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1. Introduction

Let the network G={N,U} consists of a set N of n nodes and a finite set U of m directed
arcs be given. Each arc is defined as an ordered pair (i, ), wWere i daotes the initial node
and j denotes the ending node; k “‘costparareters a_k, kel , are associated with each
arc (1, j)- The nulticriteria flov problen (VFP) mayﬁeslated as follons:

MFQO:  min* (@09, 9,09, ---, 4.00)

abject o
(v if is,
O Yx;—Xx; = 10ifist
JeN jeN v if i=t,
(v)] 0=x;<¢;, (@, D e,
where s is the source noce and t is the terminal node (the sirk),
GO0 =2 3%,
@.D<V
VSV,

and v* is the value of of the maximal flow.

Each x satisfies (D) ad (2) is called a fessible solution (F.s.) of the stated prablem.
The solution of the prabllem MFP consists in the determining of all efficient solutions
(flors) with a fixed \valve v< v=. AflovX=x;; , (1, J) U)} isanefficient solution (e-s.)
or flow, If there exists no other flow X, X # X, which can inprove the value of are of the
fuctions g, , without worsening the value of the other.
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A lot of applications, which need to use a flow model could be narroned in a
natural way. Those gpplications could be potential application of BOFP — for exanple —
trangportation networks, where each lirk is associated with a cost parareter, lenght and
tine parareter. It isdirectly related to the existing traffic alog the link.

When k=1 the prablem is reduced to the singlle criterion problem for min-cost Flov
MCF) - In gereral this is a linear programming prablem. Polynomial algorithms exist
for their solving. The efficiecy, the efficiat data support of those algorithms are de to
the uinimodullarity of the constraints natrix. That iswhy the class of the flow prablens is
distinguished in the class of the linear programing problems.

The prablem MAP is a multicriteria linear programming prablem. The methods for
solving this class of problems can be applied to 1t. The solution of MR with these
methods is related with the use of new gereral linear corstraints. They are joined with the
s=tof flov aconstraints. Aran this joint the constraint matrix loses its specific unimodular
properties. Sore efficient algorithms have been designed for solving problems for a network
Flovwith addirtional Tinear constraints. They are adgptations of the sinplexmethad [, Z].
The problem here is that some of the main advantages of the flow method, such as
polymomiality,  integer—valued solution, effective structure of the data disgpear- Al this
leads toa subject, which isa topic for aeplorer’s interest [6]- The abject iIs—tofird the
efficient solutias (e-s.) for this class of prablers, areating rethods vwhich have to cosene
the flow structure of the constraint matrix in the solving of scalarized problars. In the
present paper we invetigate the structure of the set of e.s. of the prablem M=(X).

We propose an algoritim for finding the e_s. of the bicriteria network flov (BFP).-
There isn™t large variety of methods for solving BAP. The methods, which are suggested in
[3, 4] use parareterization and move to neighbouring bases. The complexity of these
methods depends on the nunber of the e.s. Approximate methods are described in [3]-
They are based on the “‘sardwid?” algoritim, i.e. on the goproximation of the set of e.s.
below and up, with pseudopolynomial complexity.

2. Theoretical properties of the WP

Let X is a feasible flow which satisfies the conditions (1) ad (2)- Let us defire the
retwork G={N,U }, called residual . The arc (i, j) € U, if in the original network G the
Tolloving inequalities are satisfied: x i <G O % >0. Treaecityoftrearc (@, J) € U is
Gj —%5 O X;; respectively. Everyﬂ0NY:{y @, ) €U} inthe retwork G, satisfies the

coruith

(&) Yy, —2y,; =0, if ks, t,
JeN  jeN

@ —%; < ¥y <Gy » (@, ) el

V\bderﬁneme“oosf’b.jp oftrearc (i, ) e U, :
bijp:au.p ifxij<cu. andbijp:—a.jp iiji >0.

Lamal. Ifthe soludon X of MPwithavallev ise.s., theno gcle o exists inthe
network G,, for which

6 6. <0, i e L\{i}adg, (c)<0.

Proof. I there exists at lesst ae gclevhich satisfies (5), then the flav XtX(o) isof
\alue vad the follomng is fulfilled:

g,0X(0)) < g,00 for il i},
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9, X (6))<0,
i.e. Xisnotane. s. for MAP.

MAP is a linear multicriteria problan, its solution is natural ly integer for integer
data. We can relax the integrality conditions, The solving of the relaxed VAP problem
would fird all besic e. s., which are integer. The problem of firding the rest of the integer
e. s.still ramirs. Inorder to describe thewhole set of e. s. of the probllem, theorem2 ad
3 could be goplied.

Let X' be a feasible solution of the problem L :

L: min@C0, i€l)
® st. £O=d, iel,

0<x<c, Iel,
where the functions g,(), T.0 are separable, 1. e. T.OHY)=T.Q0+T.(Y).
Let X be ane. s. of the problemL:

L: min @O, icl)
O s.t. £@=0, iel,

X <z<c-Xx, Iel.

The following theorem is valid.

Theorem 1. X is an e.s. of the problem L, where X=X +X.

Proof. It iswidentfrm(?)ﬁat:Oéxijl +><ij2£(:I ,i.e. Xisafs.ofL. Itis
assured, that X isnotane. s. of L, 1. e. there exists asolution Y of L, such that:
® gM=<g@), i el \{i}adg (M<g,) forsame i..

It is dotained fran coditions (6) that:
<Y -x <G, el
Y-¢ satifies (7). Ad it is dotained from (8) that:

gM= g X +X), il i tand g, (N<g, (X +X) for sore i,.

n?

and

aM-a)<g0d, il iyadg, () —g,0¢)<g,0d for sore i,.

e conclude, that X is notan e. s. of the prabllem L, whiich leads to a contradiction
with the inrtial proposition.

Stating the problem L, for the retwork G, it is clear that the solution X' is a fessible
flovwith avalue v in G and the problem L, s in fact a prablem for minimal Flow with
avalue O (ciraulation) in the residual network G, . Or:

The sum of an feasible flow with a value v in the network G and an efficient
circulation in the network G, isan e. s. for the problem VFP.

Theorem 2. Each efficient flow in the network G can be represented as a sum of a
feasible besic flov in G and an efficient ciraulation in the residual network G, -

Proof. Let Xbe ane. s. (flow) of VFP. Thereexist nurbers 4, >0, i<l ,

2 A,=1, suchthat X is an optimal solution of the problem

icl
min FOQO=2 A, 9,0
icl,

s.t Qad®.
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For the residual network we solve the problem below:
MECY): min FOD=2 A, g,()
icl,
s.t Qad@. ) ) )
LetY isabesice. s. for this prablem. Then, there exists a spaming tree T =(N,U_},

such thett for every arc (i, J)<U\U, the solution Y satisfies:

yij :_an or yijzclj _an »1-€.

© Yy ¥% 00y, +3, =6
It folloss fran (3) ad (@) that XY satishies the coditiaos (D) ad (@), i.e. itisaf. s.
of WFQ). Fran (9) it follons that X + Y is a basic solution of MF(X).

From the inequal ity
—X<0<C-X
it folloss tret
X=Y<-Y<C-X-Y, i.e.
the flov—Y isaf. s. for the residual retwork G, . Let Zbeaflov inG,, foruhich the
function K(Y) hes aminimal value on the set, definred by () ad (4), 1. e.
F@ < F(-Y) or F(Z+Y) < 0.
On the other hard It is true thatt
0<Xt(V+D) <c, 1. e. XY+ 2 isaf. s. for the network G.

IT X is a flow for which FQX) takes its minimal value on the set defined by (1) and
@, ten
FOO < FOA4+Y+ 2) or F(Z+Y) = 0.

Then F(D=F(Y), i. e. for -Y the dojective F(Y) has minimal value on (3) and
@, or Yisane. s. for the residual netmoﬂ<Gw- The equality
X= (X+Y)+(=Y)
proves the theorem.

3. Amethod for solving BFP

The solution procedure developed here solves the prabllen of determining in the network
all efficient integer flons from s to twith a value v. The proocedure is based on the
property of an efficient flow, proved in Theorem 2.

Vie denote by BH(X) the bicriteria flovprablem. Let X={x;, (1, j) e)}beaf.s.
(flow) of the problem BF(X). We will define the residual network G, ={N,, U} for X
and the corresponding BNFP, named BF (Y).

The proposed algorithm may be described in general as follons:

Step 1. Find an initial besic F.s. X of the problem BRF(X).

Step 2. Do an existence dedk, using the list E(G) of the already determined feasible
lutias. Ifthissolution alreedy exdsts, fidaotrer. If there are ronore fessible solutias,
teminate. Add the sollution X o the Tlist EQX).

Step 3. Defire the problen BF (). Findall es. Y' , e I(iy) of thisproblem. If there
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is not such asolution, g to Step 1.
- Step4. Forall ie I(i) find the new series of e.s. X' of BF(X) by the formula
X1:=X+Y' and add them to the list E(G).
Step 5. Qotain another T.s. using the sollutiion XY

3.1. Finding a feasible solution of the problem F O

To determire all basic e.s. of BR(X), we acogpt that It is a bicriteria linear programing
prablem (BLPP) . The basic solutions are integer valued due to the unimodular property
of the aonstraint matrix. e use the results described in [5].- For e.s. besic solutions X',
1I-1, 2, itis possible  rak them in increasing order of g (X), so that:

g,)<g ) <9 <...,
(V)
g,(x)>g,0) >g,(¥) > ...

The solution X' is an adjacent besic solution t X+ ad X Adjacent besic solutias
differ inae besic variable only. Fronabesice.s., adjacent besic e_s. canbe determirated
investigating the reduced cost matrix (R. A colum vector R(i, J) of dimension 2 in
R, associated with a nonbesic arc (i, J) is efficient, if(R(, j) =Oad there exists a
vecor of weights 2, = (A, A,) such that

ACR>0and ACR(i, j)=0.

It is known that any basis of BF(X) may be represerted as a rooted spanning tree
with a root In the node s and n-1 basic arcs. Let u(i) and (1) be dual variables
(potentials) associated with anode 1 for the first and the second dbjective functions
respectively. The potantials of the node j, which is the ending node of tre arc (i, j) inthe
spanning tree T, are determined by the equattions

U@ =u@+ay;
W(@) = (@) +a;-

For each arc (i, j)e<U, the components of the vector CR(i, ) are determined as
follos:

R, J) =v@® - u@) +a,;
RA, P=r@d-urQg) +&;-

Moving from X! tomrads X™ for obtaining the basic tree associated with X™ , we
nust remove an arc from the tree T2, which corresponds to X! and pivot another arc. The
appropriate arc, which is going to enter the besis, is that arc, which dotains a mininum
incresse in the first dbjective for a unit decrease in the secod dojective. To satisty (10),
the potentials of this arc must satisfy the ineqal tdes:

®R A, D>0,
&R @, j)<O.
e determine the function d(i, J) on the set of nonbesic arcs as folloas:
IR GDRG, P i R3S, j)X0and R, §)<0,
d@i, ) =1
| o otherviise.
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Tre arc (p, I which hes 1o be pivoted into the besis hes to have the vallue of d(p, 1) which
B

d@, D =min{ d(, J) /@1, J)<Uad isanobesic arc}.

Fran the eguattion in [5] it follass that the camponents of the correspanding arcvector A
are determined as follons:

A, =d@, D 7/ @ +d, D),

a
A, =1/ +d@, D).

In order 1o inrtiate step 1 of the algoritimwe nead o see that the Inftdal besice.s. X
may be determined solving a single criteria min-cost flow prablem using a besic method
[7]1- The objective function of this problem is a weighted objective function
(@-6) g (M+ g, (Y), where 0<6< 0,1. To dotain successive basic e.s. we determine the
arc (p, D ad its potenttial d(p, 1)- The nevweight vector A can be determined from (11).

There are two ways of finding the next solution. The one is the customary way —
denote by 2 the new weighted objective function and solve the min-cost problem. The
other ane uses the spamning tree corresponding to the previous solution.

The removing of tre arc (g, ) of the tree T' breeks into wo disjoint subtrees T ' ard
T.! , where the first of them contains the noce g and the second one—- the noce . Thenwe
can dhange the value of the potential ui just of the nodes inthe slbtree T, adding to
them the value (R (p, I).-

3.2. Finding the e..s. of the prabllem BF, (Y)

To find e.s. of the problem BF (Y) in step 3 we can use a modification of the negative

oycles method proposed by H u [8], which changes the flow over the oycles with a negative
or zerovalle. The "'aosts”* of the arcs are the corresponding coeffticents in the weighted
dbjective function. The dotained solution may not be a besic solution.

4. Some other properties of the MFP

Having in mind that the solution of BFP is considerably essier, the theorem given below
enables the recursive finding of the e.s. of VP for k2.

Let MF_,(X) be a MFP with k-1 criteriag,, g,,---, g,_,- The numbers 2, >0,
icl_ , 2 A, =1aregiven. le defire the function

iel ,

(€7 Fa@® =% 4,6 X)-

icl

Theorem 3. The e.s. of the BFP with dojectives F_, and g (X) is ane.s. of \FQX)
ad the reverse.

Proof. IT X isan e.s. of BFP, then two nurbers p, and i, exist, which make the
fuction

FOO =R, O +1,00
‘take 1ts minimal value for X and from (12) it folloas:

REmA g +oo+ ik, g, 1,0,
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This is aweigted dbjective function for VAP, because

N T e L CRETEL D L L s

i.e. Xisane.s. for this prablen.
The raverse follois from the equalities

Fk:}“lgl-"' - +}\‘k—1 9.1 +}\‘kgk = (1_}\‘k)(}\‘191/(1_}\‘k) *.-- +}\’k—1 9. /(1_}\‘k )] +}\‘kgk'

Conclusion

In this paper we have presented some properies of the efficient solution of the VAP, We
have developed a method for solving large scale bicriteria network flow prablem. The
method determines all non-dominated Flloas fram a single source node to the single sink
node in the network. The method uses the property which states that each non-dominated
solution of the investigated problem may be represented as a sum of a basic feasible
solution of an gopropriatly defined network problem for bicriteria circulation. Using this
property we may presenve the “‘destruction’” of costraint metrix.

In the worst case the nunber of e.s. increases exponential ly with the size of the
problem. Theoretically, for k2, we can use the property stated in Theorem 3. The prablem
for finding e_s. of MAP, which satisfy given conditions with the help of specialized flow
algoritins, isstill usohad.
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CpovicTBa 50PEeKTUBHEIX PEUEHMM MyJIbTUKPUTEPMAJIEHOM
NpoBJIeMMEL [IOTOKA B CETHU

Maprana HukOJIOBa

WHCTUTYT MHYOPMALIMOHHEIX TexHogormyi, 1113 Copus

(PeswowmMme)

PaccMmaTprBaeTcs B3aflava O [IOTOKE B CETM, KOTTa KaXIOoM OyTe B CEeTM CONOCTABJIEHE
HECKOJIBKO IapaMeTpoB. JedrHMPOBaHE COOTBETCTRYIIME JIMHEVHEE QYHKIVM ITyT
ceTy OJiS Pa3HBIX [IapaMeTPOB U 3TU QYHKLUM MUHMMUBUPYITCS. [IoCcTaBJieHHAs
3arJaya ABRJISeTCS MHOTOKPUTEPVAJIBHOM 3adauelt Ijid [I0ToKa B ceTr. OBCyXIainTCs
IpOoBJIEMMEl HaxOXINeHMsS 5QOeKTURHEIX PelleHMy (2.p.) 3alauy, COXpaHsSs yHU—
MOITYJISPHOCTE MaTPUIIE OTPaHMUeHMM . JToKasaHel CBOMICTBA 2.P. [IpeIJIOXeH MeToxn
HaxOXIEHVS 2.P. IBYKPUTEPMAJIbHOM 3allaull, OIPeleliasa KakIIoe U3 HMX KakK CyMMa
0asMCHOT'O PelleHMa 3adaul O MMHMMAJIBHOM IIOTOKe U 3OOeKTUBHOE pelleHue
IedrH/POBaHHOM [TOTOKOBOM 3adawdi.
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