
11

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ  .  BULGARIAN ACADEMY OF SCIENCES

ПРОБЛЕМИ  НА ТЕХНИЧЕСКАТА  КИБЕРНЕТИКА  И  РОБОТИКАТА, 47
PROBLEMS OF ENGINEERING  CYBERNETICS AND ROBOTICS, 47

София  .  1998  .  Sofia

* The financial support of the NSF of Bulgaria under contract TN-427/94 is highly acknowledged.

Some Mathematical Aspects of Control of Robots*

Dontcho Dontchev

Department of Robotics and Mechatronics,Institute of Mechanics, 1113 Sofia

Introduction

The problem of servo-control of manipulating robots is treated by many authors and the
results of the efforts could be summarized in three main groups of control methods [1]:
linear servo-control methods, model-reference adaptive control (MRAC) methods and
learning control methods. The classification is not the absolute one, but it gives some
advantages. The group of the MRAC methods divides itself in two subgroups: computed
torque methods, involved in [2 and 3], and feed-forward servo-control methods [4-6]. From
mathematical point of view, the application of computed torque or feed-forward servo-
control method leads to different types of differential equations. Nevertheless in both cases
the main problem is to prove the stability of the closed-loop control system.

Maybe for the first time, the idea of rejecting the stability condition was launched in
[7], where it is shown that the requirement the closed-loop system to be asymptotically stable
does not lead to good performance behaviour of the controlled manipulator, i.e. it does not
give good tracking of the desired trajectory. Furthermore the problem of how to apply the
results of stability theory to the control of robots manipulators is not considered in [7] and
this is made in the presented paper.

Notations and problem statement

The motion of a robot manipulator is described by the second order differential
equation [3]:

(1)   A()
..
 + b(,

.
) + g() =  (t, , 

.
),

where R n is the vector of the joint co-ordinates; A(.)R nn the generalized inertia
matrix; b(., .)R n  the Coriolis’ and centrifugal forces vector; g(.) R nthe gravitation
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forces vector;  (., ., .)R nthe control actions vector, and n  the number of the degrees
of freedom of the robot manipulator.

The dots over the letters denote the respective time derivatives. The equation (1) is
the mathematical model describing the motion of a robot manipulator. The problem to be
solved, from a mathematical point of view, is: Let a desired trajectory:

(2) * = *(t),    
.
* = 

. 
*(t)

be given. A control function  has to be found so that the equation (1), resolved with respect
to the performance error is asymptotically stable.

This problem has been solved by many authors implying several restrictions and
assumptions. In [8, 9] PD and PID servo-control laws are applied to equation (1) in order
the point-to-point task motion to be solved, and in (10, 11) a strong proof of the stability
of the closed loop system is given. The computed torque method is applied for the first time
in [1, 2] and later the control system stability is proven in [1214]. The common method
is the Liapunov’s second one. In [4, 5, 1519] one could find the same method application
to the stability of (1) with respect to the performance error, in the case when the feed forward
control method is chosen. The difference between the authors approaches consists in the
manner of the Liapunov’s function choice. All of them use the property that the b() term
in (1) is a quadratic form with respect to the joint velocities, with a skew-symmetric matrix.
The last property is employed also to assure the stability of (1) in case predictive-adaptive
[20] and decentralized adaptive control [21] laws are applied. In such a case the
mathematics problem seems to be solved.

From a practical point of view, the problem that should be solved, is: let a desired
trajectory:

(2') * = *(t),    
.
* = 

. 
*(t)

be given. A control function  has to be found so that the performance error, i.e., the difference
between the actual values of the joint co-ordinates and velocities and the desired ones, are
small enough.

The difference between the problems is partially discussed in [7] and it is shown there
that the stability condition is not a sufficient condition for a good behaviour of the closed-
loop control system with respect to the performance error. The main reasoning in [7] is that
the time interval of a robot motion is always a final one while the stability condition
guarantees the properties of the solution in infinity.

The problem discussed in this paper is related to another restriction, must be implied
ti (1), so that the mathematical model is made closer to the real motion of a robot
manipulator. In this case it will be shown that the performance error is bounded without
use of the direct method of Liapunov.

Results

The discussion further on is founded on the fact that the joint co-ordinates, velocities and
accelerations of the robot manipulator are restricted. Therefore, there exist three bounded
domains  

. 
  and  

.. 
of  R n  so that:
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R n.

The control function  in (1) is built as a sum of two parts [1]:

(4) (t, , 
.
)= * (t, , 

.
)+ f (t, , 

.
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Here
(5) * = A


 () 

..
* (t) + Kd [

.
* (t) 

.
 (t)] + Kp [

.
* (t) 

.
 (t)], A


 () = diag A(),

and

(6) f  = [ A() A

 ()]  

.. 
+
 
b(, 

.
) +
 
g( ).

The matrices Kd and Kp  are constant and diagonal ones and all of their diagonal
elements are positive.

In the case when the equations (5) and (6) are exact the closed-loop equation (1) is
decoupled and in [1] it is shown how to choose Kd and Kp  so that the equation
(7) A


 ((t)) 

..
+ Kd 

. 
+ Kp=

 
0

is asymptotically stable with respect to the performance error .
In every real case the equations (5) and (6) are not exact and express an estimation

of the actual values of the control actions desired. In [1] one can also find an accurate
investigation of the influence of the uncertainties on the solution behaviour of (7). If the
inaccuracy of the estimation of the A()  matrix is neglected (the influence of this inaccuracy
is very small [1]), then the equation (7) becomes nonhomogeneous:
(8) A


 ((t)) 

..
+ Kd 

. 
+ Kp=

 
e

where  e(t, , 
.
), function is:

i) a bounded function with respect to the time (physical reasons);
ii) a bounded function with respect to the joint co-ordinates (sin and cos);
iii) a linear function with respect to the joint velocities.
Therefore it follows from (3) that the solution of (8) is bounded if the solution of (7)

is asymptotically stable.
It is easy to be seen that the propositions i, ii and iii are correct. The first one of them

is due to the restricted feed forward component of the control function. The second
proposition does not need any explanations. The third one needs maybe, some more
comments. The b(.,.) term of (1), as it was above mentioned, is a quadratic form with respect
to the joint velocities and it contains sin-s and cos-s with respect to the joint co-ordinates.
Using the well known formula  x2 y 2 = (x+y)( x y),  it is clear that statement iii holds
at least in the sense of enormity.

Therefore the following statement holds: Let the control function  is built as it is shown
in (4), (5) and (6). Let the gain matrices in (5) satisfy the respective conditions obtained
in [1]. Let also holds (3). Then the solution of (8) is bounded.

Discussion

Conditions (3) are not only natural ones. In fact equation (1) does not describe the motion
of any real mechanical system. So one can speak about a mathematical model of the motion
of a robot manipulator only in the case when equation (1) is furnished with conditions (3).

On the other hand, it seems to appear a closed-loop reasoning. If conditions (3) do
not exist, the stability of (8) is not obvious, because it is not clear if the right-hand side of
(8) is a bounded function. If restrictions (3) are implied it is not feasible if the stability
condition is a necessary one, because (3) directly guarantees that the performance error is
bounded. In fact it is not true, because if the gain matrices in (5) are not properly chosen,
the performance error will be enormous, even if it is restricted. The problem about the
performance error evaluation is discussed partially in [7] and more details can be found
in [1]. In this sense the results here must be considered as complementary ones to the results
published in [1] and [7].
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Conclusion

The problem of completeness of the mathematical model describing the motion of a robot
manipulator is discussed. Some natural restrictions was employed so that the mathematical
description is made closer to the reality. It is shown that the performance error (the
deviation from a desired trajectory) is bounded, even if the time interval of the motion is
large.
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(Р е з ю м е)

Математическое моделирование физических процессов  это общепринятый
научный метод описания природы. Основной вопрос, которому надо ответить в
этом случае, это вопрос о нахождении обхвата математической модели. Такой
ограниченный обхват математической модели встречается очень часто.
Например, закон Гука можно применить только к относительно малым
деформациям, но он не может объяснить эффектов пластических деформаций. В
настоящей  работе  сделана попытка найти  некоторые ограничения  применимости
математической модели движения робота-манипулятора. Здесь рассмотрены
существующие физические ограничения и их отражение на результатах теории
управления роботами.


