iteration sequence teminates. In
the gpposite case the DV hes to present quantitative or qualitative informatiion conceming
his/her preferences. This information is necessary for the formullation of a new scalarizing
prablenwhich is solved at the next rteration and the solution dbtained is presated to the
M for evaluation. The interactive algorithm terminates when the most preferred solution
isfoud.

The nonllinear problems with continuous variables and the convex integer (linear
and nonliinear) problems are NP-hard problems (see [2, 3])- The exact algorithms for
their solving have exponential computational complexity. The integer problens are
daracterizad by tre fect that the firding of a fessible solution is o difficult as the firding
of an gptimal solution.

The develgoment of interactive algoritims for solving multiple objective nonlinear
and imteger (linear and nonllinear) programming probllems requires bindingly taking into
account the time necessary for solving the scalarizing problems. The dialogue with the
DM, even very convenient, may not be held. This may happen in case the DM cannot
wart very long when solving a scalarizing problem.

One approach for overcaning the difficulties concerming the computational
aoplexity of the singlle dojective linear integer problens is proposed in [5, 7]- Ttmay be
the most innovative among the interactive algorithms knoawn at the present time, which
are designed to solve nultiple dbjective linear integer programing problems (see for
examle [4, 6, 8, 9]- The main feature of this approach is that single objective linear
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problems with continuous variables are solved during the training (leaming) process ad
the solutions dotained are submitted to the DV for evaluation. These prabllems are easy
solveble. They are used under the assumption that the dojective function values for the
scalarizing prablem solutions with continuous varisbles differ comparatively Iittle fran
the solutions wirth integer variables. It is supposed also that the DM prefers to deal with
the dbjective fuctions but not wirth the variables. The advaritage of these interactive
algoritins is that the qual ity of the dialogue with the DM does not get worse with respect
1o the type of information required fram and produced by the DM and that It is inproved
wirth respect 1o the computational time expended to dotain a new solution for evaluation.

Unfortunately this approach loses its advarntages when mulitiple objective convex
nonlinear integer problems must be solved. The scalarizing convex nonlinear integer
problems are difficult solvable. The corresponding singlle dbjective covex nonlinear
problers with containuous values are difficult solveble to. Therefore it is uattractive to
use such problems for DV’s training.

The paper suggests an interactive algoritim for solving nultiple dojective comvex
nonlinear integer prablems, in which the difficulties conceming their camputational
camplexity are overcome o some extent. It can be referred to the reference direction
algorithns. The DV sets his preferences as aspiration levels of the separate criteria. The
reference direction is defined by the aspiration point in the criteria spece ad the solution
found at the previous iteration. On the besis of the reference poirnt a scalarizing problem
is costructed with o specific properties. The first ae is thatt fessible integer solutions
of this probllem lie close to the efficient frotier, ad the seood ore is that the solution
found at the previaus Tteration is its fessible solution. The first property of the prablem
enables the gpplication of an approximate algoritim of polynomial complexity. The
gppraximate solutions found wirth the hellp of thiis allgoritim can be used for evaluation by
the DM, especially in the leamiing prooess. These are the so called “rear (week) efficient”
solutions. The second property enables the application of an gpproximate algoritim of
“tau seard” type (refer 1o [10]), vwhich is quirte efficient at given initial fessible solution.
An exact algoritim can be used for the scallarizing problen solving at the last iteration or
at sore intemediate iterations in case the DV wishes.

2. The probllem discription

The algorithm proposed in this paper is designed to solve nultiple dbjective convex
nonlinear integer programing problems, which may be stated in the form:

[0)) mex { i) | k e K}
Sbject to:

(024) g)<0,1eM,

(6] 0<x<d,jeJ,

@ % —integer, j € J,

where T, (X), keK , are concave functions; g,(X), ieM, are convex functions;
K={1, 2, ..., p}, V=1, 2, ..., m}, ad J={1, 2, ..., n}. The symbol “max’” means that each
dbjective function has to be maximized. The constraints (2)«(4) define the feasible sstX.
A faw definitions are given primarily to inproe the clarity of the text:
Definition 1. The solution X is called efficient if there does not exist another solution
X X, such that the inequalities

£GO> () foreach i ek,
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£, >F,() forat lesstare i €K
hold.

Definition 2. The solutiion X is called weak efficient if and only if there does not
exist aother solutionx=x, such that

fiCO>F.() forech iek.

Definition 3. The p-dimensianal vector T(X) with components (X)), i<K; iscalled
(Weak) nondaminated, 1 X is an (weak) efficient solution.

Definition 4. The preferrad (Week) efficient solutim is tre  (heek) efficient solution
chosen by the decision meker (DV) at the current rteration of the proposed algoritim.

Definition 5. The most preferred (weak) efficient solution is the (Wweak) efficient
solution thatt satisfies the preferences of the DV to the greatest degree.

Definition 6. The reference direction is defined by the difference between the reference
point (aspiration levels) given by the DM and the (weak) nondaminaited solution obtained
at the previas iteration.

The prablem (1)—(4) does not possess an analytical ly well defiined gptimal solution.
Therefore It is necessary 1o select a solution fram the set of efficient solutions. This
process is subjective and depends on the DV.

Let X denote the set of solutians, which satisfy constraints (9—(4) - Let f, cerote the
valie of the solution fourd at the last iteration for the k=th, k e K, dojective fuctionad
.. k € K, denote its desired value (aspiration level) defired by the DV at the current

K={keK| f > }, K ={keK| f <F 3},
K,={keK| £ 2}, K=K UK UK.
The set K contains the indices of the criteria, the values of which the DV wishes to

inprove, while the set K, cotains the indices of the ariteria on the acoount of which this
inprovement can be done. The set K, contains the indices of the criteriavhich the DV is

rot inclined to ceteriorate.

The folloving single abjective problem is proposed to obtain a (weak) efficient
oludm :

Minimize
® SO =mexf mex (f,— /(T —T), mex (f,—F0/(E—T)]

keK1 ke

Sbject to: &
©® T=T,keK,.
() XeX.

It shauld be noted thatt prablem (B)—(7) hes a feasible solution if the fessible set X
Is non-erpty, and hes an gptimal solution i the dbjective functions f,.(X), k € K, are
finiteoer X.

The basic feature of the scalarizing problem (5)—(7) is the minimization of the
maximal standardized deviation of the searched solution f, (X), k € Kand the modified
aspiration point in the dbjective space. The modified aspiration point differs from the
DM aspiration point in this, that the aspiration levels 1,k € K, are replaced by the
values of the criteriaf, .k € K, they possess in the last solution d. In other words,
though the DM accepts the deterioration of the criteria £.(9), ke Kyt £, the last lewels
of these criteriaare included in the modified aspiration point. Thus with the scallarizing
prablem (B)~(7) the DM stratey ““little berefit—no great loss” is realized. This strategy
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of DV behaviour enables the overcaming of some canputing probllems, connected with
the solutdion of nultidbjective covex nonlinear integer prablens. In thisway the dialogue
with the DM is also improved.

Theorem. The gotimal solution of (5)—(7) is a wesk efficient solution for ()—®)

Proof. ITK = the proof is dovious. LetK = . Let X" be the gptimal solution of
prablem (5)(7) . Then the folloving inequal ity holds:
® S < S foreach x e X.

Let us assume that X is not a week efficient solution for problem (1)-(4). There
exists apoint X° e X, such that

() T <fEX)forkekK.

The following relation

S<)=mexqimex( f, — £, D/ (£~ 1), mex(f — .0 )/ (F, —F)]
keKl keKZ
=mexfmex(( f;, — N KD - NI/(F-T),
keKl
0 mex(( £, — £, CNHF,C) —F < NI/ —T)]
keK 5
< meaxfimax( £, — £ G/ (F,— £, max(F, — F O/ (F, — )] = S
keKl keKZ

is dotained after transforming the objective function S(X) of prablem (5) — (7), using
inLality (9)-

It follows firam (10) that S(X* ) < S(¢¢*), which contradicts (8) - Hence X* isavesk
efficient solution for prablem (D) — (4)-

The problem (5) — (7) can be stated as the following equivalent mixed integer
convex nonlinear programming problems:

(@)} min o

(€2 (F, - T/ (f—T)< a,keK,
® (f—FON/(f-T)< o, keK,
ad = f,kekK,

» X e X,

@®) o —arbitrary.

When the problem (5)—(7) has no solution, then the prablem (11)—(16) also has no
solution. This is due 1o the fact that both prablems have the sane oriiginal constraints.
\When the problem (6) —«(7) hes a solution, then (11) — (16) has a solution and the gotinal
values of their dojective fuctios are eqal . The last statenatt is derived fran the folloving
lemma:

Lemma. The gptimal values of the objective function of problems (6) — (7) and
AD-(@6) areequal .

min o= mingmex[imex( £, — . 09)/( £, — ), mx( f, — T/ (f —F)I}
XeX xeX ke Kl ke KZ
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Proof. From (12) follons that
a> (f-F)/(f—F), keK.
Since this irequality isvalid for echk € K , it follass that

an o> mex( £ — £/ (f-F)
keK1
From (13) follons that

a> (f—FN/(Ff — ), keK.
Since this irequality isalid for echk € K, it follass that

(€2) o> ng(fk—fkoo)/(fk—ﬁ)-
<K
From (17) and (18) it folloss that

o> mexfirax( £, — £ 09/ (£ — ), mx( £ —F.09)/(f~T)]-
keKl keKZ
I x* is an gptimal solution for (11) — (16), then

min o= max{imax( £, — £/ F —T), mx(f, — T/ (F —T)]
XeX keK1 keKZ

because otherwise o can be decreased further.
Furthermore, the right-hand side of the proceeding equal ity is equal to

min mex[irex( f, — £,09)/(f,— ), mex(f, - F,09)/(f, -]
XxeX keK, kek,

which proves the lema.

The single-dbjective prablem (11)—~(16) has two positive properties in a camputing
agpect. The first oe is that the sollution dotained in the previous iteration is the fessible
olution for the sirgle-dojective prabllem beiing solved at the current iteyation. This fecili-
tates the functioning of the sirgle-dhjective integer algoritins, since they can alvays start
with a feesible solution. This is particularly important for the goproximate algorithms of

The secod praperty s comected wirth the fact that the Teasible sollutions of prablem
(A1D)(16) are rear to the efficient frontier of the mnultiobjective prablem (D). This
property ensbles the use of gpproximate single-abjective integer algorithns since the
approximate solutions of prablen (11)—(16) found with their help are localized near to
the efficient surface of problem ()—(4) - The application of gopraximate integer algo-
rithms of tabu search type for the solving of prablem (A)(16) insore caseswill lead to
the dotaining of near (weak) nondaminated solutions and at the same time 1t will de-
crease considerably the waiting time in the dialogue with the DV. This is especially
gopropriate in the initial iterations, when the DV is leaming. During the leamiing periad
the intermuption of the goproximate single-abjective algorithm gperation is possible ad
the use of the approximate solutions obtained upto this moment.

3. The algorithm proposed

The reference direction gpproach used helps the DM to make decisions directing hinvher
quickly to the most preferred solution. The nurber of Iteratians and of tre single dojective
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problems solved is decreased in this way. In addition the algoritim uses an goproxinate
procedure for solving singlle dbjective integer prabllans which speeds W its performance.
At each iteration the DM gives a reference point. The original multidobjective prablem is
reduced 1o a series of scalarizing problems which are single objective corvex irnteger
problems. Each solution is evaluated and the DM decides if he/she warts to change the
reference direction or to stop.

IT the current nondominatted sollution seems to the DM far from the most preferred
solution, a new single objective convex nonlinear integer problem is solved by an
approximate polynomial algoritim. The solutions dotained are near (weak) nondominated
solutions. The quality of these solutions depends on the algoritim used to sohe the single
objective problens. When the DV feels that a given near (Wweak) nondominated solution
is close 1o the most preferred solution, he/she may use an exact algoritim to dotain the
gptimal solution of the current singlle dojective prablem. The last near (Weak) nondominatted
solution foud is used as a starting point in the exact algoritim. The search procedure
goes on unti 1 the nost preferred solution is found. To solve a “large’” nultiple dojective
praoblem, the DM may onlly use an approximate algoritim for solving the single dbjective
oconvex integer problens.

The steps of the algorithm proposed can be stated as folloas:

Step 1. Ifan inrtial integer fessible solution is availeble for the prablem (-4 go o
Step 2. Otherwise set f, =0, and f,_ =1, keK. Solve the problem (5-7) using the
gopraximate algoritim to dotain a fessible initial solution. If the DM is satisfied with
this solution, goto Step 7; otherwise go 1o Step 2.

Step 2. Ask the DM 1o provide the new aspiration levels.

Step 3. Ask the DV 1o choose the type of the algorithm — exact or approximate. I
the DV has selected the exact algorithm, go to Step 5.

Step 4. Ask the DV to specify t—the maximal nurber of near (weak) nondominated
solutians the DM vants to see alag the reference direction at the current iteration. Go to
StEp6.

Step 5. Solve the prablem (B)(7) - Show the (weak) nondaminated or near (weak)
nondominaited solutiion dotained (in case the computing process has been interrupted) to
the DV. 1T he/she goproves this sollution, Stop. Otherwise go to Step 2.

Step 6. Solve the prablem (B)—(7)- Submit o the DV t in number (if more than t
are dotained) near (Weak) nondominaited solutions. IT the DM is satisfied with one of
them, Stop. Otherwise go to Step 2.

Step 7. Stop.

Remark 1. When the DV sets the aspiration levels in Step 2, the separating of the
criteria ino three groups is required, depending on hiis attitude to the values of these
criteria, i.e., which criteria he wants inproved, which may be deteriorated and which
cannot be weakened.

Remark 2. In Step 3 it is necessary the DV 1o be anare of the fact that the dhoice
of an exact algoritim leads 1o the dotaining a nondominaited irteger sollution for evaluation
by him, but on the account of longer time expended for its dotaining. On the contrary,
when an gopraximeate allgorithm is chosen, the time for the solution getting is considerably
smaller, but on the account of possible deterioration of the gual ity of this solution.

Remark 3. IT an gpproximate algoritim is chosen, in Step 4 it is defined how many
near (Weak) nondominated solutions for evaluation along the reference direction the DV
wats to gain. This possibility is included due to o ressors. The first ae is trat all the
solutions dotained are approxinate solutions. The second ore is thait during the leamiing
process it is of particular use for the DM to consider and evaluate nmore solutions.
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Remark 4. When usiing an exact algoritim in Step 5, problem (B)(7) is solved In
order to abtain a (weak) nondominated solution. I the DM deciides that the solutiion tine
is too long, he may interrupt the carputing process and evaluate the last approximate
solution dotained.

The praposed algoritim for solving nultidbjective convex nonlinear integer prablems
has a lot of advartages. The nunber of the single dbjective problems solved is equal to
the number of the aspiratiion points. The DM must define only which criteria and by what
amount to be deteriorated and which must not be weakened. The DM operates in the
criteria space, which in most of the cases is convenient for him, since in gereral the
criteria have physical or econanic aspect. The goplication of goproximate algoritihns for
single dojective prablems solving facilitates the dialogue of the DV, which influences
positively hisbdraviaur in the process of nultiple dojective prablem solving. The presenting
at each iteration of saveral, though near (Weakk) nondomineited solutians along the reference
direction enables the Taster teaching of the DM wirth respect to the set of near (weak)
nordamireted set and henoe allso 1o the set of nondomineted solutians. The last confarmation
is fulfilled to a great extent, because the scalarizing problars (5)—(7) being solved have
quite limited fessible aress, including parts of the (Week) nondominated set. Besides this
the use of an approximate algorithm of “tabu search” type, operatingwell in narrow
Tessible aress at knoan initial fessible solution aids the finding rather good ad inmany
cases gptimal solutions of these scallarizing probllers.

One disadvantage of the algoritim proposed is maybe this one, that the DM has to
‘take into mind the last evaluated but not gpproved sollution when setting new aspiration
levels. Inother words, 1T he wants to obtain new solutions, the DM has to allow the
deteriorating of at least are criterion in the last solution comsidered. Another shortoaning
of the interactive algoritim proposed s the requirenent 1o use goproximate sirglle dojectinve
algoritim, that is performingwell in narrow fessible areas.

4. Concluding remarks

The interactive algoritim proposed is designed to solve covex nonllinear prablems of
multiple dojective integer programiing. It belongs to the interactive reference direction
algorithms. The DM evaluates approximate solutions close to the nondominated surface
in the leamiing process. These solutions are found by means of the used gpproximate tau
search algoritim. There is also a possibility to find for evaluation at sone rterations
nondaminaited solutions by means of an exact algorithm.

References

l.Eswarn,P.K.,A.Ravindran, H.Moskowi tz. Algorithms for nonlinear integer bicriterion
problem. —Journmal of Optimization Theory and Applications, 63, 1989, 261-297.

2.Garey,M.R.,D. S. Johnson. Computers and Intractability: A Guide to the theory of NP-
Completeness. W. H. Freeman, San Fransisco, 1979.

3.Hachijan, L. G. Convexity and algorithmic complexity of the polynomial programming problems.
—lzvestija AS-USSR, Technicheskaja Kibermetika, 6, 1982, 45-56 (in Russian).

4. Hajela,P.,C.J.Shih, Multiobjective optimum design in mixed irteger and discrete design variable
problems. — AIAA Joumal, 28, 1990, 670-675.

5.Karaivanova, J., P. Korhoren, S. Narula, J. Wallenius, V. Vassilev. A reference direction approach
to nultiple objective integer linear programing. — European Jourmal of Operational Research,
24, 1986, 176-187.

6. Lazimy, R. Interactive relaxation method for a broad class of integer and cotinuous nonlinear nultiple
criteria problems. —Joumal of Mathematical Analysis and Applications, 116, 1986, 553-573.

27



7-Narula, S.C.,V.Vassi | ev. An interactive algoritim for solving nultiple dbjective integer linear
programming problems. —European Journmal of Operational Research, 79, 1994, 443-450.

8.Ramesh,R.,S.Zionts, M. H. Karwan. Aclass of practical interactive branch and bound
algorithms for multicriteria integer programing. —European Joumal of Operational Research,
26, 1986, 161-172.

9. Teghem, J., P. L. Kunsh. Interactive methods for multiobjective integer linear programing. — In:
Large Scale Modelling and Interactive Decision Analysis. (G- Fandel, M. Grauer, A. Karzanski
and A.P. Wierzbicki, Eds.), Springer Verlag, Berlin, 1985, 75-87.

10. Werra, D., A. He r t z. Tabu Search Techniques: A Tutorial and an Application to Neural Networks.
OR Spectrum, 1989, 131-141.

VHTEepPaKTUBHEY aJITOPUTM OTIIPaBHBIX HAIIPaBJICHMIM HEJIMHEWHOTO
LIEJIOUMCIIEHHOT'O MyJIbTUKPUTEPMAJIEHOTO NPOTPaMMMPOBAHMS

Bacwi1 BacwieB

WHCTUTYT MHYOPMALIMOHHEIX TexHogormy, 1113 Copusa

(PeswowmMme)

[IpenJioXeH MHTEPAKTURHEL aJIlOPUTM OTIIPaBHBIX HANpPAaBJIEHUM IJIS pelleHUS
BBITYKJIEIX [TPOOJIEM MHOT'OKPUTEPMAJIBHOT'O MaTEMATUIECKOTO NPOTIPaMMMPOBAHNS .
Ha xaxIoy UTepall aJil'opMTMa HaxXOIATCS OIHO MJIM HECKOJIBKO ITPUOJIIKEHHEIX
LIEJIOWCTIEHHBIX PelleH M, BOIII3M OT HEIOMVHVOOBAHHOM [TOBEPXHOCTU . B Cilydae, ecim
JoM10, NPpVHMMAaKee pelieHye (JIIP), XejlaeT, OH MOXET IIPoM HECKOJIBKO UTEepalMsax
HaTV ¥ TOJIbKO HENOMVHMPOOBAHHEE pelleHM .

B anroputMe JIIP paboTaeT TOJIBKO C aCIIMPALMOHHEMYM YPOBHAMM. VICIIOJIB3OBAHME
anropuTMoB Turna “Taby uckaHusa” npelyiaraeTcsd IJjis NPUOJIKEHHOT'O PelleHNUS
[OJIyYEeHHBIX CKAJIAPUSMPYKIMX 3a0ad.
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