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Dynamic Control of Manipulating Robots. Dynamic Control
by Standard Corrections

Toni  Boiadjiev

Central Laboratory of Mechatronics and Instrumentation, 1113 Sofia

I. Methods for dynamic control of manipulating robots – basic problems
and approaches for their decision.

The main problem arising with the control of the manipulating robot based on the dynamic
model is the level which is necessary to keep with rendering in account the dynamics of the
system when the control law is being chosen.
The dynamic model of the manipulating robot has the form

(1)    A(q,d)q
..
 + h(q,d) = u,

(2)    A(q,d)q
..
 + b(q,q

.
,d) = u,

where A(q(t), d(t))  Rn,n   is  a symmetric positively determinated generalized inertia
matrix;  h(q,(t), q

.
(t), d(t))Rn  a vector of the coriolis and centrifugal forces;

g(q(t), d(t)  Rn a vector of the potential forces; u(t)  Rn  a vector of the driving forces
or torques; d(t)  a vector of the mechanic system parameters.

In the general case the dynamic model (1) leads to very complex nonlinear system
of differential equations. That makes the problem of forming the dynamic model of
manipulating robot in real time also very complex and hence there are lots of efforts to
simplify this model. Some parts in the equations coming from the dynamic model  have to
be neglected  in order to reduce the calculations for the control law in real time. Frequently
it is done for the centrifugal and coriolis components  b(q,q

.
,d)  they are inessential during

the manipulating robot motion in the neighbourhood of the aiming state, because the ve-
locity of the mechanical system’s parts is very little then. But  during the motion which needs
tracing out on trajectories with high precision and velocity, these parts that depend of the
velocities have to be compen sated. Therefore, for following out of trajectories with given
necessary precision and velocity, the whole dynamic model of the manipulating robot must
be used with corresponding possibility of doing that, when the control law is synthesized.
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A survey of existing methods of dynamic control is given in [2,3]. Between the
examined methods of non-adaptive control the method of calculating moment
[6,7,8,9,10,11,12] is especially popular. It has become a base for development of lots of
other algorithms and methods of dynamic control, including methods for adaptive control
of mani pulating robots. The main problem in using the method of calculating moment is
the necessity of calculation of the whole dynamic model at every interval of the time
discretization. This requirement can be realized very hard for manipulating robots with
complex structure of its mechanical system. Because of that there exist some approaches
using a approximate model of the robot’s dynamics. The moments of inertia that express
the interaction between the parts of the mechanical system by  the inertia matrix  A(q,d)
are being neglected. The same is done for the centrifugal and coriolis forces, i.e. the
dynamic model is reduced to the level of  the diagonal matrix  A  and the vector of potential
forces g(q,d) only. In this case the calculations are considerably decreased but for some
kinds of manipulating robots are still so large. However, such an approach is correct with
respect to the control quality only for slow motions of the robot close to the aiming position.
For fast working out on the trajectories it is necessary to compensate the centrifugal and
coriolis dynamic effects. Compensation of the whole dynamics of the robot can be done by
introducing a force feed-back connection. The forces or torques acting at the kinematic
joints of the robot can be measured directly [2]. The inertia matrix A(q,d)  is calculated
during the process of control. After that, as the acceleration q

..
(t) is being measured, on the

base of  equation (2) there can be compensated the gravitational, coriolis and centrifugal
forces  b(q,q

.
,d). To realize this idea, however, the force sensor noise-proof has to be

guaranteed. Also some constructional hardships arise and they influence the price of the
sensor system that has been always kept in wind. Consequently, the use of programming
microprocessor controllers that give a possibility to realize different laws of control, has
some advances in comparison with the force feed-back connection for compensation of the
robot dynamics.

Side by side with the main hardship  the calculation of the robot dynamic model in
real time, another problem exists for non-adaptive methods of dynamic control  the
complete vector d of the mechanic system parameters has to be known. But when these
parameters are unknown or changeable during the robot functioning, it is problematic
whether the control influence (sythesized for a set of parameters d) will be sufficiently
effective (robust) for all the changes of these parameters. Moreover, there exist other effects,
that cannot be calculated because of their probability nature noise of measurements,
oscillations, coming from the elastic features of the robot’s links, inertia and gravitational
effects arising from different objects the robot’s grip works with (indetermined distur-
bances).

The main difficulty of the dynamic control the large volume of calculations in real
time, can be successfully overcome in some cases using the strategy of decentralized
(independent) control. The manipulating robot is considered as a combination of
independed subsystems, where each of the subsystems is connected to the particular degree
of freedom of the mechanical system and the influence between them is ignored. For every
subsystem a local control law is synthesized that ensures stability of the free (independent)
subsystem. This approach is effective for the task of positioning and following the
trajectories slowly. But in the general case the interaction between the simultaneously
moving links can essentially make worse the quality of the system as a whole and can
increase the error when the desired trajectory is followed. The disturbances with unknown
amplitude that can be caused for instance by catch or grip of an object with unknown mass
and inertia moment, also make worse the quality during the motion on the followed
trajectory and can break the stability of the whole system as well.
   When the robot works in partly determined conditions  for instance when it works with
details whose weight is  unknown, then the algorithms for adaptive control have to be often
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used. The adaptive controllers give larger possibilities, but the algorithms of adaptive
control are more complex in respect to calculations needed for their realization in
comparison with the classical algorithms of control. At the same time it is so complex to
prove the stability of the system at all. Hence, the adaptive algorithms have to be used only
when the classical methods for dynamic control cannot ensure the necessary features of
the controlled system.

Two general approaches exist for solution of the problem about adaptive control [2].
The first one is connected with self-learned (self-setting-up) systems [13,14] where the
improvement of the model’s accuracy is ensured by methods for estimation of the controlled
system parameters in real time and after that this model is used for the aims of the control
by feed-back connection (parametrical adaptation [3]). The main problem of this strategy
is to ensure the similarity of the parameters’ estimations for the whole time during the moti-
on is realilized. Also at the beginning of the motion’s trajectory the estimated parameters
are changing essentially. It leads to sudden changes of the control signals “unevenness”
of the motion at the beginning of the working task. Besides when the parameters of the
system change with a jump (for instance when heavy load is caught), the stability of the
system can be broken.

The second approach is an adaptive control with standard model [15,16, 17,
18,19,20]. Here the aspiration for the closed system’s behavior is to correspond with the
behavior of the previously chosen model in the sense of some kind of criterion (adaptation
with the signal). The manipulating robot is considered not as an unknown object but as an
object the dynamic characteristics of which are partially known and can be calculated in
real time. This approach ensures better transitional processes in comparison with the self-
setting-up systems. But the main disadvantage here is the large volume of calculations
needed to realize the control law.

II. Method for Dynamic Control by Standard Corrections  specific
features. Comparison with non-adaptive and adaptive methods for
dynamic control about ability of calculation

The method for control by standard corrections (like a number of other methods for
dynamic control) is developed on the base of the method of the calculated moment. But the
great difference between them is the existence of a new component in the control signal [1],
which does the estimation of the system deviation from the desired motion. Such a deviation
can be caused both by the inexactnesses and by the ignored parts of the manipulating robot
dynamic model and also by other disturbances, but this component makes corrections to
the joint variables of the mechanical system u (t) on the basis of that estimation. The
inexactnesses in the model come from variations of the parameters d, from approximate
valuation of some of the dynamic model parts. And the ignored parts of the model aim to
decrease the volume of calculations in real time. The valuation is being done with the help
of standard trajectories for the joint variables of the mechanical system. They have been
generated in dependence of concrete working task and feed-back coefficients of the joint
position and velocities. After that the  standard corrections are formed for the joint
variables on the base of that valuation [1].

The existence of the component mentioned above in the control signal makes clear
the priority of the method for control with standard corrections with respect to the methods
of dynamic control between the calculated moment method’s group. The comparison
between these methods in calculating aspect leads to the following results (the data refer
to the calculation of the control signal for every interval of discretization of time about the
regional structure of the robot PUMA; it is done [2], [5] with a microprocessor
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INTEL 8086/8087, 8 MHz) :
Method of calculating the moment [2]
a) when the whole dynamic model is calculated
additions 55; multiplications  91; time of calculations  9.03 ms,
b) when the vector b(q,q

.
,d) from (1) is ignored

additions  31; multiplications  35; time of calculations  4.07 ms;
Method of control with standard corrections
a) when the whole dynamic model is calculated
additions  85; multiplications  67; rotations [1] 18,
time of calculations  9.43 ms;
b) when the approximate valuations of the matrix A(q,d) and the vector b(q,q

.
,d) from

(2) is used
additions 63; multiplications 18; rotations 18; time of calculations  5.03 ms.
The use of a central adaptive control with standatd model for the regional structure

of PUMA robot needs the following calculations [2]:
additions 64; multiplications 133; time of calculations 12.23 ms.
The realization of centralizing indirect adaptive control (by using regressor

matrix [21,22]) needs the following [2] :
additions 232; multiplications 325; time of calculations 34.39 ms.
From the data above mentioned it can be seen that if the whole dynamic model is

calculated, then the calculation time is  with 0.4 ms greater for the method of control with
standard corrections compared to the method of calculating moment. But in this case the
third component of the control signal  u(t) aims to compensate the influence of the
undeterminated effects on the closed system behaviour. However, when approximate
valuations are used the time of calculations is considerably less. As a result inexactnesses
are introduced in the model, but nevertheless the closed system goes on the desired motion
exactly that can be seen from the results given in [1] and [4]. The use of such an approximate
valuations is possible due to the existence of the component u(t).

In comparison with the central adaptive standard model of control the time of
calculation here (with use of the  method with standard corrections) decreased by 2.8 ms.

III. Computer simulation

In Fig.1 the joint coordinates qi, i=1,2,3, are represented for the regional structure of the
robot SCARA; in Fig.2 the standard corrections to the joint coordinates, velocities and
accelerstions of the 2nd rotation joint of the structure. The data of the structure needed for
the computer simulation of the method of control with standard corrections, are taken for
the assembly robot RMS232P. The results are obtained when valuations for   A(q,d)q

..
 and

b(q,q
.
,d) (respectively  A


  and  b


) are equal to zero. It can be seen from the figures that as

a result of the mechanism for estimation and compensation of the system deviation from
the desired motion (the component u(t)) the structure executes the working task that in
the concrete case is: transition from the initial state qi(0) = q

.
i(0)= q

..
i(0)= 0, to the final

state q1(T)= 1 rad, q2(t)= 0.5 rad, q3(T)= 0.3 rad, q
.
i(T)= 0 rad/s, q

..
i(T)= 0 rad/s

2,
i = 1,3. And the requirement of the transitional process is to have a critical-aperiodical cha-
racter. The time of calculations is 3.86 ms.

In Fig.3 the joint coordinates qi, i=1, 2, 3, are represented and the standard
trajectories qie, i=1, 2, 3. The results are obtained under the same conditions as the results
from Fig.1 and Fig.2. The difference is the missing of the component u(t)  in the control
signal (Fig.3) and in Fig.4 the error for joints of the structure is shown.
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IV. Conclusion

The method for control with standard corrections can be attached to the methods for
adaptive control with standard model by its essence. The time for calculation of the control
signal is shorter with respect to them and it makes this method more convenient for
realization in practice. In comparison with the group of the calculating moments’ methods,
the method for control with standard corrections has undoubted advantage. It includes a
possibility for valuation and compensation of the system deviation from the desired motion.
This deviation can be caused by inexactnesses of the dynamic model as well as from the
ignored model parts, including other undetermined disturbances. But as a result the
calculating time for the control signal is commensurable with the time this group of
methods used to work.

V. Appendix

Dynamic Control by Standard Corrections. Synthesis of the controlled law

The dynamic control is effected on the basis of motion equations of the manipulating
robots (2).

The synthesis of the controlled signal u(t) is executed in accordance with the presented
in [1] method for servocontrol with  standard corrections. The controlled signal consists of
three components :

(3)    u(t) = ufb(t) + ud(t) + u(t),

whose forming is executed as follows :
1. The component, formed from the feedback connections on the joint position, speeds

and accelerations  ufb(t)

(4) ufb(t) = ( A

   I) q

..
(t) +  b


 K2  q

.
 (t) K1 q(t),

where  A

 and b


 are valuations on the matrix A(q(t)) of the vector b(q(t),q

.
 (t))  from (2);  K1

and K2  are diagonal matrices of the feedback  connections on the joint positions and speeds.
2. Component, which introduces information in the system for the desired motion

ud(t).

(5)  ud(t) = q
..

d(t) + K2  q
.
d (t) +K1 qd(t).

If (4) and (4) are replaced in (2) it follows :

(6)  q
..
(t) + K2  q

.
  (t) +K1 q(t) = u(t) f(t) ,

where with  f , the sum [(A  A

 ) q
..
(t) + (b  b


)] is marked and  q(t)=q(t) qd(t).

If the valuations are precise, i.e. A

  = A  and  b


 = b, there is no necessity for the  third

component in the controlled signal: in that case   f (t) 0, and equation (6) of the closed
system should be:

(7)  q
..

(t) + K2  q
.
  (t) +K1 q(t) = 0,
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where 0  Rn , and with q(0) qd(0) and q
.
  (0) = q

.
d (0) working out with the desired motion

is assured.
Such precise valuations of A


 and  b


  are connected  with  the necessity of a large number

of calculations, which is very hard to realize in real time in practice.
Therefore the existence in the right side of equation (6) of f (q(t), q

.
  (t), q

..
(t))  0

is leading to the appearance of different by valuation in the time deviations from the desired
dynamics of the closed system, i.e. q(t)  0,  q

.
   0 and q

..
(t)  0.

3. Component, which realizes valuation and makes corrections of the inexact
and/or neglected members in the dynamic model u(t).

For the forming of the last component u(t) two steps must be realized:
a) generation of standard trajectories for the joint  positions, speeds and acceleration

qe(t), q
.
 e(t) and q

..
e(t).

b) obtaining of a valuation, which characterizes the deviation of the system from the
desired motion for each interval of discrediting of the time V (ti)  and numerical integrating
of the differential equattion

(8) z
..
(t) + K2 z

.
(t) + K1 z(t) = K V(t),

when:

(9) V(ti) = V1(ti)  + V2(ti)  + V3(ti)

and
   q(ti1)  qe(ti1) = V1(ti),

(10)    q
. 
(ti1)  q

.
e(ti1) = V2(ti),

   q
..
(ti1)  q

..
e(ti1) = V3(ti).

The choice of the elements of the diagonal matrix K , connected with the size extent of the
standard corrections, depends of the concrete problem executed by the manipulation robot.

The last component u(t) as a result of the additional feedback connection on the
joint position, speeds and acceleration, is formed by the so formulated after integration of
equation (6) z(ti), z

.
(ti) and z

..
(ti) as:

(11) u(t) = z
..
(ti) + K2 z

.
(ti) + K1 z(ti).

When in equation (6) u(t) is replaced by the expression (11), the motion in the
system is described with

(12) 
..
 (t) + K2 

. 
(t) + K1 (t) =  f(t),

where  (t) =  q(t)  z(t). In that equation the sum  [z
..
(t) + K2 z

.
(t) + K1 z(t)] compensates

the influence of the inexacts   f with the help of corrections, introduced by  z(t), z
.
(t) and

z
..
(t) toward  q(t),  q

.
 (t)  and  q

..
(t).
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Динамическое управление манипуляционными роботами.
Динамическое управление с эталонными коррекциями

Тони Бояджиев

Центральная лаборатория мехатроники и приборостроении

(Р е з ю м е)

В работе рассмотренны методы динамического управления манипуляционными
роботами. Рассмотрены также основные проблемы для их практической
реализации и подходы решения этих проблем. Далее описан метод динамического
управления с эталонными коррекциями. Сравненые вычислительная сложность
различных методов. Представлены результаты компьютерного симулирования.
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Fig.1.  Joint position  qi, i=1, 2, 3. The curve with no markthe graphics of qi Q1, the
curve with *  the graphics of q2 Q2, the curve with   the graphics of q3  Q3.

Fig.2. Standard corrections to joint positions, speeds and acceleration of joint 2. The curve
with no mark  the graphics of the valuation, which characterizes the deviation of the
joint 2 from the desired motion  W; the curve with *  the graphics of the standard correction
to the joint position of joint 2  Z2; the curve with   the graphics of the standard correction
to the joint speed of joint 2  Z22; the curve with  �   the graphics of the standard correction
to the joint acceleration of joint 2   DZ22.

Fig.3.  Joint position  qi and standard trajectories for joint position qie, i=1, 2, 3.  The curve
with no markthe graphics of q1 Q1,  the curve with *  the graphics of  q2 Q2,  the
curve with  the graphics of  q3 Q3, the curve with �  the graphics of  q1e Q1E, the
curve with <  the graphics of q2e Q2E, the curve with    the graphics of q3eQ3E.

Fig.4. Errors for joint position.  The curve with no markthe graphics of (q1 q1e)+
(q2 - q2e )  ERR, the curve with *  the graphics of (q3 – q3e )  ERRT.


