PositioningAccuracy and Repeatability of a Class of Technological Robots

Daniela Taslakova

Central Laboratory of Mechatronics and Instrumentation, 1113Sofia

1.Pose characteristics. General description

Command pose - pose specified through teach programming, manual data input or explicit programming.
Attained pose - pose achieved by robot under automation mode in response to command рœе.

Fig. 1. General view of the accuracy scheme

Pose accuracy and repeatability characteristics quantify the deviations which occur between a cormmand andattainedpose, and the fluctuations in the attainedposes for a series of repeat visits to a command pose. These errors may be caused by internal control definitions, co-ordinatetransformationerrors, differencesbetween the dimensions of the articulatedstructure andthoseused inthe robot control systemmodel, mechanical faults such as clearances, hysteresis, friction, andexternal influences such as temperature.

2. Pose accuracy

Pose accuracy expresses the deviation between a command pose and the mean of the attained poses when approaching the the command pose from the same direction. Pose accuracy isdividedinto:
-the difference between a command pose and the barycentre of the cluster of attained points, i.e. positioningaccuracy
-the difference between command angular orientation and the average of the attained angular orientation.

Fig.2. Positioning accuracy and repeatability

The pose accuracy is the maximum deviation obtained in position and orientation. Thepositioning accuracy is expressedas follows:
(1)

$$
\begin{aligned}
& \Delta L=\sqrt{ }\left(\overline{\left.\bar{x}-x_{c}\right)^{2}+\left(\bar{y}-y_{c}\right)^{2}+\left(\bar{z}-z_{c}\right)^{2},}\right. \\
& L=\left(\bar{x}-x_{c}\right), \\
& L=\left(\bar{y}-y_{c}\right), \\
& L=\left(\bar{z}-z_{c}\right),
\end{aligned}
$$

where: $\quad \bar{x}=\underset{n}{1} \sum_{X_{j}=1}^{n} ; \quad \bar{y}=\underset{n}{1} \sum_{\substack{y_{j} \\ j=1}}^{n} ; \quad \bar{z}=\underset{n}{1} \sum_{z_{j}=1}^{n} ;$
x, y, z are the coordinates of the barycentre of the cluster of points obtainedafter repeating the same pose n times;
X_{c}, Y_{c}, Z_{c} are the coordinates of the cormmand pose;
x_{j}, y_{j}, z_{j} are the coordinates of the j-thattainedpose.
The orientation accuracy is expressedby:

$$
\Delta L_{a}=\left(\bar{a}-a_{c}\right), \quad \Delta L_{b}=\left(\bar{b}-b_{c}\right), \Delta L_{c}=\left(\bar{c}-c_{c}\right),
$$

(2)

$$
a=-\sum_{n}^{1} \sum_{j=1}^{n} ; \quad \bar{b}=\underset{n}{a_{j=1}} \sum_{n b_{j}}^{n} ; \quad \bar{c}=-\sum_{n}^{1} \sum_{c_{j}=1}^{n} .
$$

These values are themean values of the orientationangles obtainedat the same pose repeatedntimes;
$a_{c^{\prime}} b_{c^{\prime}} c_{c}$ are the angles of the command pose and a_{j}, b_{j}, c_{j} are the angles of the j th attainedpose.

Starting from P_{1}, the robot successivelymoves itsmechanical interface toposes P_{5}, $P_{4}, P_{3}, P_{2}, P_{1}$. Each of the poses shouldbe visitedusing a uni-directional approach. Paths used during the test shall be similar to those used when programming. For each pose, positioning accuracy (ΔL) and orientation accuracy ($\Delta L_{a^{\prime}} \Delta L_{b^{\prime}}, \Delta L_{c}$) are calculated.

3. Poserepeatability

Pose repeatability expresses the closeness of agreement between the positions and orientations of the attainedposes after nrepeat visits to the same cormandpose in the same direction. For agivenpose, the repeatability (r) is expressedby:
-the value of r, which is the radius of the sphere whose centre is the barycentre and which is calculatedas below.
-the spread of the angles $\pm 3 S_{a}, \pm 3 S_{b} \pm 3 S_{c}$ about the mean values a, b, c, where $S_{a r}, S_{b}, S_{C}$ are the standarddeviations:

$$
\begin{gathered}
r=\bar{D}+3 S_{D}, \\
\bar{D}=-\frac{1}{n} \sum_{D_{j}}^{n}, \\
D_{j}=\sqrt{\left(x_{j}-\bar{x}\right)^{2}+\left(y_{j}-\bar{y}\right)^{2}+\left(z_{j}-\bar{z}\right)^{2}},
\end{gathered}
$$

where x, y, z and x_{j}, y_{j}, z_{j} aredefinedin 1 .

$$
\begin{gathered}
S_{D}=\sqrt{\frac{\sum_{j=1}^{n}\left(D_{j}-\bar{D}\right)^{2}}{n-1}} \\
r_{a}= \pm 3 S_{a}= \pm \sqrt[3]{\frac{\sum_{j=1}^{n}\left(a_{j}-a\right)^{2}}{n-1}}, \\
r_{b}=\quad \pm 3 S_{b}= \pm \sqrt[3]{\frac{\sum_{j=1}^{n}\left(b_{j}-\bar{b}\right)^{2}}{n-1}}, \\
r_{c}=\quad \pm 3 S_{c}= \pm \sqrt[3]{\frac{\sum_{j=1}^{n}\left(c_{j}-\bar{c}\right)^{2}}{n-1}} .
\end{gathered}
$$

The procedure is the same as in 1. For each pose r and angular deviations $r_{a r} r_{b}$ and r_{c} are calculated.

3. Examination of thepositioning accuracy andpose repeatability of robot

 REM 10-01The object of exploration is the manipulation robot REM10-01 (Fig.4). The regional structure of the robot is type SCARA, R||R||T. The actuators of the rotational pairs are DCmotors, and the translational pair is pneumatic with two fixedpositions-up and down. Formeasuring the accuracy of the robot, it istaught for fivepoints, whichare in its working field. Theworking field is definedby the angles R1-200 , andR2 - 155°, and represents apart of plane, perpendicular of the axes of rotation.

The control system is realised on the basis of the universal controller 84EA. The controllergives the possibilityto control up to four DC servo axes. Themethodof control is "point to point". The maximal velocities of the two axes are $0.958 \mathrm{rad} / \mathrm{s}$ and $1.57 \mathrm{rad} / \mathrm{s}$.

The experimental deviœ consists of electronic apparatus for linearmeasurements with analogue output - "IESAMODUL" , memorise measuring oscilloscope, camera and personal computer. The oscilloscope is Tektronix 2230, the camera - SHARP 12 and the PC is type 486DX-2/60 with a videoblaster.

Themanipulation robot is taught in five points. Accordingto the requirements for carrying out themeasurements, the positioningpoints are forming a square in the working area, as the intersectionpoint of itsdiagonals is point P_{1}. The joint co-ordinates of the taught points are shown in Table 1.

Table 1

Point	Joint Coordinates, rad	
	q_{1}	q_{2}
P_{1}	1.17	1.79
P_{2}	1.06	0.9
P_{3}	1.77	0.79
P_{4}	2.11	2.236
P_{5}	0.345	2.215

They have been executed 30 measurements with maximum load-in this case 10 kg in the taught points. The results for thepositioning accuracy are illustratedintabl. 2. Thedata, presented in the table arewritten in $\mu \mathrm{m}$.

Table 2

Table 2					
Δ	P_{1}	P_{2}	P_{3}	P_{4}	P_{3}
ΔL_{x}	-8	-5.7	-1.5	1.07	3.46
ΔL_{y}	6.9	1.4	-1.1	-1.1	-2.3
ΔL	10.56	5.78	1.86	2.24	4.15

The obtained data show that the positioning accuracy of the robot is between 0.01 and 0.02 mm .

Themeasurements for pose repeatability are similar to thepositioning accuracy ones and the procedure is the same. According to the equations for the pose repeatability, they have been made calculations after the tests. The results are shown intabl.3. The data, presented in the table are written in $\mu \mathrm{m}$.

Table 3

Parameters	P_{1}	P_{2}	P_{3}	P_{4}	P_{3}
D	2.48	1.47	2.16	4.1	
S_{d}	1.36	0.94	1.05	1.97	1.33
r	6.56	4.56	10.7	2.24	6.98

4. Conclusion

The described experiments are intended for use mainly when checking the individual characteristics of robotsand fornew constructive solutions aswell. Theprecisedetermination of the positioning accuracy and pose repeatability under different conditions of work, manipulation of objectswith different mass, theirpositioning indifferent points of the working area with different velocity, is important in order to define the possibility of application of the robot for proper industrial task.

References

1.ISO/DIS 9283

2.Wei-Shiu, Wang, Chang-Huan Liu. Implementation and experimental study of a multiprocessor system for real-timemodel-basedrobot motion control. - In: IFFE Trans. on Industrial Electronics, Vol.41, No 2, 1994, 163-172.

Точность позиционирования и позиционная повтаряемость одного класса технологических роботов

Даниела Таслакова
Центральная лаборатория мехатроники и приборостроения, 1113 София

(Резюме)

В статье обсуждается методика испытаний манипуляционных индустриальных роботов. Методика позволяет определение специфических характеристик роботов, которые воздействуют на их работу, дает способ их определения и процедуры измерения. Исследованы две из самых важных характеристик роботов -точность позиционирования и позиционная повтаряемость. В соответствии с предлагаемой методикой исследован манипуляционный робот РЕМ-10-01.

